

# BIA and BMP for 400 kV Transmission Line Corridor Passing through Protected area of Karnataka State

M/s. Goa Tamnar Transmission Project Limited (GTTPL)

Final Report

21 December 2020

Project No.: 0476969

www.erm.com



| Document details  | The details entered below are automatically shown on the cover and the main page footer. PLEASE NOTE: This table must NOT be removed from this document. |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Document title    | BIA and BMP for 400 kV Transmission Line Corridor Passing through Protected areas of Karnataka State                                                     |  |  |  |
| Document subtitle | Final Report                                                                                                                                             |  |  |  |
| Project No.       | 0476969                                                                                                                                                  |  |  |  |
| Date              | 21 December 2020                                                                                                                                         |  |  |  |
| Version           | 1.0                                                                                                                                                      |  |  |  |
| Author            | Rahul Srivastava, Saumabha Bhattacharya, Omesh Bajpai, Suhas Fuladi                                                                                      |  |  |  |
| Client Name       | M/s. Goa Tamnar Transmission Project Limited (GTTPL)                                                                                                     |  |  |  |

## Document history

|         |          |                                                                                          |                      | ERM approval to issue    |            |                          |
|---------|----------|------------------------------------------------------------------------------------------|----------------------|--------------------------|------------|--------------------------|
| Version | Revision | Author                                                                                   | Reviewed by          | Name                     | Date       | Comments                 |
| Final   | 1.0      | Rahul<br>Srivastava,<br>Saumabha<br>Bhattacharya,<br>Omesh Bajpai<br>and Suhas<br>Fuladi | Arun<br>Venkataraman | Arun<br>Venkataram<br>an | 21.12.2020 | Approved as final report |
|         |          |                                                                                          |                      |                          |            |                          |
|         |          |                                                                                          |                      |                          |            |                          |
|         |          |                                                                                          |                      |                          |            |                          |
|         |          |                                                                                          |                      |                          |            |                          |
|         |          |                                                                                          |                      |                          |            |                          |
|         |          |                                                                                          |                      |                          |            |                          |
|         |          |                                                                                          |                      |                          |            |                          |

www.erm.com Version: 1.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

## **Signature Page**

21 December 2020

# BIA and BMP for 400 kV Transmission Line Corridor Passing through Protected area of Karnataka State

Final Report

Name Arun Venkataraman Job title Technical Director Name Rahul Srivastava

Job title Principal Consultant

## **ERM India Private Limited**

3rd Floor, Building.10B,

**DLF Cyber City** 

Gurgaon, NCR - 122002

© Copyright 2020 by ERM Worldwide Group Ltd and / or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM

www.erm.com Version: 1.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

## **CONTENTS**

| 1. | INTR | ODUCTIO        | ON                                                   | 1  |
|----|------|----------------|------------------------------------------------------|----|
|    | 1.1  | •              | Background                                           |    |
|    | 1.2  | -              | Brief                                                |    |
|    | 1.3  | -              | Justification                                        |    |
|    | 1.4  | Report I       | Layout                                               | 5  |
| 2. | PRO. | JECT DES       | SCRIPTION                                            | 6  |
|    | 2.1  | Transm         | nission Line Route in Karnataka State Protected Area | 6  |
|    | 2.2  | Tower D        | Details                                              | 12 |
|    | 2.3  |                | ctor Details                                         |    |
|    | 2.4  | •              | Criteria for Transmission Line                       |    |
|    | 2.5  | Constru        | uction Activities and Methods                        |    |
|    |      | 2.5.1          | Installation of 400 kV steel tower foundations       |    |
|    |      | 2.5.2          | Erection of Tower Body                               |    |
|    |      | 2.5.3          | Stringing of Conductor                               |    |
|    | 2.6  |                | uction Period                                        |    |
|    | 2.7  |                | ment                                                 |    |
|    | 2.8  | Operation      | on and Maintenance                                   | 17 |
| 3. | ECOL | OGICAL         | BASELINE                                             | 20 |
|    | 3.1  | Physiog        | graphic Unit                                         | 20 |
|    | 3.2  | Climate        | )                                                    | 20 |
|    | 3.3  | The Stu        | udy Area                                             | 20 |
|    | 3.4  | •              | Ouration                                             |    |
|    | 3.5  | •              | Team                                                 |    |
|    | 3.6  |                | ope of Work for Study                                |    |
|    | 3.7  |                | ch and Methodology                                   |    |
|    |      | 3.7.1          | Approach                                             |    |
|    |      | 3.7.2          | The methodology of Primary Data Collection           |    |
|    | 3.8  |                | Assessment                                           |    |
|    |      | 3.8.1          | Vegetation Profile in Study Area                     |    |
|    |      | 3.8.2          | Taxonomic Status-Species Richness                    |    |
|    |      | 3.8.3<br>3.8.1 | Status of Growth Forms                               |    |
|    |      | 3.8.2          | Status of Medicinal Plants                           |    |
|    |      | 3.8.3          | Status of Threatened Plants                          |    |
|    |      | 3.8.4          | Status of Endemic Species                            |    |
|    |      | 3.8.5          | Overall Species Richness                             |    |
|    |      | 3.8.6          | Species Diversity and Species Evenness               | 41 |
|    |      | 3.8.7          | Overall Species list                                 | 41 |
|    | 3.9  | Faunal         | Assessment                                           | 44 |
|    |      | 3.9.1          | Herpetofauna                                         | 44 |
|    |      | 3.9.2          | Avifauna                                             |    |
|    |      | 3.9.3          | Mammals                                              | 67 |
| 4. | IMPA | CT ASSE        | ESSMENT                                              | 71 |
|    | 4.1  | Impacts        | s on Biodiversity                                    | 71 |
|    | 4.2  | •              | s during Construction Stage                          |    |
|    | 4.3  | Impacts        | s during Operation Stage                             | 71 |
|    | 4.4  |                | Assessment Criteria                                  |    |
|    | 4.5  | Impact A       | Assessment                                           | 73 |
|    |      | 4.5.1          | Impacts during Construction Phase                    |    |
|    |      | 4.5.2          | Impacts during operation Phase                       | 80 |

| 5.     | MITIGA   | ATION MEASURES                                                                      | . 83 |
|--------|----------|-------------------------------------------------------------------------------------|------|
|        | 5.1      | INTRODUCTION                                                                        |      |
|        | 5.2      | Construction Phase Mitigation Measures.                                             |      |
|        | 5.3      | Mitigation for Operational Phase                                                    |      |
| 6.     | BIODIV   | ERSITY MANAGEMENT PLAN                                                              | . 86 |
|        | 6.1      | Introduction                                                                        | . 86 |
|        | 6.2      | Biodiversity Management Plan                                                        | . 86 |
|        |          | 6.2.1 Ecological Sensitivity                                                        | . 86 |
|        | 6.3      | Cost of the Biodiversity Management Plan                                            | . 92 |
| APPE   | NDIX A   | TOWER DESIGN DETAILS                                                                |      |
| APPE   | NDIX B   | FOUNDATION DESIGN DETAILS                                                           |      |
| A11 L  |          | TOURDATION DEGICALED                                                                |      |
| List o | f Tables | S                                                                                   |      |
| Table  | 1.1      | Transmission Line Project Components                                                |      |
| Table  | 1.2      | Comparative Statement of Three Alternative Routes                                   |      |
| Table  | 2.1      | Transmission Line Project Components                                                | 6    |
| Table  |          | Coordinate Statement of required area of Wildlife Division, Karnataka               | .11  |
| Table  | 2.3      | Tower Details                                                                       | .12  |
| Table  | 2.4      | Conductor Details                                                                   | .12  |
| Table  | 2.5      | Proposed Construction Period                                                        | . 17 |
| Table  | 2.6      | Employment Generation                                                               | . 17 |
| Table  | 3.1      | Ecological Survey Team                                                              | .23  |
| Table  | 3.2      | Details of Floral Survey Quadrates                                                  |      |
| Table  | 3.3      | Details of the Quadrate Surveyed and its Distribution                               | . 32 |
| Table  | 3.4      | Taxonomic Status of Flora along the Proposed Transmission line route                |      |
| Table  |          | Status of Floral Growth forms along with the Proposed Transmission Line Route       |      |
| Table  | 3.6      | Important Value Index (IVI) and Rank Order of Tree Species and lianas in Study Area | a    |
|        |          |                                                                                     |      |
| Table  |          | Medicinal Plants recorded from Transmission Line Route                              |      |
| Table  |          | Threatened Species                                                                  |      |
| Table  |          | Endemic Species                                                                     |      |
| Table  |          | Overall Species Richness of Flora along the transmission line route                 |      |
| Table  |          | Species Diversity and Species Evenness                                              | .41  |
| Table  | 3.12     | Overall List of Flora (Botanical name, Family, Local name, Locality, Local name,    |      |
|        |          | Growth form, Vegetation/Forest type) along the Proposed Transmission line           |      |
| Table  |          | Transects for Faunal Survey                                                         |      |
| Table  |          | Amphibians reported & recorded from the Transmission Line Route                     |      |
| Table  |          | Reptiles recorded from the Study Area                                               |      |
| Table  |          | Threatened Species                                                                  |      |
| Table  |          | Details of Species Recorded from the Study Area                                     |      |
| Table  |          | Potential Species List likely to be observed from the Study Area                    |      |
| Table  |          | Endemic Avian Species of the Study Area                                             |      |
| Table  |          | Details of Sightings in Transmission Line Corridor                                  |      |
| Table  |          | Habitat Impact Assessment Criteria                                                  |      |
| Table  |          | Species impact assessment criteria                                                  |      |
| Table  |          | Context of various impacts during the construction phase                            |      |
| Table  |          | Tree Enumeration List from the Transmission Line route                              |      |
| Table  |          | Impact significance of Overall Construction Activities                              |      |
| Table  | 4.6      | Context of various impacts during the operation phase                               | .80  |

| Table 4.7    | Impact significance of Operational Activities                              | 82 |
|--------------|----------------------------------------------------------------------------|----|
| Table 5.1    | Impact Summary                                                             |    |
| Table 6.1    | Threatened Species                                                         |    |
| Table 6.2    | Biodiversity Management Plan                                               | 88 |
| Table 6.3    | Cost of Implementation of BMP                                              | 92 |
| List of Figu | res                                                                        |    |
| Figure 1.1   | Alternate Routes for Xeldem Narendra Line within Karnataka State           | 4  |
| Figure 2.1   | Layout Map of Transmission Line route in Protected Area of Karnataka State | 7  |
| Figure 2.2   | Transmission Line route overlaid over Forest Map (Atle)                    | 8  |
| Figure 2.3   | Transmission Line route overlaid over Forest Map (Anmod)                   | 9  |
| Figure 2.4   | Transmission Line route overlaid over Forest Map (Akheti)                  | 10 |
| Figure 2.5   | Photograph setting template being prepared for final concreting            | 14 |
| Figure 2.6   | Model visual: Derrick pole at the tower base                               | 15 |
| Figure 2.7   | Conductor Stringing                                                        | 16 |
| Figure 3.1   | Current State of Disturbances (Nov. 2020)                                  | 22 |
| Figure 3.2   | Ecological Baseline Field Surveys                                          | 28 |
| Figure 3.3   | Vegetation Types in the Study Area                                         | 31 |
| Figure 3.4   | Floral and Faunal Survey locations                                         | 33 |
| Figure 3.5   | Medicinal Plants recorded from Transmission Line Route                     | 39 |
| Figure 3.6   | Threatened Species                                                         | 40 |
| Figure 3.7   | Amphibians recoded from the Study Area                                     | 47 |
| Figure 3.8   | Reptiles recorded from the Study Area                                      | 50 |
| Figure 3.9   | Avifauna Recorded During Survey                                            | 55 |

Mammal Species recorded in Transmission Line Corridor......69

Mitigation Structures for Transmission Line......85

Figure 3.10

Figure 5.1

## **Acronyms and Abbreviations**

Name **Description** ATV

All-Terrain Vehicle

BIA **Biodiversity Impact Assessment BMP** Biodiversity Management Plan

**BMWS** Bhagwan Mahaveer Wildlife Sanctuary

Convention on International Trade in Endangered Species of Wild Fauna and Flora **CITES** 

CR Critically Endangered

DD Data Deficient **EHV** Extra High Voltage ΕN Endangered

**EPMs Environmental Protection Measures** 

**EPS Electric Power Survey ERM ERM India Private Limited** Gol Government of India

GTTPL Goa Tamnar Transmission Projects Limited **IUCN** International Union for Conservation of Nature

IVI Importance value Index

**KPTCL** Karnataka Power Transmission Corporation Limited

LC Least Concern Line In Line Out LILO NA Not assessed

NGO Non-Governmental Organisation

NT Near Threatened

PCCF (WL) Principal Chief Conservator of Forests (Wieldlife)

**PGCIL** Power Grid Corporation of India Limited

ROW Right of Way

SPV Special Purpose Vehicle

VU Vulnerable

WLS Wildlife sanctuary

#### 1. INTRODUCTION

Goa Tamnar Transmission Projects Limited (GTTPL) is developing the project, "Additional 400 kV feed to Goa and Additional System for Power Evacuation from Generation Projects pooled at Raigarh (Tamnar) Pool" which is awarded to them through tariff based competitive bidding process.

The transmission line proposed route is passing through the Dandeli Wildlife Sactuary (DWS which attracts wildlife clearance from the State Wildlife Board of Karnataka and National Wildlife Board at Ministry of Environment, Forest and Climate Change, Government of India.

GTTPL has entrusted ERM India Private Limited (ERM) to undertake a Biodiversity Impact Assessment study and prepare a biodiversity management plan for the project. The current study assesses the biological impacts of the transmission line project of the flora and fauna of the wildlife sanctuary and presents the biodiversity management plans to be implemented during the construction and operation phase of the project.

## 1.1 Project Background

The peak demand met by Goa during the year 2014-15 was 489 MW and as per the 18th EPS, the peak demand of 815 MW was expected by the end of 12th Plan (2016-17) and 1192 MW by the end of 13th plan (2021-22).

At present demand of Goa is mainly catered through Mapusa 3x315 MVA, 400/220 kV substation, which gets a feed from Kolhapur 400 kV substation through a 400 kV D/c line. Goa system is also connected with Maharashtra and Karnataka through 220 kV lines.

To supply the projected power requirement of Goa with reliability, an additional 400 kV in the feed to Goa was required. The matter was discussed in the 38<sup>th</sup> meeting of Standing Committee on Power System Planning in Western Region, held on 17<sup>th</sup> July 2015 at New Delhi wherein the provision for a new 400kV S/s in Goa at Xeldem along with its interconnections with the Inter-State Transmission System was agreed. Accordingly, following transmission system was discussed and approved in the 39<sup>th</sup> & 40<sup>th</sup> SCM of WR held on 30<sup>th</sup> November 2015 & 01<sup>st</sup> June 2016 respectively and 39<sup>th</sup> & 40<sup>th</sup> SCM of SR held on 28<sup>th</sup> and 29<sup>th</sup> December 2015 and 19<sup>th</sup> November 2016 respectively.

## 1.2 Project Brief

The project is a part of "Additional 400 kV feed to Goa and Additional system for Power Evacuation from Generation Projects Pooled at Rajgarh (Tamnar) Pool". PFC Consulting Limited (A wholly owned subsidiary of Power Finance Corporation Limited) on behalf of Ministry of Power (GoI) entrusted Goa Tamnar Transmission Project Ltd. to construct the transmission projects in Goa, Karnataka & Chhattisgarh state for "Additional Feed of 400 kV to Goa State".

The project component for this transmission line project is presented in *Table 1.1* below

**Table 1.1** Transmission Line Project Components

| Sn | Transmission System for "Additional 400kV feed to Goa"                                 |
|----|----------------------------------------------------------------------------------------|
| 1. | LILO of one ckt. of Narendra (existing) – Narendra (New) 400kV D/C quad line at Xeldem |
| 2. | Xeldem – Mapusa400kV D/C (quad) line                                                   |
| 3. | Establishment of 2x500MVA, 400/220kV substation at Xeldem 400kV                        |

| Sn | Transmission System for "Additional 400kV feed to Goa"                                                                                                                                                                                                    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | ■ ICTs: 2x500MVA, 400/220kV<br>■ ICT bays: 2 nos.                                                                                                                                                                                                         |
|    | ■ Line bays: 4 nos. (2 nos. for Xeldem – Mapusa 400kV D/c (quad) line & 2 nos. for LILO of one ckt of Narendra (existing) – Narendra (New) 400kV D/c quad line at Xeldem)                                                                                 |
|    | Bus Reactor: 1x125MVAR                                                                                                                                                                                                                                    |
|    | Bus Reactor Bay: 1 no                                                                                                                                                                                                                                     |
|    | Space for 2x500MVA, 400/220kV ICTs (future)                                                                                                                                                                                                               |
|    | Space for ICT bays (future): 2 nos.                                                                                                                                                                                                                       |
|    | Space for Line bays along with Line Reactors (future): 4 nos.                                                                                                                                                                                             |
|    | <ul> <li>1x63MVAR switchable line reactor along with 500 Ohms NGR and its auxiliaries (for<br/>Narendra (existing) – Xeldem 400kV line formed after LILO of one ckt of Narendra<br/>(existing) – Narendra (New) 400kV D/c quad line at Xeldem)</li> </ul> |
|    | ■ 1x80MVAR switchable line reactor along with 500 Ohms NGR and its auxiliaries (for Narendra (New) –Xeldem 400kV (quad) line formed after LILO of one ckt of Narendra (existing) – Narendra (New) 400kV D/c quad line at Xeldem)                          |
|    | <u>220kV</u>                                                                                                                                                                                                                                              |
|    | <ul> <li>220kV inter-connection with Xeldem (existing) substation</li> </ul>                                                                                                                                                                              |
|    | ■ ICT bays: 2 nos.                                                                                                                                                                                                                                        |
|    | ■ Line bays: 6 nos.                                                                                                                                                                                                                                       |
|    | Space for ICT bays (future): 2 nos.                                                                                                                                                                                                                       |
|    | ■ Space for Line bays (future): 6 nos.                                                                                                                                                                                                                    |

## 1.3 Project Justification

The construction of 400 kV D/C Xeldem- Narendra is an additional feed to Goa State to meet arising power deficit through the present network system. The Project shall be implemented through the Special Purpose Vehicle (SPV) named Goa-Tamnar Transmission Project Limited which shall be the complete owner and operator of the project. This project is part of National Grid Development.

During a survey of this transmission line, it was known that the line passes through several forest patches of Goa and Karnataka Forest Division. Transmission line projects are environmentally friendly and do not involve any disposal of solid effluents and hazardous substances in land, air, and water. The constructional features of 400 kV Transmission line are such that it is not affecting the environment as it's not dividing the existing forest because of long spans between the towers (400 Mtrs). The layout of transmission line follows along the forest road/forest block boundary thus involving minimum tree felling and also allowing free movement of birds due to high towers heights 45 – 50 Mtrs. The ground clearance for lower-most conductors is 8.84 Meters. The spacing between the phase conductors is (4 Mtrs) as well. A very small space is required for the construction of tower foundations (maximum 20 X 20 Mtrs). The tower foundations are under the ground (3.5 Mtrs) and a small portion of 0.50X0.50 Mtrs are elevated as a plinth.

Although this has been ensured that the incurred forest area should be minimum & unavoidable to the extent possible. To confirm the forest area is minimum & unavoidable, three (03) possible alternate routes from generating to terminating end of the transmission line was worked out and the least impacting route was selected. The route comparison of the 3 routes are given in following section;

The 400 kV D/C Narendra (Karnataka) – Xeldem (Goa) Transmission Line is starting from Narendra village in Dharwad District, Karnataka by tapping the existing 400 kV Narendra line of PGCIL by LILO and terminating at 400/220 kV substation at Xeldem in Goa. The line will be passing through Dharwad, Belgaum and Uttar Kannada District of Karnataka and South Goa District of Goa.

Three alternative route corridors were identified largely by maximizing linear sighting opportunities, such as following existing roadways and power line corridors, negotiation with rivers, railway, road electric power line crossings. All efforts have been made to provide minimum no of angle points.

Power line crossings have been fixed as close as possible to a right angle. Every effort has been made to minimize & avoid forestry.

In Karnataka the total length of the proposed route is 77.641 Km. Out of this only 31.887 Km is forest land and 6.61 Km falls in Dandeli Wild Life Sanctuary and the remaining 39.144 Km is Non Forest Land. In Dandeli Wild Life Sanctuary, there is one 220 kV line and one 110 kV line of KPTCL feeding Goa. The 110 kV line is defunct from border of Goa to Anmod village. Beyond Anmod this 110 kV line is charged and is feeding Anmod Substation so cannot be used. As per the directions of PCCF (WL) and Chief Wild Life Warden Karnataka, proposed route has been aligned such that our 400 kV transmission line will be using the defunct 110 kV corridor thus avoiding new corridor where ever possible.

The total Bee Line Length in Karnataka is 75.642 Km. The line length of Alternate – I (Proposed Line) is 77.64 Km. Alternate – II is 79.1 Km. Alternate – III is 79.855 Km.

Alternate Route I- The length of forest and wild life in alternate - I is 38.497 Km (Forest - 31.887 Km and WL - 6.61 Km).

Alternate Route II- The length of forest and wildlife in alternate – II is 51.5 Km (Forest – 43.40 Km and WL 8.1 Km).

Alternate Route III- The length of forest & wildlife in alternate – III is 50.853 Km (Forest –41.91 Km and WL 8.944 Km).

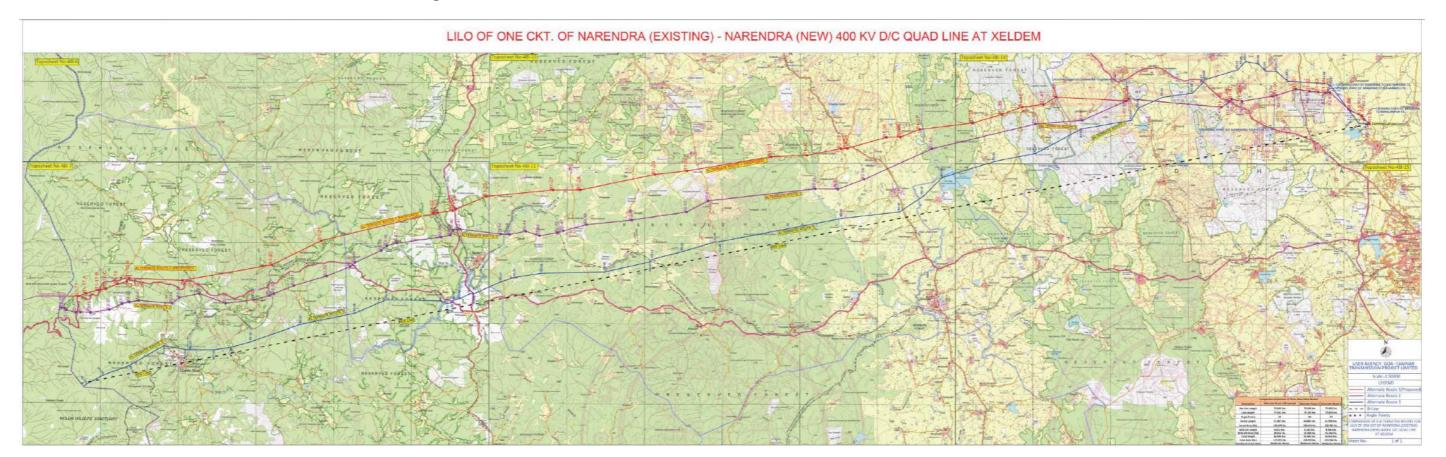

In view of the above facts, it is evident that alternate – I involve the minimum forest and Wild Life Sanctuary land as well non-forest land. (Refer *Table 1.2*)

 Table 1.2
 Comparative Statement of Three Alternative Routes

| Description                 | Alternate Route 1 (Proposed Route) | Alternate Route 2 | Alternate Route 3 |
|-----------------------------|------------------------------------|-------------------|-------------------|
| Bee Line Length             | 75.642 Km                          | 75.642 Km         | 75.642 Km         |
| Line Length                 | 77.64 Km                           | 79.1 Km           | 79.85 Km          |
| Angle Points                | 50                                 | 62                | 54                |
| Forest Length               | 31.887 Km                          | 43.40 Km          | 41.91 Km          |
| Wildlife Length             | 6.61 Km                            | 8.1 Km            | 8.944 Km          |
| Total Forest & WL<br>Length | 38.497 Km                          | 51.5 Km           | 50.853 Km         |
| Forest Area (Ha)            | 146.679 Ha                         | 199.64 Ha         | 192.781 Ha        |
| Wildlife & NP Area          | 30.412 Ha                          | 37.26 Ha          | 41.142 Ha         |
| Total Forest & WL<br>Area   | 177.091 Ha                         | 236.9 Ha          | 233.923На         |
| Density of Forest<br>Area   | Moderate Dense                     | High Dense        | Moderate Dense    |

After detailed analysis as per *Table 1.2* above, it is observed that the alternative – I have the least route length and has minimum crossings in terms of rail, road and existing power line. Keeping the above points in consideration, we propose Alternative – I to be taken as final proposed route alignment. The area falling in Karnataka section is presented below (Refer to *Figure 1.1*).

Figure 1.1 Alternate Routes for Xeldem Narendra Line within Karnataka State



www.erm.com Version: 1.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

## 1.4 Report Layout

The report is presented in the following format.

| Section                  | Name                         |
|--------------------------|------------------------------|
| Chapter 1 (This Section) | Introduction                 |
| Chapter 2                | Project Description          |
| Chapter 3                | Ecological Baseline          |
| Chapter 4                | Impact Assessment            |
| Chapter 5                | Mitigation Measures          |
| Chapter 6                | Biodiversity Management Plan |

## 2. PROJECT DESCRIPTION

The project is a part of "Additional 400 kV feed to Goa and Additional system for Power Evacuation from Generation Projects Pooled at Rajgarh (Tamnar) Pool". PFC Consulting Limited (A wholly owned subsidiary of Power Finance Corporation Limited) on behalf of Ministry of Power (GoI) entrusted Goa Tamnar Transmission Project Ltd. to construct the transmission projects in Goa, Karnataka & Chhattisgarh state for "Additional Feed of 400 kV to Goa State".

The project component for this transmission line project is presented in *Table 2.1* below

**Table 2.1** Transmission Line Project Components

| Sn | Transmission System for "Additional 400kV feed to Goa"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | LILO of one ckt. of Narendra (existing) – Narendra (New) 400kV D/c quad line at Xeldem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2. | Xeldem – Mapusa 400kV D/c (quad) line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. | Establishment of 2x500MVA, 400/220kV substation at Xeldem  400kV  ICTs: 2x500MVA, 400/220kV  ICT bays: 2 nos.  Line bays: 4 nos. (2 nos. for Xeldem – Mapusa (Goa State) 400kV D/c (quad) line & 2 nos. for LILO of one ckt of Narendra (existing) – Narendra (New) (Karnataka State) 400kV D/c quad line at Xeldem)  Bus Reactor: 1x125MVAR  Bus Reactor Bay: 1 no  Space for 2x500MVA, 400/220kV ICTs (future)  Space for ICT bays (future): 2 nos.  Space for Line bays along with Line Reactors (future): 4 nos.  1x63MVAR switchable line reactor along with 500 Ohms NGR and its auxiliaries (for Narendra (existing) – Xeldem 400kV line formed after LILO of one ckt of Narendra (existing) – Narendra (New) 400kV D/c quad line at Xeldem)  1x80MVAR switchable line reactor along with 500 Ohms NGR and its auxiliaries (for Narendra (New) –Xeldem 400kV (quad) line formed after LILO of one ckt of Narendra (existing) – Narendra (New) 400kV D/c quad line at Xeldem)  220kV  220kV inter-connection with Xeldem (existing) substation  ICT bays: 2 nos.  Line bays: 6 nos.  Space for ICT bays (future): 2 nos.  Space for Line bays (future): 6 nos. |

## 2.1 Transmission Line Route in Karnataka State Protected Area

The Transmission line route passes through the Dandeli Wildlife Sanctuary (DWS). It intercepts DWS in two sections. At first, it enters the DWS from Goa Karnataka Border and then secondly it enters ahead of Anmod village to Kali River Crossing. The location map of the transmission line in the protected area of Karnataka State is provided in *Figure 2.1* and route overlaid over the forest map in *Figure 2.2*, *Figure 2.3* and *Figure 2.4*.

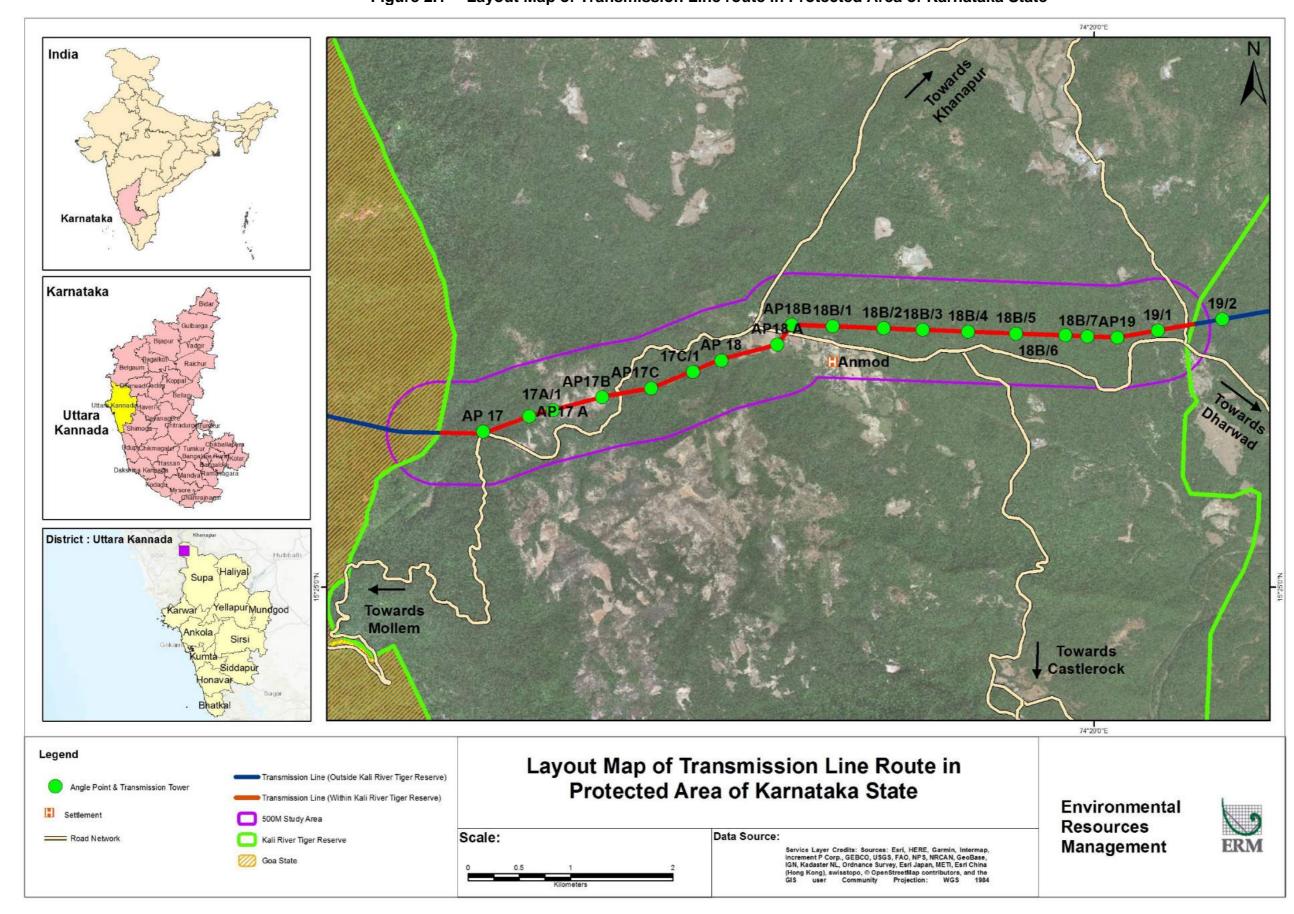



Figure 2.1 Layout Map of Transmission Line route in Protected Area of Karnataka State

www.erm.com Version: 1.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

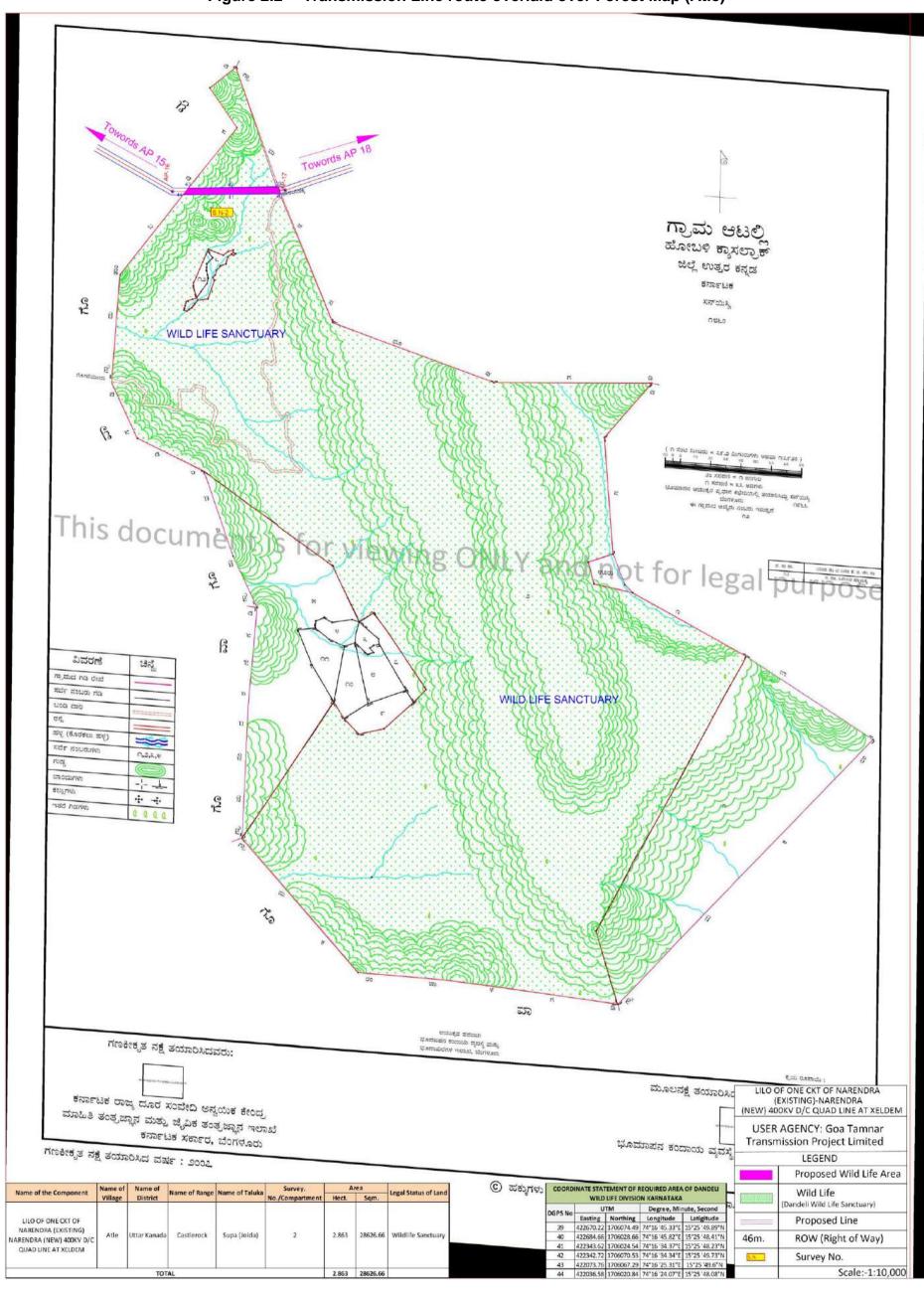
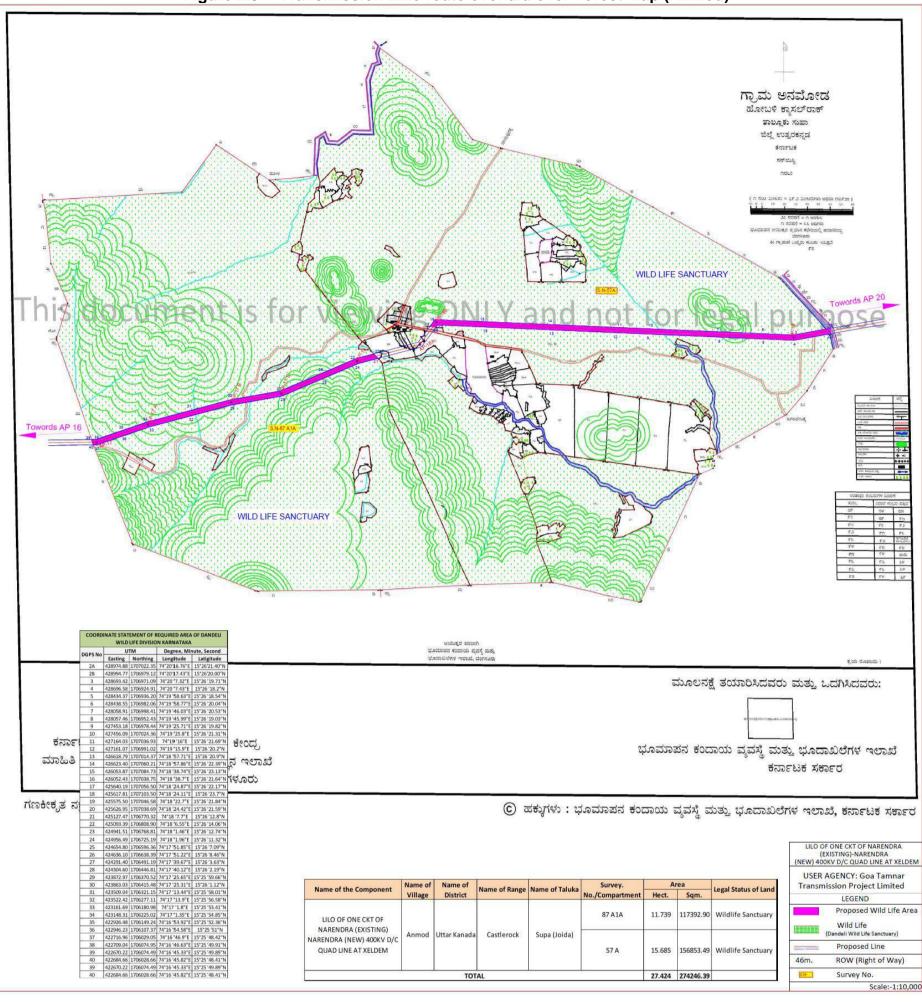




Figure 2.2 Transmission Line route overlaid over Forest Map (Atle)



TOTAL

27.424 274246.39

Figure 2.3 Transmission Line route overlaid over Forest Map (Anmod)

Scale:-1:10,000

ಗ್ರಾಮ ಅವೇತಿಮೇಡೆ ಹೋಬಳ ಶ್ವಾಸಲ್**ರಾಕ** ಶಾಲ್ವಾಕು ಸೂಪ धर् गर्याम्बद्ध not for legal purpose WILD LIFE SANCTUARY owords AP LILO OF ONE CKT OF NARENDRA ಮೂಲನಕ್ಷೆ ತಯಾರಿಸಿದವರು (EXISTING)-NARENDRA (NEW) 400KV D/C QUAD LINE AT XELDEM ಗಣಕೀಕೃತ ನಕ್ಷೆ ತಯಾರಿಸಿದವರು: USER AGENCY: Goa Tamnar Transmission Project Limited ನೂರ ಸಂವೇದಿ ಅನ್ವಯಿಕ ಕೇಂದ್ರ NDELI ೃಪಿಕ ತಂತ್ರಜ್ಞಾನ ಇಲಾಖೆ Proposed Wild Life Area COORDINATE STATEMENT OF REQUIRED AREA OF DANDELI WILD LIFE DIVISION KARNATAKA Wild Life ರ್ಷದ ಚನಗಳೂರು (Dandeli Wild Life Sanctuary) Survey. Degree, Minute, Second Name of Range Name of Taluka Name of the Component Legal Status of Land Village District Proposed Line Easting Northing Longitude Latigitude LILO OF ONE CKT OF 429070.79 1706992.79 74°20'19.98"E 15°26'20.45"N NARENDRA (EXISTING) NARENDRA (NEW) 400KV D/C 46m. ROW (Right of Way) 429087.91 1707041.36 74°20'20.55"E 15°26'22.03"N Survey No. 428974.88 1707022.35 74°20'16.76"E 15°26'21.40"N QUAD LINE AT XELDEM 2B 428994.77 1706979.12 74°20'17.43"E 15°26'20.00"N 0.125 1254.71 Scale:-1:10,000 TOTAL

Figure 2.4 Transmission Line route overlaid over Forest Map (Akheti)

www.erm.com Version: 1.0 Project No.: 0476969 The total length of the Transmission Line within in DWS, is falls in three (03) Surveys numbers/Forest compartments. The details are given in below in *Table* **2.2**.

Table 2.2 Coordinate Statement of required area of Wildlife Division, Karnataka

| DGPS<br>No. |                        | ГМ         | Degree, Mi                      | nute Second                     | Wildlife<br>Division | Village<br>Name | Compartment/<br>Survey No. | Area<br>(Ha.) | Legal Status<br>of Land |
|-------------|------------------------|------------|---------------------------------|---------------------------------|----------------------|-----------------|----------------------------|---------------|-------------------------|
|             | Easting                | Northing   | Longitude                       | Latitude                        |                      |                 | 33.127 1101                | ()            | J. Edild                |
| 1           | 429015.57              | 1706982.99 | 74°20'19.98" E                  | 15°26'20.45"N                   | Dandeli              | Akheti          | 78                         | 0.125         | Reserved Fore           |
| 2           | 429007.33              | 1707028.24 | 74°20'20.55" E                  | 15°26'22.03" N                  |                      |                 |                            |               |                         |
| 2A          | 428974.88              | 1707022.35 | 74°20'16.76" E                  | 15°26'21.40" N                  |                      |                 |                            |               |                         |
| 2B          | 428994.77              | 1706979.12 | 74°20'17.42" E                  | 15°26'20.00" N                  |                      |                 |                            |               |                         |
| 3           | 428693.42              | 1706971.09 | 74°20'7.32" E                   | 15°26'19.71" N                  | Dandeli              | Anmod           | 87A1A                      | 87A1A 11.739  | Reserved Forest         |
| 4           | 428696.58              | 1706924.91 | 74°20'7.43" E                   | 15°26'18.2" N                   |                      |                 |                            |               |                         |
| 5           | 428434.37              | 1706936.20 | 74°19'58.63" E                  | 15°26'18.54" N                  |                      |                 |                            |               |                         |
| 6           | 428438.55              | 1706982.06 | 74°19'58.77" E                  | 15°26'20.04" N                  |                      |                 |                            |               |                         |
| 7           | 428058.91              | 1706998.41 | 74°19'46.03" E                  | 15°26'20.53" N                  |                      |                 |                            |               |                         |
| 8           | 428057.46              | 1706952.43 | 74°19'45.99" E                  | 15°26'19.03" N                  |                      |                 |                            |               |                         |
| 9           | 427453.18              | 1706978.44 | 74°19'25.71" E                  | 15°26'19.82" N                  |                      |                 |                            |               |                         |
| 10          | 427456.09              | 1707024.36 | 74°19'2.58" E                   | 15°26'21.31" N                  |                      |                 |                            |               |                         |
| 11          | 427164.03              | 1707036.93 | 74°19'16" E                     | 15°26'21.69" N                  |                      |                 |                            |               |                         |
| 12          | 427161.07              | 1706991.02 | 74°19'15.9" E                   | 15°26'20.2" N                   |                      |                 |                            |               |                         |
| 13          | 426618.79              | 1707014.37 | 74°20'57.71" E                  | 15°26'20.9" N                   |                      |                 |                            |               |                         |
| 14          | 426623.40              | 1707060.21 | 74°18'57.86" E                  | 15°26'22.39" N                  |                      |                 |                            |               |                         |
| 15          | 426053.87              | 1707084.73 | 74°18'38.74" E                  | 15°26'23.13" N                  |                      |                 |                            |               |                         |
| 16          | 426052.43              | 1707038.75 | 74°18'38.7" E                   | 15°26'21.64" N                  |                      |                 |                            |               |                         |
| 17          | 425640.19              | 1707056.50 | 74°18'24.87" E                  | 15°26'22.17" N                  |                      |                 |                            |               |                         |
| 18          | 425617.81              | 1707103.50 | 74°18'24.11" E                  | 15°26'23.7" N                   |                      |                 |                            |               |                         |
| 19          | 425575.50              | 1707046.58 | 74°18'22.7" E                   | 15°26'21.84" N                  |                      |                 |                            |               |                         |
| 20          | 425626.95              | 1707038.69 | 74°18'24.42" E                  | 15°26'21.59" N                  |                      |                 |                            |               |                         |
| 21          | 425127.47              | 1706770.32 | 74°18'7.7" E                    | 15°26'12.8" N                   | Dandeli              | Anmod           | nod 57A                    | 15.685        | Reserved For            |
| 22          | 425093.39              | 1706808.90 | 74°18'6.55" E                   | 15°26'14.06" N                  |                      |                 |                            |               |                         |
| 23          | 424941.51              | 1706768.81 | 74°18'1.46" E                   | 15°26'12.74" N                  |                      |                 |                            |               |                         |
| 24          | 424956.49              | 1706725.19 | 74°18'1.96" E                   | 15°26'11.32" N                  |                      |                 |                            |               |                         |
| 25          | 424654.80              | 1706596.36 | 74°17'51.85" E                  | 15°26'7.09" N                   |                      |                 |                            |               |                         |
| 26          | 424636.10              | 1706638.39 | 74°17'51.22" E                  | 15°26'8.46" N                   |                      |                 |                            |               |                         |
| 27          | 424291.40              | 1706491.19 | 74°17'39.67" E                  | 15°26'3.63" N                   |                      |                 |                            |               |                         |
| 28          | 424304.60              | 1706446.81 | 74°17'40.12" E                  | 15°26'2.19" N                   |                      |                 |                            |               |                         |
| 29          | 423872.97              | 1706370.52 | 74°17'25.65" E                  | 15°25'59.66" N                  |                      |                 |                            |               |                         |
| 30          | 423863.03              | 1706415.48 | 74°17'25.31" E                  | 15°25'1.12" N                   |                      |                 |                            |               |                         |
| 31          | 423509.04              | 1706321.15 | 74°17'13.44" E                  | 15°25'58.01" N                  |                      |                 |                            |               |                         |
| 32          | 423522.42              | 1706277.11 | 74°17'13.9" E                   | 15°25'56.58" N                  |                      |                 |                            |               |                         |
| 33          | 423161.69              | 1706180.98 | 74°17'13.5" E                   | 15°25'53.4" N                   |                      |                 |                            |               |                         |
| 34          | 423148.31              | 1706130.38 | 74°17'1.35" E                   | 15°25'54.85" N                  |                      |                 |                            |               |                         |
| 35          | 422926.48              | 1706149.24 | 74°16'53.92" E                  | 15°25'52.36" N                  |                      |                 |                            |               |                         |
| 36          | 422926.48              | 1706149.24 | 74 16 55.92 E<br>74°16'54.58" E | 15°25'51" N                     |                      |                 |                            |               |                         |
|             |                        |            | 74 10 34.38 E<br>74°16'46.9" E  | 15°25'48.42" N                  |                      |                 |                            |               |                         |
| 37<br>38    | 422716.96<br>422709.04 | 1706029.05 | 74 16 46.9 E<br>74°16'46.63" E  | 15 25 48.42 N<br>15°25'49.91" N |                      |                 |                            |               |                         |
|             |                        | 1706074.95 | 74 16 46.63 E<br>74°16'45.33" E |                                 | Dandeli              | ۸+۱۵            | 2                          | 2 062         | Posorio                 |
| 39          | 422670.22              | 1706074.49 |                                 | 15°25'49.89" N                  | Sandell              | Atle            | 2                          | 2.863         | Reserved<br>Forest      |
| 40          | 422684.66              | 1706028.66 | 74°16'45.33" E                  | 15°25'48.41" N                  |                      |                 |                            |               |                         |
| 41          | 422343.62              | 1706024.54 | 74°16'34.33" E                  | 15°25'48.23" N                  |                      |                 |                            |               |                         |
| 42          | 422342.72              | 1706070.53 | 74°16'34.33" E                  | 15°25'49.73" N                  |                      |                 |                            |               |                         |
| 43          | 422073.76              | 1706067.29 | 74°16'25.33" E                  | 15°25'49.6" N                   |                      |                 |                            |               |                         |
| 44          | 422036.58              | 1706020.84 | 74°16'24.33" E                  | 15°25'48.08" N                  |                      |                 |                            |               |                         |

www.erm.com Version: 1.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

#### **Tower Details** 2.2

Tower detailed for the transmission line is presented in *Table 2.3.* A total of 18 transmission towers are planned to be erected for the entire stretch within Dandeli Wildlife Sanctuary (DWS).

Table 2.3 **Tower Details** 

| Tower Parameter                                         | Tower Details                        |
|---------------------------------------------------------|--------------------------------------|
| Type of the Towers                                      | WZ-1 DA,DB,DC,DD<br>WZ-2 DA,DB,DC,DD |
| The total height of the tower above the ground level    | 46.40 m                              |
| The average distance between the Towers                 | 400 m                                |
| Total no. of towers installed within the Sanctuary area | 08 angle & 10 suspension             |
| Foundation area for each tower                          | 20 X 20 m                            |
| Elevated Plinth area                                    | 0.50X0.50 m                          |
| Type of basement                                        | Concrete (RCC/PCC)                   |
| Depth                                                   | 3.5 m                                |
| Mode of pit digging for basement construction           | Drilling & Manual excavation         |

Tower design diagrams are presented in **Annex A**, and foundation design diagrams are presented in Annex B.

#### 2.3 **Conductor Details**

The horizontal distance between two conductors varies from 11 m. The lowest conductor from the ground will be providing a ground clearance of 8.84 m + aditional 6 m for elephant corridor. the conductor arrangement is present in .

*Table* **2.4**.

Table 2.4 **Conductor Details** 

| Conductor Details                       |             |
|-----------------------------------------|-------------|
| The distance between the two conductors |             |
| Phase to Phase                          | 11 m        |
| Mid Span Clearance                      | 9 m         |
| Ground Clearance                        | 8.84 m+ 6 m |

#### 2.4 **Siting Criteria for Transmission Line**

The siting criteria<sup>1</sup> for transmission line sector is mentioned below:

- The alignment of the transmission line should be most economical from the point of view of construction and maintenance.
- The alignment of the transmission line selected should be the shortest route possible.
- Routing of the transmission line through protected/reserved forest area should be avoided. In case it is not possible to avoid the forests or areas having large trees, the route should be aligned in such a way that cutting of trees is minimum.

<sup>(1)</sup> These criteria conform to the "Guidelines for linear infrastructure intrusions in natural areas: roads and power lines, 2011, MoEF, GOI".

- The route should have minimum crossings of major rivers, railway lines, national/state highways, overhead EHV power line, and communication lines.
- The number of angle points shall be kept at a minimum.
- Marshy and low lying areas, river beds and earth slip zones shall be avoided to minimize risk to the foundations.
- It would be preferable to utilize the ground level for the alignment.
- The crossing of power lines shall be minimum. In case it is required, a gap of a minimum distance of 300 m between power lines to avoid induction problems on the lower voltage lines.
- The crossing of communication line shall be minimized and if crossings do occur they shall be cross preferably at right angles. Proximity and parallelism with telecom lines shall be eliminated to avoid the danger of induction to them.
- Areas subjected to flooding such as ditches (nullahs) shall be avoided.
- Restricted areas such as civil and military airfield shall be avoided. Care shall also be taken to avoid aircraft landing approaches.
- All alignment should be easily accessible both in dry and rainy seasons to enable maintenance throughout the year.
- Certain areas such as quarry sites, tea, tobacco plantations, and saffron and rice fields and gardens & nurseries which will result in problems of the right of way during construction and maintenance of towers, should be avoided.
- Angle points should be selected such that shifting of the point within 100 m radius is possible at the time of construction of the transmission line.
- The line routing should avoid large habitations, densely populated areas, forest, animal/bird sanctuaries, reserve coal belt areas, oil pipeline/underground inflammable pipelines etc. to the extent possible.
- The areas requiring special foundations and those prone to flooding should be avoided.

#### 2.5 Construction Activities and Methods

## 2.5.1 Installation of 400 kV steel tower foundations

The foundations will be excavated manually using manual or mechanized tools and plants and concrete will be mixed manually by hand mixing at the same location.

The standard foundation practice is to have four individual footings for each tower leg. The tower foundation area will be set out and pegged prior to foundation excavation. All such removals are restored upon completion of foundation works. Excavations are set out specifically for the type of tower and the type of foundation required for each specific site.

When each leg is excavated the formation levels (depths) are checked by the onsite engineer. A Prop technique is used to set and hold the tower stubs in position while the concrete is being poured and cured.

After the concrete is poured the remaining part of the foundation, the shear block or neck, is shuttered. Once the shuttering is complete more concrete may be poured and the foundation completed. The tower foundations are backfilled one leg at a time usually with the material already excavated. The backfill is placed and compacted in layers.

Figure 2.5 Photograph setting template being prepared for final concreting



## Foundation size

The average foundation size for each tower leg used on the 400kV transmission system is 5.3m x 5.3m x 3.5m for single circuit tower, 5.1m x 5.1m x 3.5m for double circuit angle

## Working area

The average working area for construction of a 400 kV tower will be limited to the approved right of way.

## Construction equipment to be used for foundation

- 4x4 vehicle upto last approach point of available roads
- Concrete Vibrator
- Timber or other Shuttering boxes
- Hand tools for manual excavation
- Transit van upto last approach point of available roads
- Chains and another small tools
- Concrete Mixer (200Kgs)

## Duration of foundation work

- Tower foundation work 10-12 days
- Crew size 18-20 workers

## 2.5.2 Erection of Tower Body

The most common and effective method of constructing a transmission line of this nature is a "derrick pole". The methodologies are outlined below.

## Derrick Pole Methodology

The tower can be erected using a Derrick / gin pole and tractor. The derrick pole is a very simple and straight forward way to build the tower where small sections of steel are lifted into place using the derrick and a winch. As illustrated the derrick consists of a solid steel pole which is held in position using guy ropes anchored to the ground.



Figure 2.6 Model visual: Derrick pole at the tower base

## Construction equipment to be used for tower erection.

- 4x4 vehicle upto last approach point of available roads
- Winch machine
- Derrick pole
- Transit van upto last approach point of available roads
- Chains and other small tools

## Duration of tower erection works

The average duration of tower building works is as follows:

- Each Tower erection: 6-8 days
- Crew size: 25 workers

#### 2.5.3 **Stringing of Conductor**

- Stringing of conductor is done using Mechanised method and power winch.
- Conductor is pulled through pilot wire/ steel wire rope of adequate size.

- The entire operation is done aerially without allowing the conductor to touch the ground.
- For special cases the use of Unmanned Aerial Vehicle (UAV) is now been implemented to safely expedite the process.

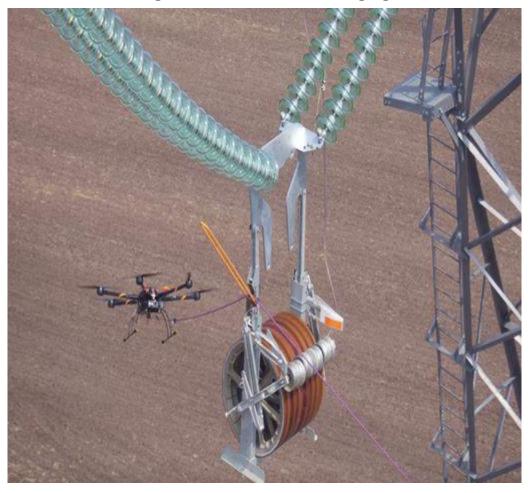



Figure 2.7 **Conductor Stringing** 

Once the conductor has been pulled into position, one end of the straight is terminated on the appropriate tension fittings and insulator assemblies. The free end of the straight is then placed in temporary clamps called "come-along" which take the conductor tension. The conductor is then cut from the puller-tensioner and the conductor is sagged using a chain hoist.

## Construction equipment to be used during stringing of conductor and earth wire

- 4x4 vehicles upto last approach point of available roads
- Drum stands X 2 upto last approach point of available roads
- Drum carriers X 2 upto last approach point of available roads
- Aerial sieve
- Conductor drums upto last approach point of available roads
- Compressor & head
- Transit vans upto last approach point of available roads
- Chains and other small tools

#### Winch machine

## Duration of stringing works

The average duration of stringing works is typically 1 week per straight. This figure is approximately the same for all straights regardless of length as the most time-consuming aspect is the movement and setup of stringing equipment. Stringing crews are typically quite large and could have as many as 65 workers.

#### **Construction Period** 2.6

The proposed construction is scheduled to start from February 2021 and likely to be completed by April 2022 (Refer Table 2.5) in Dandeli Wildlife Sanctuary

**Table 2.5 Proposed Construction Period** 

| SN. | Area of Construction                                 | Tentative Period (month and year) |
|-----|------------------------------------------------------|-----------------------------------|
| 1   | The total period for the construction of the project | Feb'21 to April'22                |
| 2   | Construction along the Dandeli Wildlife Sanctuary    | Feb '21 to Nov'21                 |

#### 2.7 **Employment**

A total of 324 manpower is expected to be deployed for the goa section of the transmission line passing through Dandeli Wildlife Sanctuary. This includes 26 skilled manpower, 48 semi-skilled manpower and 250 unskilled manpower. (Refer to Table 2.7)

Table 2.6 **Employment Generation** 

| Source of Manpower                          | Skilled | Semi-skilled | Unskilled | Total |
|---------------------------------------------|---------|--------------|-----------|-------|
| On Roll Company                             | 8       | 0            | 0         | 8     |
| On roll of EPC contractor                   | 8       | 8            | 0         | 16    |
| Involvement of locals- non-technical people | 10      | 40           | 250       | 300   |
| Total                                       | 26      | 48           | 250       | 324   |

#### 2.8 **Operation and Maintenance**

Activities for routine patrols, inspections, or scheduled maintenance, are planned in advance. However, there will be an occasional need for emergency response in cases where safety and property are threatened, to prevent imminent damage to the transmission line and ancillary facilities, or to restore service in the event of an outage. Routine, corrective, and emergency response activities will be conducted in accordance with this O&M typical schedules.

## Routine Maintenance (Preventative Maintenance)

Routine maintenance activities are conducted on a regular basis and have been carried out historically to identify and repair any deficiencies. These activities do not damage vegetation or soil and do not adversely impact sensitive resources including known national and state listed species, waters, and cultural resources. Personnel is generally present in any one area for less than one day. The following are examples of routine maintenance activities:

Routine air patrols to inspect for structural and conductor defects, conductor clearance problems and hazardous trees.

- Routine ground patrols to inspect structural and conductor components. Such inspections generally require either an All-Terrain Vehicle (ATV) or pickup and possibly additional support vehicles traveling on access and service roads and may rely on either direct line-of-sight or binoculars. In some cases, the inspector may walk the ROW. Follow-up maintenance is scheduled depending on the severity of the problem either as soon as possible or as part of routine scheduled maintenance.
- Climbing surveys may be necessary to inspect hardware or make repairs. Personnel generally accesses these structures by a pickup, ATV, or on foot.
- Structure or conductor maintenance is typically done manually. The maintenance vehicle may be located on or off a road, and no-to-minimal grading is necessary to create a safe work area.
- Cathodic protection surveys to check the integrity and functionality of the anodes and ground beds. These surveys typically require personnel to use an ATV or pickup and make brief stops.
- Routine cyclical vegetation clearing to trim or remove tall shrubs and trees to ensure adequate ground-to-conductor clearances. Vegetation clearing cycles vary from 3 to 5 years or as needed (dependent upon the vegetation present). Personnel generally access the area by a pickup, ATV, or on foot; use chainsaws to clear the vegetation, and typically spend less than half a day in any one specific area. In some cases, vegetation may be cleared using mechanical means.
- Removal of individual trees or snags (hazard trees) that pose a risk of falling into conductors or structures and causing outages or fires. Personnel generally accesses hazard trees by truck, ATV, or by foot from an access or service road, and cut them with a chainsaw or similar tool. Any felled trees or snags are left in place as sources of large woody debris or as previously directed by the land management agency. Felled green trees are limbed to reduce fire hazard.

#### Corrective maintenance

Corrective maintenance activities are relatively large-scale efforts that occur infrequently, may result in more extensive vegetation clearing or earth movement, and may include rehabilitation seeding and associated activities. Personnel is generally present in any one location or area for a prolonged time, generally more than one day. The following are examples of corrective maintenance:

- Non-cyclical vegetation clearing to remove saplings or larger trees in the ROW.
- Structure or conductor maintenance in which earth must be moved, such as the creation of a landing pad for construction or maintenance equipment.
- Structure (e.g., cross-arm, insulator, structure) replacement.
- Follow-up restoration activities, such as seeding, noxious weed control, and erosion control.
- Conductor repair or replacement, which requires the use of several types of trucks and equipment and grading to create a safe work area to hang and pull the conductor into place.

## Emergency Situations

Emergency situations are those conditions that may result in imminent or direct threats to public safety or threaten' ability to provide reliable transmission service to its customers. Emergency situations may include:

- Failure of conductor splices.
- Damage to structures or conductors from wildfire, high winds, thunderstorm, or other weatherrelated conditions.
- Line or system outages or fire hazards caused by trees falling into conductors.

- Breaking or imminent failure of cross-arms or insulators, which could, or does, cause conductor failure.
- Damage to structures or conductors from vandalism.

In the case of an emergency where life or substantial property is at risk or there is a potential or actual interruption in service, the Company will promptly respond to the emergency and conduct any and all activities, including emergency repair requiring heavy equipment access to the structures or other ancillary facilities, needed to remedy the emergency and will implement feasible and practicable Environmental Protection Measures (EPMs).

Version: 1.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

#### 3. **ECOLOGICAL BASELINE**

#### 3.1 Physiographic Unit

The project route passes through a portion of the Western Ghats, a range of mountains 1,600 km long extending from north of Mumbai to Cape of Comorin (Kanyakumari), which is identified as one of the 'hotspots' of biological diversity and endemism in the world.<sup>1</sup> The Ghats extend in the north-south direction and exhibit a rise in altitude.

#### 3.2 Climate

The study area is situated in the tropics and has profound orographic influence. The climate is humid throughout the year, with humidity level ranging from 75% to 95% in the monsoon. The main feature of the climate is the south-west monsoon, which occurs between June and September. The average rainfall is 2500 mm to 3000 mm in the Western Ghats, although the downpour can be considerably high (over 4000 mm). In addition, there are pre-monsoon (May) and post-monsoon (October) showers as a result of the north-east monsoon. Study area receives rain from the south-west monsoon, thereby experiencing a dry period lasting from November to May [November to February (winter) and March to May (summer)]. There is a slight variation in temperature through the seasons. May is the relatively warmest month and the mean daily temperature is around 30°C and maximum temperature rises to 36°C. January is the coolest with a mean daily temperature of about 25°C. The average temperature ranges between 21°C and 30°C.3

During the survey, the weather was sunny with at least two incidents of a thunderstorm and heavy rains in evening and night.

#### 3.3 The Study Area

The proposed transmission line passes through the Dandeli Wildlife Sanctuary as presented in Figure 2.1 of Chapter 2. The entire stretch of transmission line route is a greenfield area. The core and buffer areas are demarcated as following.

Core Area: The transmission line route, the tower locations (with activity areas of 10 m radius) and the Right of Way (23 m on each side from median of the line route) is considered as Core area for biodiversity assessments.

Version: 1.0 Project No.: 0476969 www.erm.com

<sup>(1)</sup> Myer, N. (1990): The biodiversity challenge: Expanded hot spots analysis. Environmentalist. 10: 243-256.

<sup>(2)</sup> Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B and Kent, J. (2000): Biodiversity hotspots for conservation priorities. Nature. 403: 853-858.

<sup>(3)</sup> Joshi, V. C and Janarthanam, M. K. (2004): The diversity of life forms type, habitat preference and phenology of the endemics in the Goa region of Western Ghats, India. Journal of Biogeography. 31: 1227-1237.

Buffer Area: Buffer areas are considered 500 m radius areas from the transmission tower locations and the transmission route.

Kali Tiger Reserve, earlier known as Dandeli-Anshi Tiger Reserve, is located in the central portion of Uttara Kannada district of Karnataka state. It is sandwiched between Haliyal and Karwar forest divisions, and covers parts of Haliyal, Karwar and Joida taluks. The Tiger Reserve comprises two important protected areas of the region viz., Dandeli Wildlife Sanctuary (475.018 Km²) and Anshi National Park (339.866 Km²). These two protected areas are contiguous to each other and form a single tract of protected area located in the biologically sensitive Western Ghats. These two protected areas were administratively unified under Dandeli-Anshi Tiger Reserve (DATR) in the year 2007. The tiger reserve is headed by a Conservator of Forests. There are two sub-divisions, namely, Dandeli and Anshi wildlife subdivisions, and consist of six ranges, namely, Kulgi, Phansoli, Gund, Anshi, Kumbarwada and Castlerock wildlife ranges. There are 31 sections and 84 beats in the Tiger Reserve. Forests of the Tiger Reserve are primarily moist deciduous and semi-evergreen, with excellent patches of evergreen forests in the western most parts as well as in deep valleys. Animals found in the Tiger Reserve include Tiger, Leopard, Elephant, Bison, Wild dog, Sambar, Spotted deer, Sloth bear, Wild boar, Hanuman langur, Bonnet macaque, varieties of reptiles and birds, etc.

Kali Tiger Reserve is part of the larger landscape namely Malenad-Mysore Tiger Landscape, Western Ghats, India. The Malenad-Mysore Tiger landscape (MMTL) in the state of Karnataka, India is the most productive habitat for large carnivores in the entire Western Ghats region of Southwestern India. This landscape forms the south-central part of the Western Ghats, extending over 22,400 km<sup>2</sup> of moist-evergreen, moist-deciduous and the dry-deciduous forest types in Karnataka. The forest matrix includes 14 legally designated wildlife protected areas that cover over 5,500 km<sup>2</sup> of prime tiger habitat. The rest of the landscape comprises of "multiple-use forests" that surround, abut or connect these protected areas providing a permeable matrix through which large carnivores can potentially disperse or perhaps even persist as non-breeding individuals.

The Transmission line route in Karnataka falls within the Castlerock wildlife range of the sub division Dandeli.

#### 3.4 **Study Duration**

The ERM team comprising of three members undertook a 5-day reconnaissance survey of the transmission line route from 19th September to 24th September 2018. The reconnaissance survey targeted identification of habitats and approach to the transmission line route. Based on the reconnaissance survey, the plan was developed to undertake a detailed survey. Interactions with the proponent were also undertaken on the different alternatives of the transmission line routes. The detailed 7-day ecological survey was commissioned from 2<sup>nd</sup> October to 9<sup>th</sup> October 2018. The survey team has ERM team member and external species experts from various groups of flora and fauna to establish the ecological baseline of the study area.

The study area was revisited during 2<sup>nd</sup> and 3<sup>rd</sup> November 2020, to ensure the findings of the 2018 study still holds valid (Refer Figure 3.1) and there is no major change in the habitat conditions impacting the baseline. During this site visit it was observed that the road next to Transmission line stretch passing close to the Kali River Bridge was under construction however, no construction activities were undergoing.

Figure 3.1 Current State of Disturbances (Nov. 2020)









www.erm.com Version: 1.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL) Considering, the entire transmission line stretch under Karnataka Wildlife area falling withinDWS was not disturbed due to any other major activity; there is a less likelihood of the baseline data collected during the November 2018 being changed/altered.

#### 3.5 **Survey Team**

The survey team had following members for the enumerating flora and fauna of the transmission line corridor. The team composition is given in Table 3.1

Table 3.1 **Ecological Survey Team** 

| Name of the Expert                                             | Area of Specialization                        |  |
|----------------------------------------------------------------|-----------------------------------------------|--|
| ERM Team                                                       |                                               |  |
| Dr. Rahul Srivastava (Senior Consultant)                       | Avifauna and Mammal Expert                    |  |
| Mr. Saumabha Bhattacharya (Consultant)                         | Avifauna Expert                               |  |
| Dr. Omesh Bajpai (Consultant)                                  | Plant Taxonomist                              |  |
| Mr. Suhas Fuladi (Assistant Consultant)                        | Mammal Expert                                 |  |
| Ms. Kritika Gautam (Assistant Consultant)                      | Ecology Expert                                |  |
| External Expert                                                |                                               |  |
| Mr. Nilim Kumar Khaire (Herpetological Society of India, Pune) | Herpetofauna Expert (Snakes)                  |  |
| Dr. Varad B Giri (Herpetological Society of India, Pune)       | Herpetofauna Expert (Amphibians and Reptiles) |  |
| Dr. Mandar N Datar (Agharkar Research Institute, Pune)         | Plant Taxonomist                              |  |
| Mr. Vijay Patil (Herpetological Society of India, Pune)        | Field Support & Data Collection               |  |
| Mr. Aamatya Sharma (Herpetological Society of India, Pune)     | Field Support (Data and Photography)          |  |

#### 3.6 The scope of Work for Study

The Study was undertaken to achieve the following scope of work,

- Establish a preliminary baseline of terrestrial floral and faunal species within the study area (Length ~ 7.5 km in DWS in Karnataka (approx.) with 46 m width) and immediate vicinity based on primary survey along with a review of secondary literature.'
- Assess the status of major habitats/forests and associated floral species along the proposed transmission line passing through the WLS/Elephant Reserve;
- Identify wildlife/Tiger/Elephant reserve corridors of flagship species get impacted by the proposed project associated activities;
- Identify & evaluate the likely impacts of the proposed transmission line during construction and operational phase on the habitat and wildlife species found in the area;
- Suggest mitigation measures and Biodiversity management plan to minimize the likely impact on the protected area, its habitat values and overall ecology of the wildlife/Tiger/Elephant reserve corridors.

The approach and methodology to confirm the above scope of work is discussed hereunder

#### 3.7 **Approach and Methodology**

#### 3.7.1 Approach

Following stepwise approach was followed in order to achieve the conformity with the scope of work for baseline data collection:

- Step 1: Reconnaissance Survey- A reconnaissance survey to understand the complexity of terrain, habitats available, an approach for various locations en route to transmission line corridor and potential areas for species enumeration.
- Step 2: Secondary Data Collection- Available secondary data through published research papers, books and periodicals and Ph.D. thesis from the area was reviewed and enlisted to confirm the presence of species. Secondary data was also collected on the historical surveys in the area. Management plan of the protected area was also reviewed. Consultation with the locals and forest officials were also made.
- Step 3: Primary Data Collection-Primary surveys were undertaken to understand the actual baseline and analyze the impacts of the proposed project on the ecological baseline.
- Step 4: Biodiversity Impact Assessment- Assessment of the impact of the various construction and operation activities on the ecological baseline.
- Step 5: Biodiversity Management Plan-Preparation of Management plan for mitigation of major impacts of construction and operation activities

#### The methodology of Primary Data Collection 3.7.2

Primary data collection methods for flora and fauna species are discussed hereunder

## Floral Assessment

Floral assessment was focused on

- Enumeration of Trees, Shrubs, Herbs, climbers, and orchids likely to encounter on the transmission line route and its immediate vicinity;
- Undertake phytosociology along the transmission line corridor to calculate frequency, density and abundance for plant species along with the IVI and calculation of species richness and species diversity;
- The enumerated list of floral species will be compared to Indian Red Data Book and species listed in the IUCN Red data list to confirm their conservation status.
- Following will be emphasized;
  - Species with conservational significance (Indian Red Data Book)
  - Endemic flora species
  - Species with high commercial value

The detailed methodology for data collection for each floral groups (Habit) are presented hereunder

Trees: Quantitative data were collected using standard quadrate methods of sample plot size 10 m x 10 m for trees in various habitat types along the transmission line route and immediate vicinity.

Shrubs: Quantitative data were collected using standard quadrate methods of sample plot size 10 m x 10 m for shrubs in various habitat types along the transmission line route and immediate vicinity.

Annals (Herbs, Grasses, Pteridophytes, etc.): Quantitative data were collected on plateaus associated with transmission line using standard quadrate methods of sample plot size 1 m x 1 m for herbs, grasses.

Climbers: Quantitative data were collected using standard quadrate methods of sample plot size 10 m x 10 m for large climbers (lianas) in various habitat types along the transmission line route and immediate vicinity.

Details of the quadrates is presented in Refer Table 3.2 and Figure 3.1 and Figure 3.2

Table 3.2 **Details of Floral Survey Quadrates** 

| S.N. | Quadrat Size                                                  | Number of Quadrates |             |            |
|------|---------------------------------------------------------------|---------------------|-------------|------------|
|      |                                                               | Core Zone           | Buffer Zone | Study Area |
| 1.   | Trees, shrubs and lianas                                      | 5                   | 5           | 10         |
| 2.   | Annuals (Herbs, Grasses,<br>Pteridophytes, etc.) and climbers | Nil                 | Nil         | Nil        |

#### Faunal Assessment

- Faunal Assessment was focused on Enumeration of Herpetofaunal (Amphibians and Reptiles), Avifauna (Resident and Migratory) and Mammals likely to encounter on the transmission line route and its immediate vicinity;
- Assessment of various faunal habitats;
- The enumerated list of faunal species will be compared to the Indian Wildlife Protection Act, 1972 schedules and species listed in the IUCN Red data list v.2018.1 to confirm their conservation status.
- Following will be emphasized;
  - Species with conservational significance (Sch. I of IWPA, 1972, IUCN v2018.1 red-listed species
  - Endemic faunal species
  - Species with listed with CITES Appendix I & II

The detailed methodology for data collection for each faunal groups are presented hereunder,

Four Transects were laid to enumerate

Herpetofauna: In view of the activity pattern of herpetofauna, diurnal and nocturnal surveys were carried out in the study area. Amphibians and Reptiles are known to inhabit various habitats and remain among leaf litter or under rocks and thus special efforts were taken to locate and study them using the following methods:

- Direct Search Method: This method involves searching thoroughly the known habitats of amphibians and reptiles. Intensive searching was carried out in most of the habitats by removing stones, logs, among leaf litter and on trees. This is not a time-constrained method so considerable and roughly equal amount of time was spent in most of the habitats.
- Searching streams: This method was utilized to study amphibians and certain reptiles which are closely associated with aquatic habitats. The surveys were conducted mostly during the night. A few streams coming in or close to the Transmission Line route were surveyed.
- Opportunistic records: The local nature enthusiasts are photographing amphibians and reptiles and posting these images on social networking sites. A few of them send these images for identification to us. This network of local contacts was used to understand the herpetofauna diversity in the study area. The identifications of images taken by locals were confirmed by detailed observations.
- Systematic Analysis: In the study area except for a few frogs and lizards, there is less ambiguity in the taxonomy of most of the known amphibians and reptiles. A through taxonomic examination was carried out for most of the herpetofauna encountered during field surveys. The identification was based on recent and historical publications.

Avifauna: In view of the activity of the Avifaunal species early morning and evening surveys were undertaken for enumerating species presence along the transmission line route and buffer area. Day surveys were undertaken to enumerate the soring birds. Following methods were implied

- Total or flock/block count method: Sridharan 1989<sup>1</sup>, Bhupathy 1991<sup>2</sup>, Thompson 2002)<sup>3</sup> were adopted to assess the status of aquatic birds in dam /water bodies and point count method in the riparian forest along stream/river side (Gregory et al. 2002)<sup>4</sup> of the project area. Birds in the riparian forests were recorded and enumerated within 50 m radius as part of point count.
- Point Count (Hutto et al. 1986<sup>5</sup>, Bibby et al. 1992<sup>6</sup>, Rosentod et al. 2002<sup>7</sup>, Salim and Rahul 20028) and area search (Dieni and Jones 20029) techniques were applied to assess the status of terrestrial birds. Point counts in the forest and allied habitats were made within 50 m radius, while in agriculture that includes fallow lands, and scrub/grassland/ barren area habitats, birds were recorded within 100 m radius.
- Additional effort was made to locate/identify the presence of any breeding/nesting sites / roosting sites of avifauna.
- Species identification was confirmed using the field guides for the avifaunal species

Mammalian fauna was assessed at each sampling locations in different habitats through recording both direct and indirect evidence.

- Status and distribution of different mammalian fauna were quantified using direct count covering all the terrestrial habitats of the block area adopting road count (Burnham et al. 1980<sup>10</sup>, Sale and Berkmuller 1988<sup>11</sup>, Rodgers 1991<sup>12</sup>). These survey routes were the area between two sample points and the roads that traverse across different habitats and land uses.
- In addition indirect evidences (pellets, dungs, droppings, scats and other tracks and signs), were searched within circular (25m radius) plots at each sampling location, which provide relative

Sridharan, U. 1989. Comparative ecology of resident ducks in Keoladeo National Park, Bharatpur. Ph.D. Dissertation, University of Bombay, Bombay.

<sup>&</sup>lt;sup>2</sup> Bhupathy, S. 1991. Blotch structure in individual identification of the Indian Python (Python molurus molurus Linn.) and its possible usage in population estimation. Journal of Bombay Natural History Society 87: 399-404. 85

<sup>&</sup>lt;sup>3</sup> Thompson, W.L. 2002.Towards reliable bird surveys: accounting for individuals present but not detected. The Auk. 119:18-25.

<sup>&</sup>lt;sup>4</sup> Gregory, R. D., Gibbons, D. W. and Donald, P. F. 2002. Bird census and survey techniques. Pp:17-56. In: Bird Ecology and Conservation: A Handbook of Techniques. (Eds.) W. J. Sutherland, I. Newton and R. E. Green. Oxford University Press, Oxford. 386 p.

<sup>&</sup>lt;sup>5</sup> Hutto, R.L., S.M. Pletsechel and P. Hendrick. 1986. A fixed radius point count method for non breeding season use. The Auk. 103: 593-602.

<sup>&</sup>lt;sup>6</sup> Bibby, C.J., N.D., Burgerss and D.A. Hill. 1992. Bird Census techniques, Academic Press, London.

<sup>&</sup>lt;sup>7</sup> Rosentod, S.S., Anderson, B.R., Giesenk. N, Leukerig, T., and Carter, M.F. 2002. Land bird counting techniques: Current practises and an alternative. The Auk 119(1):46-53

<sup>&</sup>lt;sup>8</sup> Salim, J. and Rahul, K. 2002. Field methods for bird surveys. Bombay Natural History Society; Department of Wildlife Sciences, Aligarh Muslim University, Aligarh, and world Pheasant association, South Asia Regional Office (SARO), New Delhi, India. 61 p.

<sup>&</sup>lt;sup>9</sup> Dieni, J.S. and Jones, S.L. 2002. A field test of the area search method for measuring breeding birds population. J. Field Ornithology, 73: 253-257.

<sup>&</sup>lt;sup>10</sup> Burnham, K.P., D.R. Andreson., and J.L. Laake. 1980. Estimation of density from line transect sampling of biological population. Wildl. Mongr. No. 72. The Wildlife Society, Washington D.C. 202p

<sup>&</sup>lt;sup>11</sup> Sale, J.B. and K. Berkmuller, 1988. Manual of Wildlife Techniques for India. FAO, United Nation's India Establishment of Wildlife Institute of India Dehra Dun.

<sup>&</sup>lt;sup>12</sup> Rodgers, W.A. 1991. Technique for Wildlife Census in India, A field Manual. Technical Manual. TM2. Wildlife Institute of India, Dehra Dun. India.81pp.

abundance of presence of mammalian fauna (Thompson et al. 1989<sup>1</sup>, Rodgers 1991, Henke and Knowlton 1995<sup>2</sup>, Allen et al. 1996<sup>3</sup>).

Further presence of different faunal species was also ascertained and substantiated by interviewing the local people with the pictures of the mammals from the field guides that could probably occur in the area and discussion with local experts.

Field Survey pictorial representation is provided in Figure 3.2

<sup>&</sup>lt;sup>1</sup> Thommpson, I.D., Davidson, I.J., O' Donnell, S. and Brazeau, F. 1989. Use of track transect to measure the relative occurrence of some arboreal mammals in uncut forest and regeneration stands. Canadian Journal of Zoology. 67: 1816-1823.

<sup>&</sup>lt;sup>2</sup> Henke, S.E. and knowlton, F.F. 1995. Techniques for estimating Coyote abundance. Pp; 71-78. In: Proceedings of the symposium: Coyotes in the southwest. Parks and wildlife Department: Austin, Texas.

<sup>&</sup>lt;sup>3</sup> Allen, L., Engeman, R. and Krupa, H. 1996 Evaluation of three relative abundance indices for assessing dingo population. Wildlife Research. 23 197-206.

Figure 3.2 Ecological Baseline Field Surveys



Transect Survey for Fauna

Transect Survey for Fauna

#### 3.8 **Floral Assessment**

#### Vegetation Profile in Study Area 3.8.1

The vegetation of the study area is a mosaic of tropical semi-evergreen and tropical moist deciduous forests. The forest patch adjacent to Kali river has introduction of some exotic elements like Acacia auriculiformis planted as a part of forest enrichment programme. The brief account of these vegetation types is given below. (Refer Figure 3.3) and quadrate details (Refer Table 3.3) and on location map (Refer Figure 3.4)

## Tropical semi-evergreen forests (West tropical semi-evergreen forests)

This type of forest is intermediate between tropical Evergreen and Moist deciduous types as it has a mixture of both the evergreen and deciduous trees. Some part of area belongs to this category. In this type also a three layer stratification of the trees are met with. The upper stratum is mainly composed of trees such as Aglaia elaeagnoidea, Aphanamixis polystachya, Artabotrys zeylanicus, Artocarpus gomezianus subsp. zeylanicus, Bischofia javanica, Beilschmiedia roxburghiana, Bombax ceiba, Bombax insigne, Carallia brachiata, Celtis timorensis, Chukrasia tabularis, Dillenia pentagyna, Diospyros buxifolia, Diospyros candolleana, Diospyros crumenata, Diospyros oocarpa, Dimocarpus longan, Flacourtia montana, Grewia umbellifera, Holigarna arnottiana, Holigarna grahamii, Hopea ponga, Hydnocarpus pentandra, Macaranga peltata, Mastixia arborea, Melicope lunu-ankenda, Mimusops elengi, Persea macrantha, Pittosporum dasycaulon, Polyalthia fragrans, Pterocarpus marsupium, Pterospermum diversifolium, Pterospermum xylocarpum, Scolopia crenata, Spondias pinnata, Sterculia guttata, Symplocos racemosa, Terminalia bellirica, Tetrameles nudiflora, Toona ciliata, Trichilia connaroides, Vitex altissima and Xylia xylocarpa.

The middle storey is characterised by taxa like Acronychia pedunculata, Actinodaphne tadulingami, Aglaia lawii, Atalantia racemosa, Bridelia retusa, Diospyros montana, Diospyros. paniculata, Drypetes venusta, Ehretia indica, Ficus callosa, Flacourtia montana, Grewia serrulata, G. tiliifolia, Harpullia arborea, Heterophragma quadrilocularis, Holoptelea integrifolia, Hydnocarpus pentandra, Lepisanthes tetraphylla, Mallotus ferrugineus, Margaritaria indica, Nothopegia castaneaefolia, Olea dioica, Oroxylum indicum, Pajanelia longifolia, Psydrax umbellata, Pterospermum xylocarpum, Schleichera oleosa and Syzygium hemisphericum.

The species in the lower stratum are Agrostistachys indica, Antidesma menasu, Aporosa lindleyana, Buchnania cochinchinensis, Butea monosperma, Callicarpa tomentosa, Chionanthus malabarica, Cinnamomum verum, Clausena anisata, Firminia colorata, Ixora brachiata, Lannea coromandelica, Maesa indica, Mallotus philippensis, Pittosporum dasycaulon, Sapindus laurifolius, Saraca asoca, Symplocos cochinchinensis subsp. laurina, Tabernaemontana alternifolia and Terminalia chebula.

The undergrowth is composed of species like Spodiopogon rhizophorus, Stemonurus tetrandrus, Strobilanthes ciliata, S. ixiocephala, S. lupulina, Synedrella nodiflora, Tephrosia coccinea, Turraea villosa, Urena lobata and Zingiber neesanum.

The growth of lianas, twiners and scandent shrubs in this forest type is very characteristic and typical, they are especially present in the outskirts of forest. Some of these species are, Ampelocissus indica, Anamirta cocculus, Ancistrocladus heyneanus, Anodendron paniculatum, Artabotrys zeylanicus, Beaumontia jerdoniana, Caesalpinia spicata, Capparis moonii, Capparis rheedei, Cayratia tenuifolia, Celastrus paniculatus subsp. aggregatus, Cissus adnata, Cissus discolor, Connarus monocarpus,

www.erm.com Version: 1.0 Project No.: 0476969

<sup>&</sup>lt;sup>1</sup> Datar, M. N., & Lakshminarasimhan, P. (2013). Flora of Bhagwan Mahavir (Molem) National Park and Adjoinings, Goa. Botanical Survey of India

Dalbergia horrida, Dalbergia rubiginosa, Desmos lawii, Elaeagnus conferta, Flemingia strobilifera, Genianthus laurifolius, Grewia heterotricha, Grewia umbellifera, Gouania microcarpa, Hibiscus hispidissimus, Hippocratea grahamii, Hippocratea ovata, Ichnocarpus frutescens, Kamettia caryophyllata, Mucuna monosperma, Mussaenda belilla, Olax imbricata, Paramignya monophylla, Salacia beddomei, Salacia gambleana, Scutia myrtina, Tetrastigma gamblei, Thunbergia mysorensis, Uvaria narum and Ziziphus oenoplia.

# Tropical moist deciduous forests (Sourthern moist mixed deciduous forests and secondary moist mixed deciduous forests)

This type of forest has a mixed composition with a few evergreen trees as well. During the wet season, because of thick foliage, the canopy looks similar to that of semi-evergreen forests and is therefore scarcely distinguishable. However, during the dry season the moist deciduous forests reveal their identity as the trees shed leaves. The leafless period varies from few weeks to five months depending on the species. Among the trees, Bombax ceiba, Bombax insigne, Hymenodictyon obovatum and Lagerstroemia microcarpa have leafless period up to five months. Terminalia paniculata have a leafless period of less than two weeks.

The South Indian moist deciduous forests particularly those bearing Teak are variously classified as moist, very moist and slightly moist teak forests. The other two types are the southern moist mixed deciduous forests and secondary moist mixed deciduous forests. The last two types are considered together here, as there is little difference in the floristic composition between the two. The main difference is the degree of degradation.

The upper stratum is composed of trees such as Albizia amara, Albizia lebbeck, Albizia odoratissima, Anogeissus latifolia, Bambusa bambos, Bauhinia foveolata, Bombax ceiba, Bombax insigne, Callicarpa tomentosa, Careya arborea, Cassia fistula, Chukrasia tabularis, Dalbergia latifolia, Dillenia pentagyna, Gmelina arborea, Grewia tiliifolia, Haldina cordifolia, Hymenodictyon orixense, Kydia calycina, Lagerstroemia microcarpa, Lannea coromandelica, Melia dubia, Miliusa tomentosa, Pterocarpus marsupium, Radermachera xylocarpa, Spondias pinnata, Stereospermum colais, Strychnos nux-vomica, Tectona grandis, Terminalia bellirica, Terminalia elliptica, Terminalia. paniculata, Tetrameles nudiflora and Xylia xylocarpa.

The middle stratum is composed mainly of Bauhinia malabarica, Bauhinia racemosa, Cassia fistula, Careya arborea, Erinocarpus nimmonii, Ficus ampelos, Garuga pinnata, Macaranga peltata, Madhuca longifolia var. latifolia, Miliusa tomentosa, Olea dioica, Phyllanthus emblica, Sapindus laurifolius, Spondias pinnata, Sterculia guttata, Steblus asper, Strychnos nux-vomica, Trema orientalis, Trewia nudiflora, Wrightia arborea and Zanthoxylum rhetsa.

# Figure 3.3 Vegetation Types in the Study Area

Tropical moist deciduous forests (Sourthern moist mixed deciduous forests and secondary moist mixed deciduous forests)





Flora around Tower Location AP 17A

Flora around Tower Location AP-17

# Tropical semi-evergreen forests (West tropical semi-evergreen forests)





Flora Survey around Tower Location AP 19

Trnasmission Line route crossing Kali River

### Open Grassland at Top of Plateau





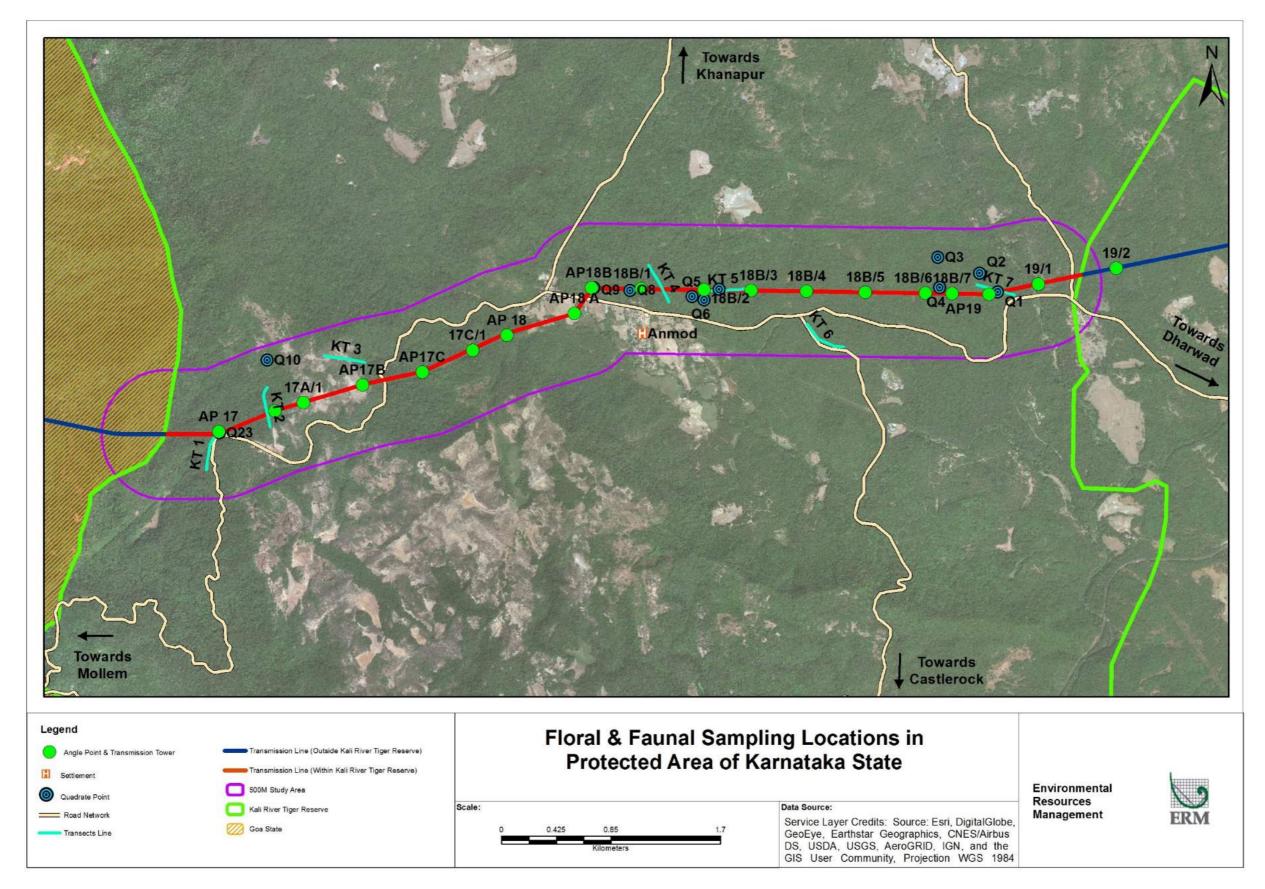

Following quadrates (Refer Table 3.3) were laid in the core and buffer zone of the Transmission line corridor. The quadrates location is shown in Figure 3.4.

Table 3.3 **Details of the Quadrate Surveyed and its Distribution** 

| Quadr | Quadrates in Core Zone                   |                                     |     | Quadrates in Buffer Zone                |                                     |  |  |
|-------|------------------------------------------|-------------------------------------|-----|-----------------------------------------|-------------------------------------|--|--|
| Q23:  | 43 P<br>422718.36 m E;<br>1706041.17 m N | Tropical semi-<br>evergreen forests | Q2: | 43 P<br>428629.47 m E<br>1707111.61 m N | Tropical semi-<br>vergreen forests  |  |  |
| Q9:   | 43 P<br>425644.29 m E<br>1707081.98 m N  | Tropical moist deciduous forests    | Q3: | 43 P<br>428309.07 m E<br>1707243.02 m N | Tropical semi-<br>evergreen forests |  |  |
| Q8:   | 43 P<br>425921.23 m E<br>1707054.10 m N  | Tropical moist deciduous forests    | Q4: | 43 P<br>428315.43 m E<br>1707008.93 m N | Tropical semi-<br>evergreen forests |  |  |
| Q7:   | 43 P<br>426611.72 m E<br>1707041.94 m N  | Tropical moist deciduous forests    | Q5: | 43 P<br>426399.88 m E<br>1706994.72 m N | Tropical semi-<br>evergreen forests |  |  |
| Q1:   | 43 P<br>428765.00 m E<br>1706962.00 m N  | Tropical moist deciduous forests    | Q6: | 43 P<br>426494.64 m E<br>1706965.10 m N | Tropical semi-<br>evergreen forests |  |  |
|       |                                          |                                     | Q10 | 43P<br>423101.86 m E<br>1706592.20 m N  | Tropical semi-<br>evergreen forests |  |  |

Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL) www.erm.com Version: 1.0

Figure 3.4 Floral and Faunal Survey locations



www.erm.com Version: 1.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

## 3.8.2 Taxonomic Status-Species Richness

In Karnataka, sampling was done in two types of vegetation (Forest) encountered during the surveyi.e., Tropical semi-evergreen forests and Tropical moist deciduous forests. The diversity in core zone is represented by 26 families 29 genera and 30 species.

In buffer zone forest was surveyed yielding 26 families 31 genera and 33 species. (Refer *Table 3.4*)

Table 3.4 Taxonomic Status of Flora along the Proposed Transmission line route

| Taxa    | Core Zone   | СТ | Buffer Zone | ВТ | SAT |
|---------|-------------|----|-------------|----|-----|
|         | FT(Forests) |    | FT(Forests) |    |     |
| Family  | 26          | 26 | 26          | 26 | 32  |
| Genus   | 29          | 29 | 31          | 31 | 46  |
| Species | 30          | 30 | 33          | 33 | 49  |

Notes: FT- Tropical semi-evergreen forests and Tropical moist deciduous forests

#### 3.8.3 Status of Growth Forms

Various growth forms studied are discussed hereunder

- Tree: A woody, perennial plant, having a single trunk (bole) with multiple branches.
- Shrub: A woody, perennial plant, generally smaller than a tree, and with several stems arising from the ground level.
- **Herb:** A non-woody plant other than grasses.
- **Grass:** Plant belonging to the grass families Poaceae, Cyperaceae and Juncaceae.
- Pteridophyte: The vascular plant (with xylem and phloem) that disperses spores
- Climber: Plant, which climb up trees and other tall objects.

Study area is represented by thirty three (33) trees species; six (6) species of shrubs and ten (10) species of lianas/climbers as mentioned in *Table 3.5* below

Table 3.5 Status of Floral Growth forms along with the Proposed Transmission Line Route

| <b>Growth forms</b> | Core Zone   | CT | Buffer Zone  | BT | SAT |
|---------------------|-------------|----|--------------|----|-----|
|                     | FT (Forest) |    | FT (Forests) | -  |     |
| Tree                | 23          | 23 | 21           | 21 | 33  |
| Shrub               | 4           | 4  | 4            | 4  | 6   |
| Herb                | 0           | 0  | 0            | 0  | 0   |
| Grass               | 0           | 0  | 0            | 0  | 0   |
| Climber             | 3           | 3  | 8            | 8  | 10  |
| Total Species       | 30          | 30 | 33           | 33 | 49  |

Note1: FT- Tropical semi-evergreen forests and Tropical moist deciduous forests CT-Core Zone Total, BT-Buffer Zone Total, SAT-Study Area Total

Note2: Lianas are treated here under shrubs and climbers based on their habit.

# 3.8.1 Status of Tree species

A total of 49 trees and liana species were recorded from study area. Based on IVI values *Syzygium cumini and Olea dioica* were found to be dominant amongst trees, while amongst lianas *Calamus pseudotenuis and Gnetum ula were* dominant. In this forest patch *Acacia auriculiformis*, an introduced

exotic species which is planted by forest department for filling the clearings is also of the dominant species. The details are presented below in *Table 3.6.* 

Table 3.6 Important Value Index (IVI) and Rank Order of Tree Species and lianas in Study Area

| S. N.  | Tree Species                              | RF (%) | RDN (%) | RA (%) | IVI   | RO |
|--------|-------------------------------------------|--------|---------|--------|-------|----|
| Core 2 | Zone                                      |        |         |        |       |    |
| 1      | Acacia auriculiformis Benth.              | 2.78   | 8.08    | 11.57  | 22.42 | 3  |
| 2      | Atalantia racemosa Wight                  | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 3      | Bridelia retusa (L.) A. Juss.             | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 4      | Calamus pseudotenuis Becc.                | 5.56   | 30.30   | 21.69  | 57.55 | 1  |
| 5      | Capparis rheedei DC.                      | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 6      | Careya arborea Roxb.                      | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 7      | Carissa inermis Vahl                      | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 8      | Casearia ovata (Lam.) Willd.              | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 9      | Catunaregam spinosa (Thunb.) Tirveng.     | 2.78   | 4.04    | 5.78   | 12.60 | 5  |
| 10     | Cinnamomum verum J. Presl                 | 2.78   | 2.02    | 2.89   | 7.69  | 8  |
| 11     | Colebrookea oppositifolia Sm.             | 2.78   | 2.02    | 2.89   | 7.69  | 8  |
| 12     | Diospyros paniculata Dalzell              | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 13     | Euonymus indicus B. Heyne ex Wall.        | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 14     | Ficus hispida L.                          | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 15     | Ficus racemosa L.                         | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 16     | Glochidion hohenackeri (Mull Arg.) Bedd.  | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 17     | Grewia nervosa (Lour.) Panigrahi          | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 18     | Lagerstroemia microcarpa Wight            | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 19     | Leea indica (Burm. f.) Merr.              | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 20     | Lepisanthes tetraphylla (Vahl) Radlk.     | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 21     | Mallotus philippensis (Lam.) Mull. Arg.   | 2.78   | 2.02    | 2.89   | 7.69  | 8  |
| 22     | Mangifera indica L.                       | 2.78   | 2.02    | 2.89   | 7.69  | 8  |
| 23     | Memecylon umbellatum Burm. f.             | 8.33   | 16.16   | 7.71   | 32.21 | 2  |
| 24     | Nothapodytes nimmoniana (J. Graham) Mabb. | 2.78   | 3.03    | 4.34   | 10.15 | 7  |
| 25     | Olea dioica Roxb.                         | 8.33   | 4.04    | 1.93   | 14.30 | 4  |
| 26     | Salacia oblonga Wall. ex Wight & Arn.     | 2.78   | 1.01    | 1.45   | 5.23  | 9  |
| 27     | Symplocos racemosa Roxb.                  | 5.56   | 3.03    | 2.17   | 10.75 | 6  |
| 28     | Syzygium cumini (L.) Skeels               | 2.78   | 3.03    | 4.34   | 10.15 | 7  |
| 29     | Tabernaemontana heyneana Wall.            | 2.78   | 2.02    | 2.89   | 7.69  | 8  |
| 30     | Terminalia elliptica Willd.               | 2.78   | 2.02    | 2.89   | 7.69  | 8  |
| Buffer | zone                                      | RF (%) | RDN (%) | RA (%) | IVI   | RO |
| 1      | Calamus pseudotenuis Becc.                | 7.02   | 24.82   | 13.56  | 45.40 | 1  |

| S. N. | Tree Species                              | RF (%) | RDN (%) | RA (%) | IVI   | RO |
|-------|-------------------------------------------|--------|---------|--------|-------|----|
| 2     | Memecylon umbellatum Burm. f.             | 8.77   | 13.14   | 5.74   | 27.65 | 2  |
| 3     | Gnetum ula Brongn.                        | 3.51   | 8.76    | 9.57   | 21.84 | 3  |
| 4     | Syzygium cumini (L.) Skeels               | 7.02   | 6.57    | 3.59   | 17.18 | 4  |
| 5     | Leea indica (Burm. f.) Merr.              | 3.51   | 4.38    | 4.79   | 12.67 | 5  |
| 6     | Olea dioica Roxb.                         | 5.26   | 3.65    | 2.66   | 11.57 | 6  |
| 7     | Symplocos racemosa Roxb.                  | 5.26   | 3.65    | 2.66   | 11.57 | 6  |
| 8     | Moullava spicata (Dalzell) Nicolson       | 3.51   | 3.65    | 3.99   | 11.15 | 7  |
| 9     | Allophylus cobbe (L.) Raeusch.            | 3.51   | 3.65    | 3.99   | 11.15 | 7  |
| 10    | Scutia myrtina (Burm. f.) Kurz            | 1.75   | 2.92    | 6.38   | 11.06 | 8  |
| 11    | Diploclisia glaucescens (Blume) Diels     | 5.26   | 2.19    | 1.60   | 9.05  | 9  |
| 12    | Diospyros paniculata Dalzell              | 3.51   | 2.19    | 2.39   | 8.09  | 10 |
| 13    | Nothapodytes nimmoniana (J. Graham) Mabb. | 3.51   | 2.19    | 2.39   | 8.09  | 10 |
| 14    | Terminalia elliptica Willd.               | 3.51   | 1.46    | 1.60   | 6.56  | 11 |
| 15    | Holigarna grahamii (Wight) Kurz           | 3.51   | 1.46    | 1.60   | 6.56  | 11 |
| 16    | Glycosmis pentaphylla (Retz.) DC.         | 1.75   | 1.46    | 3.19   | 6.40  | 12 |
| 17    | Cinnamomum verum J. Presl                 | 1.75   | 1.46    | 3.19   | 6.40  | 12 |
| 18    | Callicarpa tomentosa (L.) L.              | 1.75   | 1.46    | 3.19   | 6.40  | 12 |
| 19    | Casearia ovata (Lam.) Willd.              | 1.75   | 0.73    | 1.60   | 4.08  | 13 |
| 20    | Canarium strictum Roxb.                   | 1.75   | 0.73    | 1.60   | 4.08  | 13 |
| 21    | Terminalia bellirica (Gaertn.) Roxb.      | 1.75   | 0.73    | 1.60   | 4.08  | 13 |
| 22    | Diospyros neilgerrensis (Wight) Kosterm.  | 1.75   | 0.73    | 1.60   | 4.08  | 13 |
| 23    | Ixora brachiata Roxb.                     | 1.75   | 0.73    | 1.60   | 4.08  | 13 |
| 24    | Eleocarpus serratus L.                    | 1.75   | 0.73    | 1.60   | 4.08  | 13 |
| 25    | Mangifera indica L.                       | 1.75   | 0.73    | 1.60   | 4.08  | 13 |
| 26    | Lagerstroemia microcarpa Wight            | 1.75   | 0.73    | 1.60   | 4.08  | 13 |
| 27    | Dimocarpus longan Lour.                   | 1.75   | 0.73    | 1.60   | 4.08  | 13 |
| 28    | Mallotus philippensis (Lam.) Mull. Arg.   | 1.75   | 0.73    | 1.60   | 4.08  | 13 |
| 29    | Pittosporum dasycaulon Miq.               | 1.75   | 0.73    | 1.60   | 4.08  | 13 |
| 30    | Macaranga peltata (Roxb.) Mull. Arg.      | 1.75   | 0.73    | 1.60   | 4.08  | 13 |
| 31    | Oxyceros rugulosus (Thw) Tirveng.         | 1.75   | 0.73    | 1.60   | 4.08  | 13 |
| 32    | Jasminum malabaricum Wight                | 1.75   | 0.73    | 1.60   | 4.08  | 13 |
| 33    | Capparis moonii Wight                     | 1.75   | 0.73    | 1.60   | 4.08  | 13 |
| Study | Area                                      | C-IVI  | B-IVI   | TOTAL  |       |    |
| 1     | Acacia auriculiformis Benth.              | 22.42  |         | 22.42  |       |    |
| 2     | Allophylus cobbe (L.) Raeusch.            |        | 11.15   | 11.15  |       |    |
| 3     | Atalantia racemosa Wight                  | 5.23   |         | 5.23   |       |    |
| 4     | Bridelia retusa (L.) A. Juss.             | 5.23   |         | 5.23   |       |    |

| S. N. | Tree Species                              | RF (%) | RDN (%) | RA (%) | IVI | RO |
|-------|-------------------------------------------|--------|---------|--------|-----|----|
| 5     | Calamus pseudotenuis Becc.                | 57.55  | 45.40   | 102.94 |     |    |
| 6     | Callicarpa tomentosa (L.) L.              |        | 6.40    | 6.40   |     |    |
| 7     | Canarium strictum Roxb.                   |        | 4.08    | 4.08   |     |    |
| 8     | Capparis moonii Wight                     |        | 4.08    | 4.08   |     |    |
| 9     | Capparis rheedei DC.                      | 5.23   |         | 5.23   |     |    |
| 10    | Careya arborea Roxb.                      | 5.23   |         | 5.23   |     |    |
| 11    | Carissa inermis Vahl                      | 5.23   |         | 5.23   |     |    |
| 12    | Casearia ovata (Lam.) Willd.              | 5.23   | 4.08    | 9.31   |     |    |
| 13    | Catunaregam spinosa (Thunb.) Tirveng.     | 12.60  |         | 12.60  |     |    |
| 14    | Cinnamomum verum J. Presl                 | 7.69   | 6.40    | 14.09  |     |    |
| 15    | Colebrookea oppositifolia Sm.             | 7.69   |         | 7.69   |     |    |
| 16    | Dimocarpus longan Lour.                   |        | 4.08    | 4.08   |     |    |
| 17    | Diospyros neilgerrensis (Wight) Kosterm.  |        | 4.08    | 4.08   |     |    |
| 18    | Diospyros paniculata Dalzell              | 5.23   | 8.09    | 13.33  |     |    |
| 19    | Diploclisia glaucescens (Blume) Diels     |        | 9.05    | 9.05   |     |    |
| 20    | Eleocarpus serratus L.                    |        | 4.08    | 4.08   |     |    |
| 21    | Euonymus indicus B. Heyne ex Wall.        | 5.23   |         | 5.23   |     |    |
| 22    | Ficus hispida L.                          | 5.23   |         | 5.23   |     |    |
| 23    | Ficus racemosa L.                         | 5.23   |         | 5.23   |     |    |
| 24    | Glochidion hohenackeri (Mull Arg.) Bedd.  | 5.23   |         | 5.23   |     |    |
| 25    | Glycosmis pentaphylla (Retz.) DC.         |        | 6.40    | 6.40   |     |    |
| 26    | Gnetum ula Brongn.                        |        | 21.84   | 21.84  |     |    |
| 27    | Grewia nervosa (Lour.) Panigrahi          | 5.23   |         | 5.23   |     |    |
| 28    | Holigarna grahamii (Wight) Kurz           |        | 6.56    | 6.56   |     |    |
| 29    | Ixora brachiata Roxb.                     |        | 4.08    | 4.08   |     |    |
| 30    | Jasminum malabaricum Wight                |        | 4.08    | 4.08   |     |    |
| 31    | Lagerstroemia microcarpa Wight            | 5.23   | 4.08    | 9.31   |     |    |
| 32    | Leea indica (Burm. f.) Merr.              | 5.23   | 12.67   | 17.91  |     |    |
| 33    | Lepisanthes tetraphylla (Vahl) Radlk.     | 5.23   |         | 5.23   |     |    |
| 34    | Macaranga peltata (Roxb.) Mull. Arg.      |        | 4.08    | 4.08   |     |    |
| 35    | Mallotus philippensis (Lam.) Mull. Arg.   | 7.69   | 4.08    | 11.77  |     |    |
| 36    | Mangifera indica L.                       | 7.69   | 4.08    | 11.77  |     |    |
| 37    | Memecylon umbellatum Burm. f.             | 32.21  | 27.65   | 59.86  |     |    |
| 38    | Moullava spicata (Dalzell) Nicolson       |        | 11.15   | 11.15  |     |    |
| 39    | Nothapodytes nimmoniana (J. Graham) Mabb. | 10.15  | 8.09    | 18.24  |     |    |
| 40    | Olea dioica Roxb.                         | 14.30  | 11.57   | 25.87  |     |    |
| 41    | Oxyceros rugulosus (Thw) Tirveng.         |        | 4.08    | 4.08   |     |    |

| S. N. | Tree Species                          | RF (%) | RDN (%) | RA (%) | IVI | RO |
|-------|---------------------------------------|--------|---------|--------|-----|----|
| 42    | Pittosporum dasycaulon Miq.           |        | 4.08    | 4.08   |     |    |
| 43    | Salacia oblonga Wall. ex Wight & Arn. | 5.23   |         | 5.23   |     |    |
| 44    | Scutia myrtina (Burm. f.) Kurz        |        | 11.06   | 11.06  |     |    |
| 45    | Symplocos racemosa Roxb.              | 10.75  | 11.57   | 22.33  |     |    |
| 46    | Syzygium cumini (L.) Skeels           | 10.15  | 17.18   | 27.32  |     |    |
| 47    | Tabernaemontana heyneana Wall.        | 7.69   |         | 7.69   |     |    |
| 48    | Terminalia bellirica (Gaertn.) Roxb.  |        | 4.08    | 4.08   |     |    |
| 49    | Terminalia elliptica Willd.           | 7.69   | 6.56    | 14.25  |     |    |

Notes: RF- Relative Frequency, RDN- Relative Density, RDO- Relative Dominance, C-IVI- Core Important Value Index, B-IVI-Buffer Important Value Index, RO- Rank Order (based on the relative frequency of each species, highest being 1 and lowest being 5).

### 3.8.2 Status of Medicinal Plants

The medicinal plants observed within transmission line route are detailed in *Table 3.7* and represented in *Figure 3.5* 

Table 3.7 Medicinal Plants recorded from Transmission Line Route

| S.N. | Species                                      | Habit  | CZ | BZ | Medicinal use            |
|------|----------------------------------------------|--------|----|----|--------------------------|
| 1    | Atalantia racemosa Wight                     | Tree   | @  |    | Healing properties       |
| 2    | Canarium strictum Roxb.                      | Tree   |    | @  | Inflammation             |
| 3    | Catunaregam spinosa (Thunb.) Tirveng.        | Shrub  | @  |    | Diarrhoea and dysentery  |
| 4    | Ficus racemosa L.                            | Tree   | @  |    | Anti-diarrheal           |
| 5    | Jasminum malabaricum Wight                   | Lianas |    | @  | Treatment of Cataract    |
| 6    | Moullava spicata (Dalzell) Nicolson          | Liana  |    | @  | Pneumonia, skin diseases |
| 7    | Nothapodytes nimmoniana (J. Graham)<br>Mabb. | Tree   | @  | @  | Anticancer               |
| 8    | Symplocos racemosa Roxb.                     | Tree   | @  | @  | Bleeding                 |
| 9    | Tabernaemontana heyneana Wall.               | Tree   | @  |    | Antibacterial            |
| 10   | Terminalia bellirica (Gaertn.) Roxb.         | Tree   | @  |    | In triphala              |
|      |                                              | Total  | 7  | 5  |                          |

Source: Datar and Lakshminarasimhan, 2013

Notes: CZ- Core Zone, BZ- Buffer Zone, CS- Common Species, @-Presence

Catunaregam spinos

Figure 3.5 Medicinal Plants recorded from Transmission Line Route

3.8.3 Status of Threatened Plants

Terminalia bellirica

In study area two (02) tree species were found to be threatened. The species are listed in *Table 3.8* and represented in *Figure 3.6*.

Moullava spicata

**Table 3.8 Threatened Species** 

| S. N. | Name of species                 | Habit | Zones<br>(Core Zone/<br>Buffer Zone) | IUCN,v2018.1 |
|-------|---------------------------------|-------|--------------------------------------|--------------|
| 1     | Diospyros paniculata Dalzell    | Tree  | CZ, BZ                               | VU           |
| 2     | Holigarna grahamii (Wight) Kurz | Tree  | BZ                                   | LC           |

Notes: CZ- Core Zone, BZ- Buffer Zone, Source-Secondary Data

Source: Nayar, T. S., Garden, J. N. T. B., Research Institute, Beegam, A. R., & Sibi, M. (2014). Flowering plants of the Western Ghats, India. Jawaharlal Nehru Tropical Botanic Garden and Research Institute.



Figure 3.6 Threatened Species

Holigarna grahamii

# Status of Endemic Species

A total of five (5) endemic plants were reported of which four (04) are trees and one (1) is shrub. The endemic species are listed in Table 3.9.

| S.<br>N. | Name of species                          | Family        | Habit | Zones    |
|----------|------------------------------------------|---------------|-------|----------|
| 14.      |                                          |               |       | (CZ, BZ) |
| 1        | Capparis rheedei DC.                     | Capparaceae   | S     | CZ       |
| 2        | Diospyros neilgerrensis (Wight) Kosterm. | Ebenaceae     | Т     | BZ       |
| 3        | Diospyros paniculata Dalzell             | Ebenaceae     | Т     | CZ,BZ    |
| 4        | Euonymus indicus B. Heyne ex Wall.       | Celastraceae  | Т     | CZ       |
| 5        | Glochidion hohenackeri (Mull Arg.) Bedd. | Euphorbiaceae | Т     | CZ       |

Table 3.9 **Endemic Species** 

# 3.8.5 Overall Species Richness

The study area is represented by 49 species 46 genera and 32 families while associated 76 species belong to 72 genera and 41 family. Overall diversity comprises of 76 species 72 genera and 41 families. The details are presented in Table 3.10.

Table 3.10 Overall Species Richness of Flora along the transmission line route

| Parameters | Study Area List | SS | Overall |
|------------|-----------------|----|---------|
| Family     | 32              | 41 | 41      |
| Genus      | 46              | 72 | 72      |
| Species    | 49              | 76 | 76      |

Notes: SS-taxa which were documented as associated species. Study area list contains taxa documented in quadrats.

# 3.8.6 Species Diversity and Species Evenness

The species diversity is represented by Shannon Weiner Diversity Index<sup>1</sup> and Simpson Diversity Index<sup>2</sup> along with Species evenness from the data collected from the study area. The species diversity and species evenness are presented in *Table 3.11*.

**Table 3.11 Species Diversity and Species Evenness** 

| Species                                | Core Zone | Buffer Zone |
|----------------------------------------|-----------|-------------|
| Shannon Weiner Index of Diversity (H') | 2.652     | 2.826       |
| Simpson Index of Diversity             | 0.760     | 0.770       |
| Species Evenness                       | 0.780     | 0.808       |

# 3.8.7 Overall Species list

The overall species list is presented as hereunder;

Table 3.12 Overall List of Flora (Botanical name, Family, Local name, Locality, Local name, Growth form, Vegetation/Forest type) along the Proposed Transmission line

| S.N. | Species name                                       | Family            | Habitat | Habit | Threatened status |
|------|----------------------------------------------------|-------------------|---------|-------|-------------------|
| 1    | Acacia auriculiformis Benth.                       | Leguminosae       | Forest  | Tree  |                   |
| 2    | Aglaia lawii (Wight) C. J. Saldanha ex Ramamoorthy | Meliaceae         | Forest  | Tree  |                   |
| 3    | Allophylus cobbe (L.) Raeusch.                     | Sapindaceae       | Forest  | Tree  |                   |
| 4    | Ancistrocladus heyneanus Wall. ex J. Graham        | Ancistrocladaceae | Forest  | Shrub | Endemic           |
| 5    | Atalantia racemosa Wight                           | Rutaceae          | Forest  | Tree  |                   |
| 6    | Bridelia retusa (L.) A. Juss.                      | Euphorbiaceae     | Forest  | Tree  |                   |
| 7    | Calamus pseudotenuis Becc.                         | Arecaceae         | Forest  | Liana |                   |
| 8    | Callicarpa tomentosa (L.) L.                       | Lamiacaeae        | Forest  | Tree  |                   |
| 9    | Calophyllum calaba L.                              | Clusiaceae        | Forest  | Tree  | Endemic           |
| 10   | Canarium strictum Roxb.                            | Burseraceae       | Forest  | Tree  |                   |
| 11   | Capparis moonii Wight                              | Capparaceae       | Forest  | Liana |                   |

<sup>&</sup>lt;sup>1</sup> Shannon, C. E. (1948) A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423 and 623–656.

\_

<sup>&</sup>lt;sup>2</sup> Simpson, E. H. (1949). "Measurement of diversity". Nature. 163: 688.

| S.N. | Species name                                | Family           | Habitat | Habit   | Threatened status |
|------|---------------------------------------------|------------------|---------|---------|-------------------|
| 12   | Capparis rheedei DC.                        | Capparaceae      | Forest  | Shrub   | Endemic           |
| 13   | Careya arborea Roxb.                        | Lecythidaceae    | Forest  | Tree    |                   |
| 14   | Carissa inermis Vahl                        | Apocynaceae      | Forest  | Liana   |                   |
| 15   | Casearia ovata (Lam.) Willd.                | Flacourtiaceae   | Forest  | Tree    |                   |
| 16   | Cassia fistula L.                           | Leguminosae      | Forest  | Tree    |                   |
| 17   | Catunaregam spinosa (Thunb.) Tirveng.       | Rubiaceae        | Forest  | Tree    |                   |
| 18   | Cinnamomum verum J. Presl                   | Lauraceae        | Forest  | Tree    |                   |
| 19   | Cissus javana DC.                           | Vitaceae         | Forest  | Climber |                   |
| 20   | Clerodendrum infortunatum L.                | Lamiacaeae       | Forest  | Shrub   |                   |
| 21   | Colebrookea oppositifolia Sm.               | Lamiacaeae       | Forest  | Tree    |                   |
| 22   | Connarus monocarpus L.                      | Connaraceae      | Forest  | Shrub   |                   |
| 23   | Dimocarpus longan Lour.                     | Sapindaceae      | Forest  | Tree    |                   |
| 24   | Diospyros neilgerrensis (Wight)<br>Kosterm. | Ebenaceae        | Forest  | Tree    | Endemic           |
| 25   | Diospyros paniculata Dalzell                | Ebenaceae        | Forest  | Tree    | Endemic           |
| 26   | Diploclisia glaucescens (Blume)<br>Diels    | Menispermaceae   | Forest  | Liana   |                   |
| 27   | Eleocarpus serratus L.                      | Eleocarpaceae    | Forest  | Tree    |                   |
| 28   | Euonymus indicus B. Heyne ex<br>Wall.       | Celastraceae     | Forest  | Tree    | Endemic           |
| 29   | Ficus hispida L.                            | Moraceae         | Forest  | Tree    |                   |
| 30   | Ficus racemosa L.                           | Moraceae         | Forest  | Tree    |                   |
| 31   | Glochidion hohenackeri (Mull<br>Arg.) Bedd. | Euphorbiaceae    | Forest  | Tree    | Endemic           |
| 32   | Glycosmis pentaphylla (Retz.) DC.           | Rutaceae         | Forest  | Tree    |                   |
| 33   | Gnetum ula Brongn.                          | Gnetaceae        | Forest  | Liana   |                   |
| 34   | Grewia nervosa (Lour.) Panigrahi            | Malvaceae        | Forest  | Tree    |                   |
| 35   | Holigarna grahamii (Wight) Kurz             | Anacardiaceae    | Forest  | Tree    | Endemic           |
| 36   | Hopea ponga (Dennst.) Mabb.                 | Dipterocarpaceae | Forest  | Tree    |                   |
| 37   | Hymenodictyon obovatum Wall.                | Rubiaceae        | Forest  | Tree    | Endemic           |
| 38   | Ixora brachiata Roxb.                       | Rubiaceae        | Forest  | Tree    | Endemic           |
| 39   | Jasminum malabaricum Wight                  | Oleaceae         | Forest  | Liana   | Endemic           |
| 40   | Lagerstroemia microcarpa Wight              | Lythraceae       | Forest  | Tree    |                   |
| 41   | Leea indica (Burm. f.) Merr.                | Leeaceae         | Forest  | Tree    |                   |

| S.N. | Species name                                                                         | Family          | Habitat | Habit    | Threatened status |
|------|--------------------------------------------------------------------------------------|-----------------|---------|----------|-------------------|
| 42   | Lepisanthes tetraphylla (Vahl)<br>Radlk.                                             | Sapindaceae     | Forest  | Tree     |                   |
| 43   | Macaranga peltata (Roxb.) Mull.<br>Arg.                                              | Euphorbiaceae   | Forest  | Tree     |                   |
| 44   | Mallotus philippensis (Lam.) Mull.<br>Arg.                                           | Euphorbiaceae   | Forest  | Tree     |                   |
| 45   | Mallotus resinous (Blanco) Merr. var. stenanthus (Mull. Arg.) Susila & N. P. Balakr. | Euphorbiaceae   | Forest  | Shrub    | Endemic           |
| 46   | Mammea suriga (BuchHam. ex Roxb.) Kosterm.                                           | Clusiaceae      | Forest  | Tree     |                   |
| 47   | Mangifera indica L.                                                                  | Anacardiaceae   | Forest  | Tree     |                   |
| 48   | Maytenus rothiana (Walp.)<br>Lobreau-Callen                                          | Celastraceae    | Forest  | Shrub    |                   |
| 49   | Melastoma malabathricum L.                                                           | Melastomataceae | Forest  | Shrub    |                   |
| 50   | Memecylon umbellatum Burm. f.                                                        | Melastomataceae | Forest  | Tree     |                   |
| 51   | Moullava spicata (Dalzell) Nicolson                                                  | Leguminosae     | Forest  | Liana    | Endemic           |
| 52   | Mussaenda laxa (Hook. f.) Hutch. ex Gamble                                           | Rubiaceae       | Forest  | Shrub    | Endemic           |
| 53   | Naregamia alata Wight & Arn.                                                         | Meliaceae       | Forest  | Shrub    | Endemic           |
| 54   | Nothapodytes nimmoniana (J. Graham) Mabb.                                            | Icacinaceae     | Forest  | Tree     |                   |
| 55   | Nothopegia beddomei Gamble                                                           | Anacardiaceae   | Forest  | Tree     | Endemic           |
| 56   | Oberonia brachyphylla Blatt. & McCann                                                | Orchidaceae     | Forest  | Epiphtic | Endemic           |
| 57   | Olea dioica Roxb.                                                                    | Oleaceae        | Forest  | Tree     |                   |
| 58   | Ophiorrhiza rugosa Wall. var.<br>prostrata (D. Don) Deb & D. C.<br>Monda             | Rubiaceae       | Forest  | Herb     |                   |
| 59   | Oroxylum indicum (L.) Benth. ex<br>Kurz                                              | Bignoniaceae    | Forest  | Tree     |                   |
| 60   | Oxyceros rugulosus (Thw) Tirveng.                                                    | Rubiaceae       | Forest  | Liana    |                   |
| 61   | Phyllanthus emblica L.                                                               | Euphorbiaceae   | Forest  | Tree     |                   |
| 62   | Pittosporum dasycaulon Miq.                                                          | Pittosporaceae  | Forest  | Tree     | Endemic           |
| 63   | Porpax reticulata Lindl.                                                             | Orchidaceae     | Forest  | Epiphtic |                   |
| 64   | Pothos scandens L.                                                                   | Areceae         | Forest  | Climber  |                   |
| 65   | Psydrax umbellata (Wight) Bridson                                                    | Rubiaceae       | Forest  | Tree     |                   |
| 66   | Rhynchostylis retusa (L.) Blume                                                      | Orchidaceae     | Forest  | Epiphtic |                   |
| 67   | Salacia oblonga Wall. ex Wight & Arn.                                                | Celastraceae    | Forest  | Liana    |                   |
| 68   | Scutia myrtina (Burm. f.) Kurz                                                       | Rhamnaceae      | Forest  | Liana    |                   |
| 69   | Strobilanthes heyneana Nees                                                          | Acanthaceae     | Forest  | Shrub    | Endemic           |

| S.N. | Species name                         | Family       | Habitat | Habit | Threatened status |
|------|--------------------------------------|--------------|---------|-------|-------------------|
| 70   | Symplocos racemosa Roxb.             | Symplocaceae | Forest  | Tree  |                   |
| 71   | Syzygium cumini (L.) Skeels          | Myrtaceae    | Forest  | Tree  |                   |
| 72   | Tabernaemontana heyneana Wall.       | Apocynaceae  | Forest  | Tree  | Endemic           |
| 73   | Terminalia bellirica (Gaertn.) Roxb. | Combretaceae | Forest  | Tree  |                   |
| 74   | Terminalia elliptica Willd.          | Combretaceae | Forest  | Tree  |                   |
| 75   | Ventilago denticulata Willd.         | Rhamnaceae   | Forest  | Shrub | Endemic           |
| 76   | Zanthoxylum rhetsa (Roxb.) DC.       | Rutaceae     | Forest  | Tree  |                   |

#### 3.9 Faunal Assessment

Faunal Assessments were focused on the faunal groups such as Herpetofauna (Amphibians and Reptiles), Avifauna and Mammals. Details of these groups are discussed in below sections.

The faunal species survey were made along the transects locations mostly around 50 m width on either side. The location of the transects are discussed as below and presented in *Table 3.13* below

Table 3.13 Transects for Faunal Survey

| Transect No. | Habitats                                                                 |
|--------------|--------------------------------------------------------------------------|
| KT1          | Running along the Panjim Belagavi Road near Tower Location AP17          |
| KT2          | Intersecting TL route at Tower Location AP17A all along the forest trail |
| КТ3          | Approaching Tower Location AP17B passing through open areas              |
| KT4          | Intersecting TL Route near Anmod village between 18B/1 and 18B/2         |
| KT5          | Running along the TL Route between 18B/2 and 18B/3                       |
| KT6          | Running along the Castle rock road                                       |
| KT7          | Intersecting TL route near Tower Location AP19                           |

The location of the transects are provided in *Figure 3.4*.

#### 3.9.1 Herpetofauna

Most of the amphibians and reptiles are generalist and occur in various habitats and a few are habitat specific. There are burrowing, terrestrial, aquatic and arboreal species of amphibians and reptiles. Most of the amphibians and a few reptiles are only active during the monsoon season and a few species are active throughout the year.

The burrowing species mostly occupy habitats with good canopy cover and thus confined to the forests. Although, there are a few exceptions. Most of the burrowing herpetofauna is also active during monsoon season. The terrestrial species are mostly confined to forest floor and are seen among leaf litter, under logs or rocks. These species are considerably sturdy and are seen throughout

the year. Aquatic species are mostly seen close to streams, pools and rivers and solely depend on these water sources for majority of their activities. Due to this specific requirement, they are mostly encountered during monsoon season. Many aquatic amphibians utilize stagnant pools and a few are only seen in the forest streams. The arboreal forms and also mostly seen in the forest habitats. Arboreal reptiles are seen throughout the year but amphibians and mostly seen during rainy season.

Many of the endemic herpetofauna is confined to natural and less disturbed forest habitats. The species which are widely distributed are mostly seen in the disturbed habitats as well. The habitat of the northern extremities of the Western Ghats region of Karnataka is similar like that of Goa. Most of the species reported from this landscape are based on anecdotal observations. This landscape is also poorly studied for amphibians and reptiles. The herpetofaunal species diversity is more or less similar to that of the Western Ghats region of Goa. Presently, the only known species of herpetofauna endemic to this landscape is *Gegeneophis mhadeiensis*, which is known from Chorla and Castle Rock.

#### Habitats in Transmission Line Route

The habitat in the study area in Karnataka is mostly homogenous and composed of tropical semi-evergreen forest and tropical moist deciduous forest. Although this habitat has similar altitudinal gradient, the terrain is significantly undulating. The habitat is mostly pristine with a few places with *Eucalyptus* plantations, which appear to be open and exposed. Rest of the natural habitat has an understory plantation with thick layer of decaying leaf litter and rotting logs of dead trees. There are a few streams in this area but most of them were dry compared to those in Goa. The forest cover was wet due to intermittent rainfall during the study period and this resulted in the finding of two specimens of burrowing amphibians, caecilians under rocks close the transmission line. This habitat was ideal for forest dwelling species and we observed *Trimeresurus malabaricus* (Malabar pit viper), *Ichthyophis davidi* (Chorla giant striped caecilian) and *Lygosoma guentheri* (Guenther's supple skink).

This habitat appears to have substantial anthropogenic pressure due to its close vicinity of state highway and human habitation.

#### Status of Amphibians

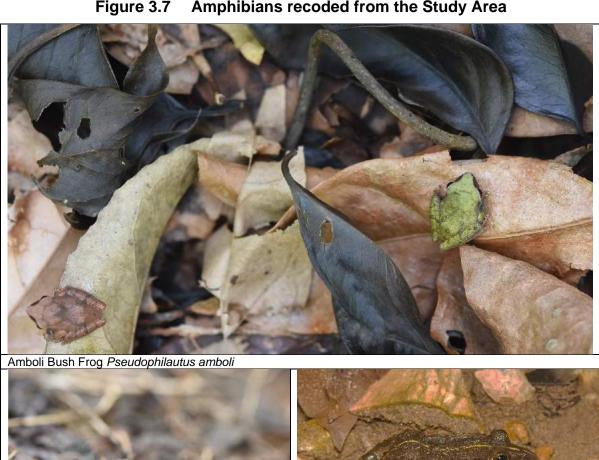
The diversity of amphibians in Karnataka section is predominantly similar to that of Goa with a few exceptions. As mentioned, due to lack of proper studies, reliable list of amphibians from this landscape is not yet available. Based on personal observations, opportunistic records and present survey a 21 species of amphibians are recorded from this landscape. This list is mainly for the sites covering the study area. During this study, we observed seven species of amphibians and this low number is mainly due to lack of nocturnal surveys. Due to the tiger reserve, we were allowed to conduct the surveys till 6.00 pm and most the amphibians encountered were during the diurnal surveys.

The commonest amphibian in this region was Amboli bush frog *Pseudophilautus amboli*. They were seen among the leaf litter in the forest. Individuals from different age groups were seen. These frogs are active during the breeding season, from June to September, calling from bushes in the forest and rarely seen in post monsoon seasons. These appear to be a remnant individuals of this season. The other common species of amphibian encountered during this study was *Indirana* sp. In view of taxonomic ambiguity in this group, the species level identification was not done. This can only be done with detailed morphological observations and molecular studies.

Only a single subadult individual of *Hoplobatrachus tigerinus* was seen during this study. Three adult individuals of Indian golden backed frogs were also encountered. These were tentatively identified based on their distribution. The individuals were also seen among the leaf litter in the forest.

Two individuals of Chorla giant striped caecilian *Ichthyophis davidi* were observed during this study. These specimens were seen under rock near a temple enroute anti-poaching camp, outside transmission line area. These are burrowing amphibians and only seen during the monsoon season. Both the individuals were hiding under small rocks and the habitat where they observed was noticeably dry. This indicates their tolerance for less humid conditions as well.

All the 21 species enlisted in the *Table 3.15* may not occur along the transmission line but are reported from this landscape. Species observed are presented in *Figure 3.8.* 


Table 3.14 Amphibians reported & recorded from the Transmission Line Route

| SN  | Family         | Full taxon                 | English Name                 | IWPA        | IUCN.<br>V2018.1 |
|-----|----------------|----------------------------|------------------------------|-------------|------------------|
| 1.  | Bufonidae      | Duttaphrynus melanostictus | Common Indian Toad*          | Schedule IV | LC               |
| 2.  | Bufonidae      | Pedostibes tuberculosus    | Malabar Tree Toad            | Schedule IV | EN               |
| 3.  | Dicroglossidae | Euphlyctis cyanophlyctus   | Five-fingered Frogs          | Schedule IV | LC               |
| 4.  | Dicroglossidae | Minervarya cepfi           | CEPF Burrowing Frog*         | Schedule IV | NA               |
| 5.  | Dicroglossidae | Minervarya gomantaki       | Goan Cricket Frog            | Schedule IV | NA               |
| 6.  | Dicroglossidae | Minervarya goemchi         | Goan Cricket Frog            | Schedule IV | NA               |
| 7.  | Dicroglossidae | Hoplobatrachus tigerinus   | Indian Bull Frog*            | Schedule IV | LC               |
| 8.  | Dicroglossidae | Sphaerotheca breviceps     | Indian Burrowing Frog        | Schedule IV | LC               |
| 9.  | Microhylidae   | Microhyla ornata           | Ornate Narrow-mouthed Frog   | Schedule IV | LC               |
| 10. | Microhylidae   | Microhyla rubra            | Reddish Narrow-mouthed Frog  | Schedule IV | LC               |
| 11. | Microhylidae   | Uperodon globulosus        | Indian Balloon Frog          | Schedule IV | LC               |
| 12. | Microhylidae   | Uperodon mormorata         | Marbled Ramanella            | Schedule IV | EN               |
| 13. | Ranidae        | Indosylvirana cf. indica   | Indian Golden-backed<br>Frog | Schedule IV | NA               |
| 14. | Ranixalidae    | Indirana sp.*              |                              |             |                  |
| 15. | Rhacophoridae  | Polypedates maculatus      | Common Indian Tree<br>Frog   | Schedule IV | LC               |
| 16. | Rhacophoridae  | Pseudophilautus amboli     | Amboli Bush Frog*            | Schedule IV | CR               |
| 17. | Rhacophoridae  | Raorchestes bombayensis    | Maharashtra Bush Frog*       | Schedule IV | VU               |
| 18. | Rhacophoridae  | Rhacophorus malabaricus    | Malabar Gliding Frog         | Schedule IV | LC               |
| 19. | Ichthyophiidae | Ichthyophis bombayensis    | Bombay Caecilian             | Schedule IV | LC               |
| 20. | Ichthyophiidae | Ichthyophis davidi         | Chorla giant striped         | Schedule IV | NA               |
| 21. | Indotyphlidae  | Gegeneophis danieli        | Daniel's Caecilian           | Schedule IV | DD               |

<sup>\*</sup> Species encountered during the survey

 $\label{local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-loc$ 

Figure 3.7 Amphibians recoded from the Study Area













# Status of Reptiles

Reptiles are also poikilothermic vertebrates, but they are known to occur in varied habitats. Although there is no seasonality in many reptiles, a few species are active during the monsoon. In view of the rich diversity of flora and availability of good micro-habitats, there is rich diversity of reptiles in the study area.

The reptile diversity is also similar to that of Goa owing to contiguity of the habitat with a list of 60 species known to inhabit this landscape. During this study 11 different species of reptiles were seen.

The commonest reptile was Sahyadri Forest Lizard *Monilesaurus rouxii*. Adults and juveniles of this species were seen on the trees. Two juveniles of Indian garden lizard *Calotes versicolor* were also seen during this study. Two adult specimens of Gunther's supple skink *Lygosoma guentheri* were recorded along with caecilians. These skinks were hidden under rocks. The other skink commonly observed along the transmission line was Bronze grass skink *Eutropis macularia*. In the less disturbed forest three specimens of Beddome's cat skink *Ristella beddomei* were seen in the leaf litter. Many juveniles and a few adults of this species were seen moving among the leaf litter. Three adult individuals of Keeled grass skink *Eutropis carinata* also seen in the study area. The geckos recorded from the study area are Asian house gecko *Hemidactylus frenatus* and Murray's gecko *Hemidactylus murrayi*.

In snakes two specimens of Malabar pit viper *Trimeresurus malabaricus* were encountered. One of them was a juvenile as was resting on a small bush and other was a full-grown female. A single individual of Green vine snake *Ahaetulla nasuta* was also seen.

Table 3.15 Reptiles recorded from the Study Area

| Sn | Family       | Full taxon                     | English Name                | IWPA,1972          | IUCN<br>v2018.1 |
|----|--------------|--------------------------------|-----------------------------|--------------------|-----------------|
| 1. | Geomydidae   | Melanochelys trijuga           | Indian black turtle         | Schedule IV        | NT              |
| 2. | Trionychidae | Lissemys punctata              | Indian flapshell turtle     | Schedule I Part II | LC              |
| 3. | Agamidae     | Monilisaurus rouxii            | Sahyadri Forest Lizard*     | Schedule IV        | LC              |
| 4. | Agamidae     | Calotes versicolor             | Indian Garden Lizard*       | Schedule IV        | LC              |
| 5. | Agamidae     | Draco dussumieri               | South Indian Flying Lizard  | Schedule IV        | LC              |
| 6. | Gekkonidae   | Cnemaspis cf. indraneildasii   | Indraneil's Day Gecko       | Schedule IV        | VU              |
| 7. | Gekkonidae   | Cyrtodactylus<br>albofasciatus | Boulenger's Indian Gecko    | Schedule IV        | LC              |
| 8. | Gekkonidae   | Hemidactylus<br>flaviviridis   | Yellow Green House<br>Gecko | Schedule IV        | LC              |
| 9. | Gekkonidae   | Hemidactylus<br>frenatus       | Asian House Gecko*          | Schedule IV        | LC              |

| Sn  | Family      | Full taxon                        | English Name                 | IWPA,1972           | IUCN<br>v2018.1 |
|-----|-------------|-----------------------------------|------------------------------|---------------------|-----------------|
| 10. | Gekkonidae  | Hemidactylus<br>leschenaultii     | Bark Gecko                   | Schedule IV         | LC              |
| 11. | Gekkonidae  | Hemidactylus murrayi              | Murray's Gecko*              | Schedule IV         | LC              |
| 12. | Gekkonidae  | Hemidactylus<br>prashadi          | Prashad's Gecko              | Schedule IV         | LC              |
| 13. | Gekkonidae  | Hemidactylus triedrus             | Termite Hill Gecko           | Schedule IV         | LC              |
| 14. | Lacertidae  | Ophisops beddomei                 | Beddome's Lacerta            | Schedule IV         | LC              |
| 15. | Mabuyidae   | Eutropis carinata                 | Common Keeled Skink*         | Schedule IV         | LC              |
| 16. | Mabuyidae   | Eutropis macularia                | Bronze Grass Skink*          | Schedule IV         | LC              |
| 17. | Lygosomidae | Lygosoma guentheri                | Günther's Supple Skink*      | Schedule IV         | LC              |
| 18. | Lygosomidae | Lygosoma lineata                  | Lined Supple Skink           | Schedule IV         | LC              |
| 19. | Ristellidae | Ristella beddomii                 | Beddome's Cat Skink*         | Schedule IV         | LC              |
| 20. | Varanidae   | Varanus bengalensis               | Bengal Monitor Lizard        | Schedule I Part II  | LC              |
| 21. | Uropeltidae | Melanophidium<br>khairei          | Khaire's Black shieldtail    | Schedule IV         | NA              |
| 22. | Uropeltidae | Uropeltis sp.                     | Large-scaled shieldtail      | Schedule IV         | LC              |
| 23. | Pythonidae  | Python molurus                    | Indian rock python           | Schedule I Part II  | VU              |
| 24. | Erycidae    | Eryx conicus                      | Common sand boa              | Schedule IV         | NA              |
| 25. | Erycidae    | Eryx whitakeri                    | Whitaker's boa               | Schedule IV         | NA              |
| 26. | Colubridae  | Ahaetulla nasuta                  | Green vine snake*            | Schedule IV         | LC              |
| 27. | Colubridae  | Ahaetulla<br>pulverulenta         | Brown vine snake             | Schedule IV         | LC              |
| 28. | Colubridae  | Chrysopelea ornata                | Ornate flying snake          | Schedule IV         | LC              |
| 29. | Colubridae  | Dendrelaphis girii                | Giri's bronzeback tree snake | Schedule IV         | LC              |
| 30. | Colubridae  | Dendrelaphis tristis              | Common bronzeback tree snake | Schedule IV         | LC              |
| 31. | Colubridae  | Argyrogena<br>fasciolata          | Banded racer                 | Schedule IV         | LC              |
| 32. | Colubridae  | Boiga beddomei                    | Beddome's Cat snake          | Schedule IV         | LC              |
| 33. | Colubridae  | Boiga ceylonensis                 | Ceylon Cat snake             | Schedule IV         | LC              |
| 34. | Colubridae  | Boiga forsteni                    | Forsten's Cat snake          | Schedule IV         | LC              |
| 35. | Colubridae  | Boiga trigonata                   | Common Cat snake             | Schedule IV         | LC              |
| 36. | Colubridae  | Coelognathus helena monticollaris | Montane trinket snake        | Schedule IV         | LC              |
| 37. | Colubridae  | Lycodon cf. aulicus               | Common wolf snake            | Schedule IV         | LC              |
| 38. | Colubridae  | Lycodon striatus                  | White-banded wolf snake      | Schedule IV         | LC              |
| 39. | Colubridae  | Lycodon<br>travancoricus          | Travancore wolf snake        | Schedule IV         | LC              |
| 40. | Colubridae  | Oligodon arnensis                 | Banded kukri snake           | Schedule IV         | LC              |
| 41. | Colubridae  | Oligodon taeniolatus              | Variegated kukri snake       | Schedule IV         | LC              |
| 42. | Colubridae  | Ptyas mucosa                      | Oriental rat snake*          | Schedule II Part II | LC              |
| 43. | Colubridae  | Rhabdops aquaticus                | Aquatic rhabdops             | Schedule IV         | NA              |
| 44. | Colubridae  | Sibynophis<br>subpunctatus        | Dumeril's black-headed snake | Schedule IV         | LC              |
| 45. | Colubridae  | Amphiesma stolatum                | Striped keelback             | Schedule IV         | LC              |
| 46. | Colubridae  | Hebius beddomei                   | Beddome's keelback           | Schedule IV         | LC              |

| Sn  | Family      | Full taxon                  | English Name            | IWPA,1972           | IUCN<br>v2018.1 |
|-----|-------------|-----------------------------|-------------------------|---------------------|-----------------|
| 47. | Colubridae  | Macropisthodon plumbicolor  | Green keelback          | Schedule IV         | LC              |
| 48. | Colubridae  | Xenochrophis piscator       | Checkered keelback      | Schedule II Part II | LC              |
| 49. | Elapidae    | Bungarus caeruleus          | Common Indian krait     | Schedule IV         | LC              |
| 50. | Elapidae    | Calliophis castoe           | Castoe's coral snake    | Schedule IV         | DD              |
| 51. | Elapidae    | Calliophis nigrescens       | Striped coral snake     | Schedule IV         | LC              |
| 52. | Elapidae    | Naja naja                   | Spectacled cobra        | Schedule II Part II | LC              |
| 53. | Elapidae    | Ophiophagus hannah          | King cobra              | Schedule II Part II | LC              |
| 54. | Viperidae   | Hypnale hypnale             | Hump-nosed pit viper    | Schedule IV         | LC              |
| 55. | Viperidae   | Trimeresurus<br>gramineus   | Bamboo pit viper        | Schedule IV         | LC              |
| 56. | Viperidae   | Trimeresurus<br>malabaricus | Malabar pit viper*      | Schedule IV         | LC              |
| 57. | Viperidae   | Daboia russelii             | Russell's viper         | Schedule II Part II | LC              |
| 58. | Viperidae   | Echis carinatus             | Indian saw-scaled viper | Schedule IV         | LC              |
| 59. | Typhlopidae | Grypotyphlops<br>acutus     | Beaked Worm snake       | Schedule IV         | LC              |
| 60. | Typhlopidae | Indotyphlops<br>braminus    | Brahminy Worm snake     | Schedule IV         | LC              |

#### Reptiles recorded from the Study Area Figure 3.8



Common Keeled Skink Eutropis carinata



### Roadkill of Checkered Keelback Snake



Prashad's Gecko Hemidactylus prashadii

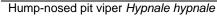


Günther's Supple Skink Lygosoma guentheri

<sup>\*</sup> Species encountered during the survey LC - Least Concerned, EN - Endangered, CR - Critically Endangered, NA - Not assessed






Sahyadri Forest Lizard Monilesaurus rouxii

Malabar pit viper Trimeresurus malabaricus



Common wolf snake Lucodon cf aulicus







South Indian Flying Lizard Draco dussumieri



Green vine snake Ahaetulla nasuta

# Threatened Species

This region is known to inhabit 81 species of amphibians and reptiles of which seven species are in the threatened category of IUCN and remaining are either Least Concerned or Dada Deficient. There are a few species which are not yet assessed as they are recently described. These threatened species are listed in Table 3.16.

**Threatened Species Table 3.16** 

| Sn | Family        | Full taxon                   | English Name           | IUCN v2020.2 |
|----|---------------|------------------------------|------------------------|--------------|
| 1. | Rhacophoridae | Pseudophilautus amboli       | Amboli Bush Froq*      | CR           |
| 2. | Bufonidae     | Pedostibes tuberculosus      | Malabar Tree Toad      | EN           |
| 3. | Microhylidae  | Uperodon mormorata           | Marbled Ramanella      | EN           |
| 4. | Rhacophoridae | Raorchestes bombayensis      | Maharashtra Bush Frog* | VU           |
| 5. | Geomydidae    | Melanochelys trijuga         | Indian black turtle    | NT           |
| 6. | Gekkonidae    | Cnemaspis cf. indraneildasii | Indraneil's Day Gecko  | VU           |
| 7. | Pythonidae    | Python molurus               | Indian rock python     | VU           |

# **Endemic Species**

There are endemic amphibians and reptiles in the Western Ghags region of Karnataka but many of these species have a wider range. There are no amphibians and reptiles endemic to the present study area.

#### 3.9.2 Avifauna

Avifaunal surveys were undertaken along the 5 transects within a study area. Point counts were made in 50 m radius plots in the study area.

### Species Richness

Total bird species richness, i.e. total number of species recorded from the transects recorded were fourty four (44) species.

Pompadour green pegion (*Treron pompadora*), White rumped shama (*Copsychus malabaricus*), redwhiskered bulbul (*Pycnonotus jocosus*), Malabar Pied Hornbill (*Anthracoceros coronatus*) etc. were recorded from the mosaic of grassland and forest habitat at the edge of forest. Species like Malabar Trogon (*Harpactes fasciatus*), Malabar grey Hornbill (*Ocyceros griseus*), Asian Paradise flycatcher (*Terpsiphone paradise*), Crimson Backed sunbird (*Leptocoma minima*), Malabar woodshrike (*Tephrodornis sylvicola*) etc. were recorded from forested habitat.

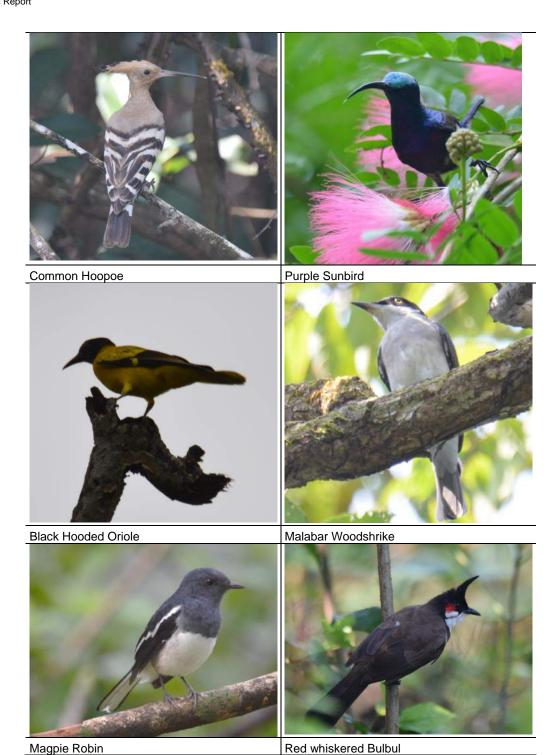
Most of the species were recorded during diurnal survey, but Jungle Owlet (*Glaucidium radiatum*) and Sri Lanka frogmouth (*Batrachostomus moniliger*) were recorded during night survey.

Details of all the species recorded during the transect survey is provided in Table 3.17.

Table 3.17 Details of Species Recorded from the Study Area

| ,,,,,, |                          |                                   |                       |                   |  |
|--------|--------------------------|-----------------------------------|-----------------------|-------------------|--|
| SNo.   | Scientific Name          | Common Name                       | Sch. of IWPA,<br>1972 | IUCN<br>(v2020-2) |  |
| 1      | Accipiter trivirgatus    | Crested Goshawk                   | I                     | LC                |  |
| 2      | Acridotheres tristis     | Common Myna                       | IV                    | LC                |  |
| 3      | Aegithina tiphia         | Common Iora                       | IV                    | LC                |  |
| 4      | Alcedo atthis            | Common Kingfisher                 | IV                    | LC                |  |
| 5      | Anthracoceros coronatus  | Malabar Pied Hornbill             | I                     | NT                |  |
| 6      | Batrachostomus moniliger | Sri Lanka frogmouth               | I (part III)          | LC                |  |
| 7      | Ceyx erillzacus          | Oriental dwarf Kingfisher         | IV                    | LC                |  |
| 8      | Cinnyris asiaticus       | Purple Sunbird                    | IV                    | LC                |  |
| 9      | Copsychus malabaricus    | White rumped shama                | IV                    | LC                |  |
| 10     | Copsychus saularis       | Oriental Magpie-Robin             | IV                    | LC                |  |
| 11     | Dicrurus leucophaeus     | Ashy Drongo                       | IV                    | LC                |  |
| 12     | Dicrurus macrocercus     | Black Drongo                      | IV                    | LC                |  |
| 13     | Dicrurus paradiseus      | Greater Racket-tailed drongo      | IV                    | LC                |  |
| 14     | Dinopium javanense       | Common Flame-backed<br>Woodpecker | IV                    | LC                |  |
| 15     | Elanus caeruleus         | Black-winged Kite                 | I                     | LC                |  |
| 16     | Eudynamys scolopacea     | Asian Koel                        | IV                    | LC                |  |
| 17     | Eumyias thalassinus      | Asian Verditer Flycatcher         | IV                    | LC                |  |
| 18     | Gallus sonneratti        | Grey Junglefowl                   | II                    | LC                |  |
| 19     | Glaucidium radiatum      | Jungle Owlet                      | IV                    | LC                |  |
| 20     | Halcyon pileata          | Black-capped Kingfisher           | IV                    | LC                |  |
| 21     | Haliastur indus          | Brahminy Kite                     | I                     | LC                |  |
| 22     | Harpactes fasciatus      | Malabar Trogon                    | IV                    | LC                |  |
| 23     | Hierococcyx varius       | Common Hawk Cuckoo                | IV                    | LC                |  |
| 24     | Leptocoma minima         | Crimson Backed sunbird            | IV                    | LC                |  |
| 25     | Leptocoma zeylonica      | Purple rumped sunbird             | IV                    | LC                |  |
| 26     | lole indica              | Yellow browed bulbul              | IV                    | LC                |  |
| 27     | Monticola cinclorhyncha  | Blue-capped Rock Thrush           | IV                    | LC                |  |
| 28     | Nyctyornis athertoni     | Blue-bearded Bee-eater            | IV                    | LC                |  |
|        | •                        | -                                 | -                     | -                 |  |

# BIA AND BMP FOR 400 KV TRANSMISSION LINE CORRIDOR PASSING THROUGH PROTECTED AREAS OF KARNATAKA STATE Final Report


| SNo. | Scientific Name               | Common Name               | Sch. of IWPA,<br>1972 | IUCN<br>(v2020-2) |
|------|-------------------------------|---------------------------|-----------------------|-------------------|
| 29   | Ocyceros griseus              | Malabar grey Hornbill     | IV                    | LC                |
| 30   | Oriolus xanthornus            | Black-hooded Oriole       | IV                    | LC                |
| 31   | Ploceus philippinus           | Baya Weaver               | IV                    | LC                |
| 32   | Psilopogon haemacephalus      | Coppersmith Barbet        | IV                    | LC                |
| 33   | Upupa epops                   | Common Hoopoe             | IV                    | LC                |
| 34   | Pycnonotus gularis            | Flame-throated Bulbul     | IV                    | LC                |
| 35   | Pycnonotus jocosus            | Red-whiskered Bulbul      | IV                    | LC                |
| 36   | Pycnonotus melanicterus       | Black-capped Bulbul       | IV                    | LC                |
| 37   | Spilornis cheela              | Crested Serpent Eagle     | I                     | LC                |
| 38   | Streptopelia chinensis        | Spotted Dove              | IV                    | LC                |
| 39   | Sturnia pagodarum             | Brahminy Starling         | IV                    | LC                |
| 40   | Surniculus lugubris           | Drongo Cuckoo             | IV                    | LC                |
| 41   | Tephrodornis<br>pondicerianus | Common Woodshrike         | IV                    | LC                |
| 42   | Tephrodornis sylvicola        | Malabar woodshrike        | IV                    | LC                |
| 43   | Terpsiphone paradisi          | Asian Paradise flycatcher | IV                    | LC                |
| 44   | Treron pompadora              | Pompadour green pegion    | IV                    | LC                |

Source – ERM Primary Survey

IUCN Status: LC- Least Concern, NT- Near Threatened

Figure 3.9 Avifauna Recorded During Survey





# Overall Species Richness

To overcome the limitations of this particular survey and to have a understanding of the overall species richness of the study area, a cumulative list of all the species found in the study area was prepared based on available bird checklist from Dandeli Wildlife Sanctuary. Based on this secondary information, overall species richness i.e. total number of species that can be found in the study area is Two hundred and thirteen (213) listed in *Table 3.18* below.

Table 3.18 Potential Species List likely to be observed from the Study Area

| Sr. No. | Scientific Name          | Common Name                  | IWPA 1972 Schedule | IUCN Status (v. 2020-2) |
|---------|--------------------------|------------------------------|--------------------|-------------------------|
| 1       | Psittacula eupatria      | Alexandrine Parakeet         | IV                 | NT                      |
| 2       | Tachymarptis melba       | Alpine Swift                 | NL                 | LC                      |
| 3       | Dicrurus leucophaeus     | Ashy Drongo                  | IV                 | LC                      |
| 4       | Artamus fuscus           | Ashy Woodswallow             | IV                 | LC                      |
| 5       | Eremopterix griseus      | Ashy-crowned Sparrow Lark    | IV                 | LC                      |
| 6       | Muscicapa dauurica       | Asian Brown Flycatcher       | IV                 | LC                      |
| 7       | Irena puella             | Asian Fairy-bluebird         | IV                 | LC                      |
| 8       | Nettapus coromandelianus | Asian Pygmy Goose            | IV                 | LC                      |
| 9       | Eumyias thalassinus      | Asian Verditer Flycatcher    | IV                 | LC                      |
| 10      | Cacomantis sonneratii    | Banded Bay Cuckoo            | IV                 | LC                      |
| 11      | Hirundo rustica          | Barn Swallow                 | NL                 | LC                      |
| 12      | Hemipus picatus          | Bar-winged Flycatcher-shrike | IV                 | LC                      |
| 13      | Ploceus philippinus      | Baya Weaver                  | IV                 | LC                      |
| 14      | Hypsipetes leucocephalus | Black Bulbul                 | IV                 | LC                      |
| 15      | Dicrurus macrocercus     | Black Drongo                 | IV                 | LC                      |
| 16      | Ictinaetus malaiensis    | Black Eagle                  | I                  | LC                      |
| 17      | Milvus migrans           | Black Kite                   | I                  | LC                      |
|         |                          |                              |                    |                         |

| Sr. No. | Scientific Name             | Common Name               | IWPA 1972 Schedule | IUCN Status (v. 2020-2) |
|---------|-----------------------------|---------------------------|--------------------|-------------------------|
| 18      | Ciconia nigra               | Black Stork               | IV                 | LC                      |
| 19      | Sterna acuticauda           | Black-bellied Tern        | IV                 | EN                      |
| 20      | Halcyon pileata             | Black-capped Kingfisher   | IV                 | LC                      |
| 21      | Pycnonotus melanicterus     | Black-capped Bulbul       | IV                 | LC                      |
| 22      | Lalage melanoptera          | Black-headed Cuckooshrike | IV                 | LC                      |
| 23      | Threskiornis melanocephalus | Black-headed Ibis         | IV                 | NT                      |
| 24      | Oriolus xanthornus          | Black-hooded Oriole       | IV                 | LC                      |
| 25      | Machlolophus xanthogenys    | Black-lored Tit           | IV                 | LC                      |
| 26      | Hypothymis azurea           | Black-naped Monarch       | IV                 | LC                      |
| 27      | Dinopium benghalense        | Black-rumped Woodpecker   | IV                 | LC                      |
| 28      | Elanus caeruleus            | Black-winged Kite         | 1                  | LC                      |
| 29      | Himantopus himantopus       | Black-winged Stilt        | IV                 | LC                      |
| 30      | Monticola solitarius        | Blue Rock Thrush          | IV                 | LC                      |
| 31      | Nyctyornis athertoni        | Blue-bearded Bee-eater    | IV                 | LC                      |
| 32      | Monticola cinclorhyncha     | Blue-capped Rock Thrush   | IV                 | LC                      |
| 33      | Merops philippinus          | Blue-tailed Bee-eater     | IV                 | LC                      |
| 34      | Acrocephalus dumetorum      | Blyth's Reed Warbler      | IV                 | LC                      |
| 35      | Hieraaetus pennatus         | Booted Eagle              | 1                  | LC                      |
| 36      | Haliastur indus             | Brahminy Kite             | I                  | LC                      |
| 37      | Sturnia pagodarum           | Brahminy Starling         | IV                 | LC                      |
| 38      | Dicrurus aeneus             | Bronzed Drongo            | IV                 | LC                      |
| 39      | Metopidius indicus          | Bronze-winged Jacana      | IV                 | LC                      |

| Sr. No. | Scientific Name         | Common Name                      | IWPA 1972 Schedule | IUCN Status (v. 2020-2) |
|---------|-------------------------|----------------------------------|--------------------|-------------------------|
| 40      | Lanius cristatus        | Brown Shrike                     | IV                 | LC                      |
| 41      | Hirundapus giganteus    | Brown-backed Needletail          | NL                 | LC                      |
| 42      | Dendrocopos moluccensis | Brown-capped Woodpecker          | IV                 | LC                      |
| 43      | Alcippe poioicephala    | Brown-cheeked Fulvetta           | IV                 | LC                      |
| 44      | Psilopogon zeylanicus   | Brown-headed Barbet              | IV                 | LC                      |
| 45      | Bubulcus ibis           | Cattle Egret                     | IV                 | LC                      |
| 46      | Nisaetus cirrhatus      | Changeable Hawk Eagle            | 1                  | LC                      |
| 47      | Sitta castanea          | Indian Nuthatch                  | IV                 | LC                      |
| 48      | Merops leschenaulti     | Chestnut-headed Bee-eater        | IV                 | LC                      |
| 49      | Gymnoris xanthocollis   | Chestnut-shouldered Bush Sparrow | IV                 | LC                      |
| 50      | Sturnia malabarica      | Chestnut-tailed Starling         | IV                 | LC                      |
| 51      | Parus cinereus          | Cinereous Tit                    | IV                 | LC                      |
| 52      | Otus bakkamoena         | Indian Scops Owl                 | IV                 | LC                      |
| 53      | Sarkidiornis melanotos  | Comb Duck                        | IV                 | LC                      |
| 54      | Fulica atra             | Common Coot                      | IV                 | LC                      |
| 55      | Dinopium javanense      | Common Flame-backed Woodpecker   | IV                 | LC                      |
| 56      | Hierococcyx varius      | Common Hawk Cuckoo               | IV                 | LC                      |
| 57      | Aegithina tiphia        | Common Iora                      | IV                 | LC                      |
| 58      | Falco tinnunculus       | Common Kestrel                   | IV                 | LC                      |
| 59      | Alcedo atthis           | Common Kingfisher                | IV                 | LC                      |
| 60      | Eudynamys scolopaceus   | Common Koel                      | IV                 | LC                      |
| 61      | Gallinula chloropus     | Common Moorhen                   | IV                 | LC                      |

| Sr. No. | Scientific Name            | Common Name             | IWPA 1972 Schedule | IUCN Status (v. 2020-2) |
|---------|----------------------------|-------------------------|--------------------|-------------------------|
| 62      | Acridotheres tristis       | Common Myna             | IV                 | LC                      |
| 63      | Erythrina erythrina        | Common Rosefinch        | IV                 | LC                      |
| 64      | Actitis hypoleucos         | Common Sandpiper        | IV                 | LC                      |
| 65      | Orthotomus sutorius        | Common Tailorbird       | IV                 | LC                      |
| 66      | Tephrodornis pondicerianus | Common Woodshrike       | IV                 | LC                      |
| 67      | Psilopogon haemacephalus   | Coppersmith Barbet      | IV                 | LC                      |
| 68      | Accipiter trivirgatus      | Crested Goshawk         | I                  | LC                      |
| 69      | Spilornis cheela           | Crested Serpent Eagle   | 1                  | LC                      |
| 70      | Hemiprocne coronata        | Crested Treeswift       | IV                 | LC                      |
| 71      | Leptocoma minima Endemic   | Crimson-backed Sunbird  | IV                 | LC                      |
| 72      | Rhopocichla atriceps       | Dark-fronted Babbler    | IV                 | LC                      |
| 73      | Ptyonoprogne concolor      | Dusky Crag Martin       | IV                 | LC                      |
| 74      | Neophron percnopterus      | Egyptian Vulture        | IV                 | EN                      |
| 75      | Chalcophaps indica         | Emerald Dove            | IV                 | LC                      |
| 76      | Ptyonoprogne rupestris     | Eurasian Crag Martin    | IV                 | LC                      |
| 77      | Falco subbuteo             | Eurasian Hobby          | IV                 | LC                      |
| 78      | Dendronanthus indicus      | Forest Wagtail          | IV                 | LC                      |
| 79      | Spatula querquedula        | Garganey                | IV                 | LC                      |
| 80      | Chloropsis aurifrons       | Golden-fronted Leafbird | IV                 | LC                      |
| 81      | Phalacrocorax carbo        | Great Cormorant         | IV                 | LC                      |
| 82      | Ardea alba                 | Great Egret             | IV                 | LC                      |
| 83      | Lanius excubitor           | Great Grey Shrike       | NL                 | LC                      |

| Sr. No. | Scientific Name           | Common Name                     | IWPA 1972 Schedule | <b>IUCN Status (v. 2020-2)</b> |
|---------|---------------------------|---------------------------------|--------------------|--------------------------------|
| 84      | Buceros bicornis          | Great Hornbill                  | IV                 | LC                             |
| 85      | Centropus sinensis        | Greater Coucal                  | IV                 | LC                             |
| 86      | Chrysocolaptes lucidus    | Greater Flame-backed Woodpecker | IV                 | LC                             |
| 87      | Rostratula benghalensis   | Greater Painted-snipe           | IV                 | LC                             |
| 88      | Dicrurus paradiseus       | Greater Racket-tailed Drongo    | IV                 | LC                             |
| 89      | Merops orientalis         | Green Bee-eater                 | IV                 | LC                             |
| 90      | Seicercus trochiloides    | Greenish Leaf Warbler           | IV                 | LC                             |
| 91      | Ardea cinerea             | Grey Heron                      | IV                 | LC                             |
| 92      | Gallus sonneratii         | Grey Junglefowl                 | IV                 | LC                             |
| 93      | Caprimulgus indicus       | Grey Nightjar                   | IV                 | LC                             |
| 94      | Motacilla cinerea         | Grey Wagtail                    | IV                 | LC                             |
| 95      | Cacomantis passerinus     | Grey-bellied Cuckoo             | IV                 | LC                             |
| 96      | Prinia hodgsonii          | Grey-breasted Prinia            | IV                 | LC                             |
| 97      | Icthyophaga ichthyaetus   | Grey-headed Fish Eagle          | I                  | NT                             |
| 98      | Dicrurus hottentottus     | Hair-crested Drongo             | IV                 | LC                             |
| 99      | Hemicircus canente        | Heart-spotted Woodpecker        | IV                 | LC                             |
| 100     | Gracula religiosa         | Hill Myna                       | IV                 | LC                             |
| 101     | Passer domesticus         | House Sparrow                   | IV                 | LC                             |
| 102     | Turdus simillimus         | Indian Blackbird                | IV                 | LC                             |
| 103     | Phalacrocorax fuscicollis | Indian Cormorant                | IV                 | LC                             |
| 104     | Cuculus micropterus       | Indian Cuckoo                   | IV                 | LC                             |
| 105     | Oriolus kundoo            | Indian Golden Oriole            | IV                 | LC                             |

| Sr. No. | Scientific Name          | Common Name                    | IWPA 1972 Schedule | IUCN Status (v. 2020-2) |
|---------|--------------------------|--------------------------------|--------------------|-------------------------|
| 106     | Ocyceros birostris       | Indian Grey Hornbill           | 1                  | LC                      |
| 107     | Terpsiphone paradisi     | Indian Paradise-flycatcher     | IV                 | LC                      |
| 108     | Pavo cristatus           | Indian Peafowl                 | I                  | LC                      |
| 109     | Pitta brachyura          | Indian Pitta                   | IV                 | LC                      |
| 110     | Ardeola grayii           | Indian Pond Heron              | IV                 | LC                      |
| 111     | Saxicoloides fulicatus   | Indian Robin                   | IV                 | LC                      |
| 112     | Coracias benghalensis    | Indian Roller                  | IV                 | LC                      |
| 113     | Pomatorhinus horsfieldii | Indian Scimitar Babbler        | IV                 | LC                      |
| 114     | Euodice malabarica       | Indian Silverbill              | IV                 | LC                      |
| 115     | Aerodramus unicolor      | Indian Swiftlet                | IV                 | LC                      |
| 116     | Ardea intermedia         | Intermediate Egret             | IV                 | LC                      |
| 117     | Chloropsis jerdoni       | Jerdon's Leafbird              | IV                 | LC                      |
| 118     | Turdoides striata        | Jungle Babbler                 | IV                 | LC                      |
| 119     | Glaucidium radiatum      | Jungle Owlet                   | IV                 | LC                      |
| 120     | Prinia sylvatica         | Jungle Prinia                  | IV                 | LC                      |
| 121     | Coracina javensis        | Large Cuckooshrike             | IV                 | LC                      |
| 122     | Tephrodornis virgatus    | Large Woodshrike               | IV                 | LC                      |
| 123     | Corvus macrorhynchos     | Large-billed Crow              | IV                 | LC                      |
| 124     | Leptoptilos javanicus    | Lesser Adjutant                | IV                 | VU                      |
| 125     | Dendrocygna javanica     | Lesser Whistling Duck          | IV                 | LC                      |
| 126     | Picus chlorolophus       | Lesser Yellow-naped Woodpecker | IV                 | LC                      |
| 127     | Microcarbo niger         | Little Cormorant               | IV                 | LC                      |

| Sr. No. | Scientific Name          | Common Name              | IWPA 1972 Schedule | IUCN Status (v. 2020-2) |
|---------|--------------------------|--------------------------|--------------------|-------------------------|
| 128     | Egretta garzetta         | Little Egret             | IV                 | LC                      |
| 129     | Tachybaptus ruficollis   | Little Grebe             | IV                 | LC                      |
| 130     | Arachnothera longirostra | Little Spiderhunter      | IV                 | LC                      |
| 131     | Apus affinis             | Little Swift             | IV                 | LC                      |
| 132     | Lanius schach            | Long-tailed Shrike       | NL                 | LC                      |
| 133     | Psilopogon malabaricus   | Malabar Barbet           | IV                 | LC                      |
| 134     | Ocyceros griseus         | Malabar Grey Hornbill    | IV                 | LC                      |
| 135     | Galerida malabarica      | Malabar Lark             | IV                 | LC                      |
| 136     | Psittacula columboides   | Malabar Parakeet         | IV                 | LC                      |
| 137     | Anthracoceros coronatus  | Malabar Pied Hornbill    | IV                 | NT                      |
| 138     | Harpactes fasciatus      | Malabar Trogon           | IV                 | LC                      |
| 139     | Myophonus horsfieldii    | Malabar Whistling Thrush | IV                 | LC                      |
| 140     | Nisaetus nipalensis      | Mountain Hawk Eagle      | I                  | LC                      |
| 141     | Ducula badia             | Mountain Imperial Pigeon | IV                 | LC                      |
| 142     | Delichon urbicum         | Northern House Martin    | IV                 | LC                      |
| 143     | Jynx torquilla           | Northern Wryneck         | IV                 | LC                      |
| 144     | Anthus hodgsoni          | Olive-backed Pipit       | IV                 | LC                      |
| 145     | Geokichla citrina        | Orange-headed Thrush     | IV                 | LC                      |
| 146     | Anhinga melanogaster     | Oriental Darter          | IV                 | NT                      |
| 147     | Pernis ptilorhynchus     | Oriental Honey Buzzard   | I                  | LC                      |
| 148     | Copsychus saularis       | Oriental Magpie Robin    | IV                 | LC                      |
| 149     | Alauda gulgula           | Oriental Sky Lark        | IV                 | LC                      |

| Sr. No. | Scientific Name         | Common Name              | IWPA 1972 Schedule | IUCN Status (v. 2020-2) |
|---------|-------------------------|--------------------------|--------------------|-------------------------|
| 150     | Streptopelia orientalis | Oriental Turtle Dove     | IV                 | LC                      |
| 151     | Zosterops palpebrosus   | Oriental White-eye       | NL                 | LC                      |
| 152     | Anthus rufulus          | Paddyfield Pipit         | IV                 | LC                      |
| 153     | Dicaeum erythrorhynchos | Pale-billed Flowerpecker | IV                 | LC                      |
| 154     | Falco peregrinus        | Peregrine Falcon         | IV                 | LC                      |
| 155     | Saxicola caprata        | Pied Bush Chat           | IV                 | LC                      |
| 156     | Ceryle rudis            | Pied Kingfisher          | IV                 | LC                      |
| 157     | Dicaeum concolor        | Plain Flowerpecker       | IV                 | LC                      |
| 158     | Psittacula cyanocephala | Plum-headed Parakeet     | IV                 | LC                      |
| 159     | Treron pompadora        | Pompadour Green Pigeon   | IV                 | LC                      |
| 160     | Pellorneum ruficeps     | Puff-throated Babbler    | IV                 | LC                      |
| 161     | Ardea purpurea          | Purple Heron             | IV                 | LC                      |
| 162     | Cinnyris asiaticus      | Purple Sunbird           | IV                 | LC                      |
| 163     | Leptocoma zeylonica     | Purple-rumped Sunbird    | IV                 | LC                      |
| 164     | Galloperdix spadicea    | Red Spurfowl             | IV                 | LC                      |
| 165     | Ficedula parva          | Red-breasted Flycatcher  | IV                 | LC                      |
| 166     | Cecropis daurica        | Red-rumped Swallow       | IV                 | LC                      |
| 167     | Pycnonotus cafer        | Red-vented Bulbul        | IV                 | LC                      |
| 168     | Vanellus indicus        | Red-wattled Lapwing      | IV                 | LC                      |
| 169     | Pycnonotus jocosus      | Red-whiskered Bulbul     | IV                 | LC                      |
| 170     | Sterna aurantia         | River Tern               | IV                 | NT                      |
| 171     | Columba livia           | Rock Dove                | IV                 | LC                      |

| Sr. No. | Scientific Name          | Common Name                  | IWPA 1972 Schedule | IUCN Status (v. 2020-2) |
|---------|--------------------------|------------------------------|--------------------|-------------------------|
| 172     | Psittacula krameri       | Rose-ringed Parakeet         | IV                 | LC                      |
| 173     | Dendrocitta vagabunda    | Rufous Treepie               | IV                 | LC                      |
| 174     | Micropternus brachyurus  | Rufous Woodpecker            | IV                 | LC                      |
| 175     | Lonchura punctulata      | Scaly-breasted Munia         | IV                 | LC                      |
| 176     | Pericrocotus flammeus    | Scarlet Minivet              | IV                 | LC                      |
| 177     | Accipiter badius         | Shikra                       | 1                  | LC                      |
| 178     | Pericrocotus cinnamomeus | Small Minivet                | IV                 | LC                      |
| 179     | Picumnus innominatus     | Speckled Piculet             | IV                 | LC                      |
| 180     | Bubo nipalensis          | Spot-bellied Eagle Owl       | IV                 | LC                      |
| 181     | Athene brama             | Spotted Owlet                | IV                 | LC                      |
| 182     | Streptopelia chinensis   | Spotted-necked Dove          | IV                 | LC                      |
| 183     | Pelargopsis capensis     | Stork-billed Kingfisher      | IV                 | LC                      |
| 184     | Butorides striata        | Striated Heron               | IV                 | LC                      |
| 185     | Aquila rapax             | Tawny Eagle                  | 1                  | VU                      |
| 186     | Dumetia hyperythra       | Tawny-bellied Babbler        | IV                 | LC                      |
| 187     | Dicaeum agile            | Thick-billed Flowerpecker    | IV                 | LC                      |
| 188     | Cyornis tickelliae       | Tickell's Blue Flycatcher    | IV                 | LC                      |
| 189     | Sitta frontalis          | Velvet-fronted Nuthatch      | IV                 | LC                      |
| 190     | Loriculus vernalis       | Vernal Hanging Parrot        | IV                 | LC                      |
| 191     | Seicercus occipitalis    | Western Crowned Leaf Warbler | IV                 | LC                      |
| 192     | Circus aeruginosus       | Western Marsh Harrier        | 1                  | LC                      |
| 193     | Dicrurus caerulescens    | White-bellied Drongo         | IV                 | LC                      |

| Sr. No. | Scientific Name            | Common Name                    | IWPA 1972 Schedule | <b>IUCN Status (v. 2020-2)</b> |  |
|---------|----------------------------|--------------------------------|--------------------|--------------------------------|--|
| 194     | Dryocopus javensis         | White-bellied Woodpecker       | IV                 | LC                             |  |
| 195     | Amaurornis phoenicurus     | White-breasted Waterhen        | IV                 | LC                             |  |
| 196     | Pycnonotus luteolus        | White-browed Bulbul            | IV                 | LC                             |  |
| 197     | Rhipidura aureola          | White-browed Fantail           | IV                 | LC                             |  |
| 198     | Motacilla maderaspatensis  | White-browed Wagtail           | IV                 | LC                             |  |
| 199     | Psilopogon viridis Endemic | White-cheeked Barbet           | NL                 | LC                             |  |
| 200     | Lonchura striata           | White-rumped Munia             | IV                 | LC                             |  |
| 201     | Kittacincla malabarica     | White-rumped Shama             | IV                 | LC                             |  |
| 202     | Zoonavena sylvatica        | White-rumped Spinetailed Swift | IV                 | LC                             |  |
| 203     | Gyps bengalensis           | White-rumped Vulture           | 1                  | CR                             |  |
| 204     | Rhipidura albicollis       | White-throated Fantail         | IV                 | LC                             |  |
| 205     | Halcyon smyrnensis         | White-throated Kingfisher      | IV                 | LC                             |  |
| 206     | Hirundo smithii            | Wire-tailed Swallow            | NL                 | LC                             |  |
| 207     | Ciconia episcopus          | Asian Woollyneck               | IV                 | VU                             |  |
| 208     | Acritillas indica          | Yellow-browed Bulbul           | IV                 | LC                             |  |
| 209     | Abrornis inornatus         | Yellow-browed Warbler          | IV                 | LC                             |  |
| 210     | Dendrocopos mahrattensis   | Yellow-crowned Woodpecker      | IV                 | LC                             |  |
| 211     | Treron phoenicopterus      | Yellow-legged Green Pigeon     | IV                 | LC                             |  |
| 212     | Vanellus malabaricus       | Yellow-wattled Lapwing         | IV                 | LC                             |  |
| 213     | Cisticola juncidis         | Zitting Cisticola              | IV                 | LC                             |  |
| 101104  | LOL IO NET N. T.           |                                |                    |                                |  |

IUCN Status: LC- Least Concern, NT- Near Threatened, VU- Vulnerable

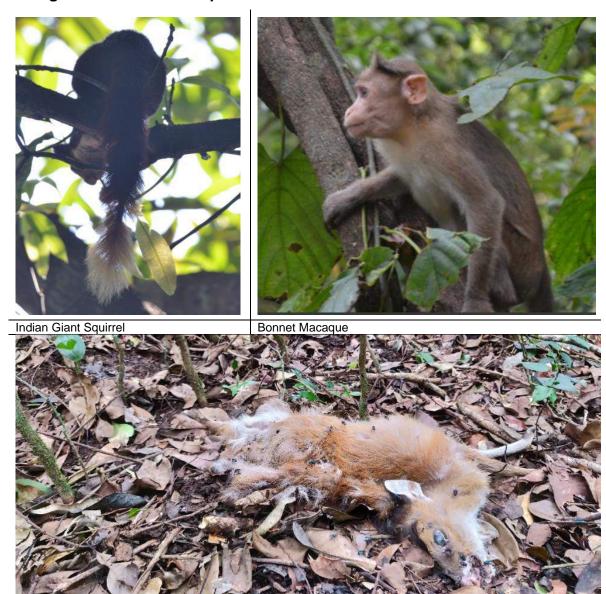
#### **Endemism**

A total of sixteen (16) species are endemic to Western Ghats. Details of endemic species recorded and reported from the study are provided below in *Table 3.19*.

Table 3.19 Endemic Avian Species of the Study Area

| S.No. | Scientific name              | Common name                 | Recorded during Primary survey | Schedule of<br>WPA, 1972 | IUCN status<br>(v2018-1) |  |
|-------|------------------------------|-----------------------------|--------------------------------|--------------------------|--------------------------|--|
| 1.    | Columba eiphinstonii         | Nilgiri wood pegion         | No                             | IV                       | VU                       |  |
| 2.    | Psittacula columboides       | Blue winged Parakeet        | No                             | IV                       | LC                       |  |
| 3.    | Collocalia unicolor          | Indian edible nest swiftlet | No                             | 1                        | LC                       |  |
| 4.    | Harpactes fasciatus          | Malabar Trogon              | Yes                            | IV                       | LC                       |  |
| 5.    | Ocyceros griseus             | Malabar grey Hornbill       | Yes                            | IV                       | LC                       |  |
| 6.    | Anlhracoceros coronatus      | Malabar Pied Hornbill       | Yes                            | 1                        | NT                       |  |
| 7.    | A1egalaima virdis            | White checked Barbet        | Yes                            | IV                       | LC                       |  |
| 8.    | Tephrodornis sylvicola       | Malabar woodshrike          | Yes                            | IV                       | LC                       |  |
| 9.    | Pycnonotu.· priocephalu<br>s | Grey-headed Bulbul          | No                             | IV                       | NT                       |  |
| 10.   | lole indica                  | Yellow browed bulbul        | Yes                            | IV                       | LC                       |  |
| 11.   | Pycnonotus gularis           | flame-throated bulbul       | Yes                            | IV                       | LC                       |  |
| 12.   | Garrulax delesserti          | Wynaad<br>Laughingthrush    | No                             | IV                       | LC                       |  |
| 13.   | RhopocicIrla alriceps        | Dark Fronted babbler        | No                             | IV                       | LC                       |  |
| 14.   | Turdoides subrufus           | Indian rufous babbler       | No                             | IV                       | LC                       |  |
| 15.   | Leptocoma minima             | Crimson Backed sunbird      | Yes                            | IV                       | LC                       |  |
| 16.   | Batrachostomus<br>moniliger  | Sri Lanka frogmouth         | Yes                            | I                        | LC                       |  |

#### 3.9.3 Mammals


### Species Richness

A total of 36 species of mammals are reported in the Anshi Dandeli Tiger Conservation Plan for the larger landscape. Out of which 29 species of mammals are reported from the Dandeli Wildlife Sanctuary. The transmission line section falling within the Karnataka section of the study area may support 20 species of this list as detailed in the *Table 3.20*. The species recorded through direct sighting include Gaur (*Bos gaurus*), Grey Mongoose (*Herpestes edwardsii*), Bonnet Macaque (*Macaca radiate*), Indian Giant Squirrel (*Ratifa indica*), Hanuman Langur (*Semnopithecus entellus*). While the signs such as pellet of Sambar (*Rusa unicolor*), quills of Indian Porcupine (*Hystrix indica*), and resting places of Wild Pig (*Sus scrofa*) were also recorded during transects. Species such as Malabar Giant Squirrel (*Ratifa indica*) and Bonnet Macaque (*Macaca radiate*) were the species sighted most frequently across the study area.

Table 3.20 Details of Sightings in Transmission Line Corridor

| S.No. | Common Name                  | Scientific Name            | IUCN | IWPA,1972 | Observed<br>/reported<br>from the<br>Study Area |
|-------|------------------------------|----------------------------|------|-----------|-------------------------------------------------|
| 1     | Bonnet Macaque               | Macaca radiata             | VU   | II        | Υ                                               |
| 2     | Hanuman Langur               | Semnopithecus entellus     | LC   | II        | Υ                                               |
| 3     | Grey Slender Loris           | Loris lydekkerianus        | EN   | I         | N-Less likely                                   |
| 4     | Tiger                        | Panthera tigris            | EN   | I         | Y-Occasional                                    |
| 5     | Leopard                      | Panthera pardus            | VU   | I         | Y-Occasional                                    |
| 6     | Jungle Cat                   | Felis chaus                | LC   | II        | Υ                                               |
| 7     | Small Indian Civet           | Viverricula indica         | LC   | II        | Υ                                               |
| 8     | Common Palm Civet            | Paradoxurus hermaphroditus | LC   | II        | Υ                                               |
| 9     | Common Mongoose              | Herpestes edwardsi         | LC   | IV        | Υ                                               |
| 10    | Striped necked Mongoose      | Herpestes vitticollis      | LC   | IV        | Υ                                               |
| 11    | Striped Hyena                | Hyaena hyaena              | NT   | III       | N-Less likely                                   |
| 12    | Jackal                       | Canis aureus               | LC   | II        | Υ                                               |
| 13    | Dhole                        | Cuon alpinus               | EN   | II        | N-Less likely                                   |
| 14    | Sloth Bear                   | Melursus ursinus           | VU   | 1         | Y-Occasional                                    |
| 15    | Common Otter                 | Lutra lutra                | NT   | I         | N-Less likely                                   |
| 16    | Indian Elephant              | Elephas maximus indicus    | EN   | 1         | N-Less likely                                   |
| 17    | Gaur                         | Bos gaurus                 | VU   | 1         | Υ                                               |
| 18    | Sambar                       | Rusa unicolor              | VU   | III       | Υ                                               |
| 19    | Chital                       | Axis axis                  | LC   | III       | Υ                                               |
| 20    | Muntjac                      | Muntiacus muntjak          | LC   | III       | Υ                                               |
| 21    | Indian spotted chevrotain    | Moschiola indica           | LC   | 1         | Y-Occasional                                    |
| 22    | Wild Pig                     | Sus scrofa                 | LC   | III       | Υ                                               |
| 23    | Indian Hare                  | Lepus nigricollis          | LC   | IV        | Υ                                               |
| 24    | Indian crested Porcupine     | Hystrix indica             | LC   | IV        | Υ                                               |
| 25    | Indian giant squirrel        | Ratufa indica              | LC   | 1         | Υ                                               |
| 26    | Indian giant flying squirrel | Petaurista philippensis    | LC   | II        | Υ                                               |
| 27    | Indian Flying Fox            | Pteropus medius            | LC   | V         | Υ                                               |
| 28    | Short nosed Fruit Bat        | Cynopterus brachyotis      | LC   | V         | Υ                                               |
| 29    | Indian Pangolin              | Manis crassicaudata        | EN   | 1         | N-Less likely                                   |

Figure 3.10 Mammal Species recorded in Transmission Line Corridor



Carcass of Indian Chevrotain (Fawn)

### Threatened Species

Out of 29 species listed from the Dandeli Wildlife Sanctuary 10 species are protected under Schedule I of Wildlife (Protection) Act 1972 and are of conservation significance. There is an occasional occurance of the species such as Tiger (*Panthera tigris*) IUCN EN listed and Leopard (*Panthera pardus*) IUCN VU listed species in the study area. As the entire landscape has a contiguous forest which becomes the part of their home range an the study area is a small part of the larger landscape. Tiger and Leopard are the top predators of the Study area. Based on the 2020 Tiger Census, Anshi Dandeli Tiger Reserve has 4 Tigers as observed from camera trapping results.

Gaur (Bos gaurus) IUCN VU, and Sloth Bear (Melursus ursinus) IUCN VU, Mouse Deer (Moschiola indica) are occasional visitor to the study area. However, species such as Indian Elephant (Elephas maximus indicus) EN, Common Otter (Lutra lutra) NT and Grey Slender Loris(Loris lydekkerianus) IUCN EN which are reported from the Dandeli Wildlife Sanctuary are less likely to be present in the

Study Area; based on the presence of indirect evidences and consultation with the Forest Guards and local villagers who collect the fuel wood from these forest areas.

#### 4. IMPACT ASSESSMENT

## 4.1 Impacts on Biodiversity

The impacts on biodiversity of the proposed transmission line corridor passing through Dandeli Wildlife Sanctuary/Kali Tiger Reserve has been categorized into the following categories

- Impacts during Construction Phase
- Impacts during Operation Phase

Unlike other linear projects such as road infrastructure, rail infrastructure, pipeline laying, canal laying etc. the impacts of biodiversity are much lower in scale. Most of the impacts are confined to the activities such as tower foundation tower erection and stringing. The ground disturbances if any, are likely to be regenerated on the ground. The operation phase will have limited impacts *w.r.t.* vegetation clearance below the line is to maintain the desired ground clearance as per the established electrical safety norms.

## 4.2 Impacts during Construction Stage

Following impacts are envisaged during the construction stage on the biodiversity of the Transmission Line route

- Impacts during route survey and planning
- Impacts during vegetation clearance on approach roads
- Impacts during vegetation clearance on Tower locations
- Impacts during man and material transportation on each of the tower location
- Impacts during storage of construction material
- Impacts during construction activities
- Impacts during stringing of conductor

### 4.3 Impacts during Operation Stage

Following impacts are envisaged during the Operation Phase

- Mortality due to Electrocution and Collision of Avifaunal species
- Mortality due to Electrocution and Collision of arboreal mammalian species

## 4.4 Impact Assessment Criteria

ERM Impact Assessment Standards defines the sensitivity of ecological receptors by determining the significance of effects on species and habitats separately. The significance tables for species and habitats are given in *Table 4.1* and *Table 4.2*.

\_

Table 4.1 Habitat Impact Assessment Criteria

|            | Habitat Sensitivity/ Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    | Magnitude of Ef                                                                                        | fect on Baseline Habitats                                                                          |                                                                                                                                 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Negligible                                         | Small                                                                                                  | Medium                                                                                             | Large                                                                                                                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The effect is within the normal range of variation | Affects only a small area of habitat, such that there is no loss of viability/ function of the habitat | Affects part of the habitat but does not threaten the long-term viability/ function of the habitat | Affects the entire habitat, or a significant portion of it, and the long-term viability/ function of the habitat is threatened. |
| Negligible | Habitats with negligible interest for biodiversity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Not significant                                    | Not significant                                                                                        | Not significant                                                                                    | Not significant                                                                                                                 |
| Low        | Habitats with no, or only a local designation/recognition, habitats of significance for species listed as of Least Concern (LC) on IUCN Red List of Threatened Species, habitats which are common and widespread within the region, or with low conservation interest based on expert opinion.                                                                                                                                                                                                                                     | Not significant                                    | Not significant                                                                                        | Minor                                                                                              | Moderate                                                                                                                        |
| Medium     | Habitats within nationally designated or recognised areas, habitats of significant importance to globally Vulnerable (VU), Near Threatened (NT), or Data Deficient (DD) species, habitats of significant importance for nationally restricted range species, habitats supporting nationally significant concentrations of migratory species and / or congregation species, and low value habitats used by species of medium value.                                                                                                 | Not significant                                    | Minor                                                                                                  | Moderate                                                                                           | Major                                                                                                                           |
| High       | Habitats within internationally designated or recognised areas; habitats of significant importance to globally Critically Endangered (CR) or Endangered (EN) species, habitats of significant importance to endemic and/or globally restricted-range species, habitats supporting globally significant concentrations of migratory species and / or congregation species, highly threatened and/or unique ecosystems, areas associated with key evolutionary species, and low or medium value habitats used by high value species. | Not significant                                    | Moderate                                                                                               | Major                                                                                              | Critical                                                                                                                        |

## Table 4.2 Species impact assessment criteria

|            | Habitat Sensitivity/ Value                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  | Magnitude of I                                                                                               | Effect on Baseline Species                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                           |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Negligible                                                                       | Small                                                                                                        | Medium                                                                                                                                                                                                                            | Large                                                                                                                                                                                                                                                                                                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Effect is within the normal range of variation for the population of the species | Effect does not cause a substantial change in the population of the species or other species dependent on it | Effect causes a substantial change in abundance and/or reduction in the distribution of a population over one, or more generations, but does not threatened the long term viability/ function of that population dependent on it. | Affects entire population, or a significant part of it causing a substantial decline in abundance and/or change in and recovery of the population (or another dependent on it) is not possible either at all, or within several generations due to natural recruitment (reproduction, immigration from unaffected areas). |
| Negligible | Species with no specific value or importance attached to them.                                                                                                                                                                                                                                                                                                                                                                                                      | Not significant                                                                  | Not significant                                                                                              | Not significant                                                                                                                                                                                                                   | Not significant                                                                                                                                                                                                                                                                                                           |
| Low        | Species and sub-species of Least Concern (LC) on the IUCN Red List, or not meeting criteria for medium or high value.                                                                                                                                                                                                                                                                                                                                               | Not significant                                                                  | Not significant                                                                                              | Minor                                                                                                                                                                                                                             | Moderate                                                                                                                                                                                                                                                                                                                  |
| Medium     | Species on IUCN Red List as Vulnerable (VU), Near Threatened (NT), or Data Deficient (DD), species protected under national legislation, nationally restricted range species, nationally important numbers of migratory, or congregatory species, species not meeting criteria for high value, and species vital to the survival of a medium value species.                                                                                                         | Not significant                                                                  | Minor                                                                                                        | Moderate                                                                                                                                                                                                                          | Major                                                                                                                                                                                                                                                                                                                     |
| High       | Species on IUCN Red List as Critically Endangered (CR), or Endangered (EN). Species having a globally restricted range (ie plants endemic to a site, or found globally at fewer than 10 sites, fauna having a distribution range (or globally breeding range for bird species) less than 50,000 km2), internationally important numbers of migratory, or congregatory species, key evolutionary species, and species vital to the survival of a high value species. | Not significant                                                                  | Moderate                                                                                                     | Major                                                                                                                                                                                                                             | Critical                                                                                                                                                                                                                                                                                                                  |

www.erm.com Version: 1.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

## 4.5 Impact Assessment

## 4.5.1 Impacts during Construction Phase

#### Context

The context for impacts of various activities are provided as per Table 4.3.

Table 4.3 Context of various impacts during the construction phase

| Impacts during the construction phase                                        | Context                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Impacts during Route Survey and Planning                                     | Route survey and planning involves surveying the transmission line route and identifying transmission tower location. The survey identifies the probable approach route to tower locations, feasibility for tower erection, soil testing etc. This will involve vegetation clearance en route and at tower locations                                                                                                                                                                                                                                                                                                         |
| Impacts during vegetation clearance on approach roads                        | Approach roads will be required to reach at the tower locations, most of the construction material will be carried on foot using existing trails. Existing Forest roads will be utilized to the extent possible in case it is required for movement of construction material in bulk.                                                                                                                                                                                                                                                                                                                                        |
| Impacts during vegetation clearance at Tower locations                       | The tower erection area will need to be cleared for construction activities. An area of 10 m radius wihtin the RoW area will be required to be cleared at each of the tower locations and leveled.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Impacts during man and material transportation on each of the tower location | The transportation of construction workers and construction material at the tower location will be required during the construction phase. While workers transportation facility will be provided till the nearest road end, material transportation will be made through tractor and trolley till the place it is feasible with a minimum requirement of vegetation clearance and leveling, it will be further transported on head load by workers to the construction site. Locations which involve larger vegetation clearance, alternate arrangements such as material transportation through ropeways will be explored. |
| Impacts during storage of construction material                              | The civil work for foundation and erection of each transmission tower will require the storage of tower components and foundation materials at tower location. No construction material storage yard will be located within the wild life area. Temporary storage at the tower location during the erection however, cannot be ruled out.                                                                                                                                                                                                                                                                                    |
| Impacts during construction activities                                       | Foundation and Erection of transmission tower will involve deployment of manpower, excavation of foundation, civil works. This will create a temporary habitat disturbance.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Impacts during stringing of conductor                                        | Once the transmission tower erection is completed, conductor stringing will be undertaken. During the stringing, all tall trees and branches will be loped and pruned where minimum ground clearance to conductor will be maintained.                                                                                                                                                                                                                                                                                                                                                                                        |

## Receptors

The receptors in the transmission line route are 30 species of floral species, 21 species of amphibians, 60 species of reptiles, 44 species of avifauna and 29 species of mammals which are observed during the study. The species of the conservational significance include floral species two (02) species are listed as threatened as per IUCN Red list v1.2018, ten (10) species of medicinal importance having commercial value and five (05) endemic species from the Western Ghats region.

Page 74

The tree enumeration survey was undertaken for the transmission line route RoW of 46 m wildlife area in Dandeli Wildlife Sanctuary. A tree enumeration list is presented in *Table 4.4*.

www.erm.com Version: 1.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL) 21 December 2020

Table 4.4 Tree Enumeration List from the Transmission Line route

| S.N. | Scientific Name       | Family     | IUCN Status | Local Name      | (0-30) cm | (31-60) cm | (61-90) cm | (91-120) cm | (121-150)cm | (>150) cm |
|------|-----------------------|------------|-------------|-----------------|-----------|------------|------------|-------------|-------------|-----------|
| 1    | Ficus racemosa        | Moraceae   |             | Aala            | 0         | 0          | 2          | 0           | 0           | 0         |
| 2    | Acacia auriculiformis | Fabaceae   |             | Acasia          | 20        | 139        | 69         | 10          | 1           | 0         |
| 3    | Misc. Species         |            |             | Alm             | 0         | 0          | 0          | 1           | 1           | 2         |
| 4    | Other                 |            |             | Amberi          | 29        | 181        | 65         | 38          | 21          | 11        |
| 5    | Other                 |            |             | Andmurugal<br>u | 0         | 1          | 0          | 0           | 0           | 0         |
| 6    | Misc. Species         |            |             | Anjan           | 0         | 7          | 11         | 15          | 7           | 2         |
| 7    | Misc. Species         |            |             | Anjani          | 53        | 927        | 509        | 274         | 124         | 64        |
| 8    | Caryota urens         | Arecaceae  |             | Bagani          | 0         | 0          | 0          | 1           | 0           | 0         |
| 9    | Mimusops elengi       | Sapotaceae |             | Bakula          | 3         | 20         | 13         | 9           | 4           | 1         |
| 10   | Misc. Species         |            |             | Bananta         | 0         | 0          | 0          | 1           | 0           | 2         |
| 11   | Misc. Species         |            |             | Bedas           | 2         | 53         | 27         | 10          | 4           | 3         |
| 12   | Misc. Species         |            |             | Bedri           | 0         | 0          | 0          | 0           | 0           | 1         |
| 13   | Misc. Species         |            |             | Beer            | 2         | 26         | 0          | 0           | 0           | 0         |
| 14   | Other                 |            |             | Belesarale      | 10        | 54         | 33         | 27          | 14          | 9         |
| 15   | Other                 |            |             | Bilibasari      | 0         | 1          | 1          | 0           | 1           | 3         |
| 16   | Misc. Species         |            |             | Chandado        | 7         | 153        | 53         | 14          | 3           | 1         |
| 17   | Misc. Species         |            |             | Char            | 0         | 0          | 3          | 1           | 0           | 0         |
| 18   | Cinnamomum zeylanicum | Lauraceae  |             | Dalchini        | 24        | 312        | 86         | 25          | 8           | 0         |

#### **BIA AND BMP FOR 400 KV TRANSMISSION LINE CORRIDOR** PASSING THROUGH PROTECTED AREAS OF KARNATAKA STATE Final Report

| S.N. | Scientific Name   | Family    | IUCN Status | Local Name | (0-30) cm | (31-60) cm | (61-90) cm | (91-120) cm | (121-150)cm | (>150) cm |
|------|-------------------|-----------|-------------|------------|-----------|------------|------------|-------------|-------------|-----------|
| 19   | Grewia tiliifolia | Malvaceae |             | Daman      | 1         | 27         | 13         | 2           | 0           | 0         |
| 20   | Misc. Species     |           |             | Denda      | 1         | 2          | 2          | 0           | 0           | 0         |
| 21   | Other             |           |             | Dhardar    | 7         | 28         | 9          | 4           | 7           | 2         |
| 22   | Other             |           |             | Durnata    | 0         | 9          | 1          | 0           | 0           | 1         |
| 23   | Other             |           |             | Ebonia     | 0         | 27         | 4          | 2           | 0           | 2         |
| 24   | Other             |           |             | Elm        | 0         | 0          | 0          | 3           | 0           | 0         |
| 25   | Other             |           |             | Gorabale   | 2         | 19         | 4          | 0           | 1           | 0         |
| 26   | Misc. Species     |           |             | Gulmaavu   | 0         | 67         | 71         | 123         | 52          | 27        |
| 27   | Other             |           |             | Haiga      | 0         | 38         | 45         | 12          | 9           | 3         |
| 28   | Other             |           |             | Holagera   | 4         | 89         | 53         | 36          | 15          | 20        |
| 29   | Pongamia pinnata  | Fabaceae  |             | Honge      | 0         | 0          | 0          | 1           | 0           | 1         |
| 30   | Other             |           |             | Jangali    | 289       | 1878       | 484        | 199         | 74          | 54        |
| 31   | Other             |           |             | Kade       | 0         | 1          | 0          | 0           | 0           | 0         |
| 32   | Other             |           |             | Kakd       | 0         | 3          | 0          | 0           | 0           | 0         |
| 33   | Cassia fistula    | Fabaceae  |             | Kakke      | 0         | 1          | 0          | 0           | 0           | 0         |
| 34   | Other             |           |             | Kalagonda  | 62        | 554        | 210        | 59          | 18          | 17        |
| 35   | Other             |           |             | Kalam      | 0         | 2          | 2          | 3           | 0           | 0         |
| 36   | Other             |           |             | Karambal   | 5         | 116        | 104        | 22          | 7           | 8         |
| 37   | Other             |           |             | Kare       | 19        | 106        | 21         | 5           | 3           | 4         |
| 38   | Murraya koenigii  | Rutaceae  |             | Karibevu   | 1         | 6          | 0          | 0           | 0           | 0         |

## BIA AND BMP FOR 400 KV TRANSMISSION LINE CORRIDOR PASSING THROUGH PROTECTED AREAS OF KARNATAKA STATE Final Report

| S.N. | Scientific Name          | Family         | IUCN Status | Local Name       | (0-30) cm | (31-60) cm | (61-90) cm | (91-120) cm | (121-150)cm | (>150) cm |
|------|--------------------------|----------------|-------------|------------------|-----------|------------|------------|-------------|-------------|-----------|
| 39   | Murraya koenigii         | Rutaceae       |             | Karibevu         | 1         | 6          | 0          | 0           | 0           | 0         |
| 40   | Other                    |                |             | Karimara         | 8         | 118        | 55         | 8           | 5           | 0         |
| 41   | Other                    |                |             | Kat              | 0         | 1          | 1          | 3           | 3           | 2         |
| 42   | Other                    |                |             | Katekavach       | 0         | 59         | 16         | 3           | 0           | 0         |
| 43   | Mallotus philippinensis  | Euphorbiaceae  |             | Keshari          | 0         | 2          | 1          | 1           | 0           | 0         |
| 44   | Terminalia paniculata    | Combretaceae   |             | Kundal           | 4         | 280        | 260        | 68          | 18          | 8         |
| 45   | Garcinia indica          | Clusiaceae     | Vulnerable  | Kokam            | 2         | 35         | 7          | 0           | 0           | 0         |
| 46   | Other                    |                |             | Kundo            | 0         | 2          | 0          | 0           | 0           | 0         |
| 47   | Other                    |                |             | Kunjan           | 4         | 17         | 2          | 0           | 0           | 0         |
| 48   | Other                    |                |             | Kusum            | 0         | 0          | 1          | 0           | 0           | 0         |
| 49   | Other                    |                |             | Lavaki           | 21        | 252        | 146        | 92          | 31          | 20        |
| 50   | Terminalia tomentosa     | Combretaceae   |             | Matti            | 11        | 286        | 302        | 141         | 50          | 23        |
| 51   | Mangifera indica         | Anacardiaceae  |             | Mavu             | 3         | 30         | 19         | 10          | 3           | 17        |
| 52   | Other                    |                |             | Masse            | 1         | 33         | 9          | 1           | 1           | 1         |
| 53   | Other                    |                |             | Nagarkoda        | 9         | 97         | 8          | 4           | 0           | 0         |
| 54   | Lagerstroemia lanceolata | Lythraceae     |             | Nandi            | 5         | 105        | 89         | 51          | 16          | 30        |
| 55   | Other                    |                |             | Navladi          | 0         | 0          | 0          | 1           | 0           | 2         |
| 56   | Emblica officinalis      | Phyllanthaceae |             | Nelli            | 2         | 24         | 3          | 0           | 0           | 0         |
| 57   | Syzygium cumini          | Myrtaceae      |             | Nerale           | 10        | 235        | 249        | 152         | 60          | 41        |
| 58   | Other                    |                |             | Nagarkudku<br>da | 1         | 0          | 0          | 0           | 0           | 0         |

#### **BIA AND BMP FOR 400 KV TRANSMISSION LINE CORRIDOR** PASSING THROUGH PROTECTED AREAS OF KARNATAKA STATE Final Report

| S.N. | Scientific Name        | Family       | IUCN Status | Local Name                    | (0-30) cm | (31-60) cm | (61-90) cm | (91-120) cm | (121-150)cm | (>150) cr |
|------|------------------------|--------------|-------------|-------------------------------|-----------|------------|------------|-------------|-------------|-----------|
| 59   | Other                  |              |             | Nurkau                        | 0         | 15         | 2          | 0           | 0           | 0         |
| 60   | Other                  |              |             | Olamb                         | 0         | 1          | 0          | 1           | 0           | 0         |
| 61   | Other                  |              |             | Pansi                         | 0         | 1          | 1          | 4           | 1           | 0         |
| 62   | Myristica magnifica    | Myristica    | Endangered  | Rampatri                      | 1         | 59         | 31         | 29          | 11          | 10        |
| 63   | Other                  |              |             | Ramta                         | 1         | 8          | 0          | 0           | 0           | 0         |
| 64   | Other                  |              |             | Salaki                        | 62        | 1052       | 181        | 9           | 4           | 1         |
| 65   | Alstonia scholaris     | Apocynaceae  |             | Saton                         | 0         | 0          | 1          | 0           | 0           | 1         |
| 66   | Albizia lebbeck        | Fabaceae     |             | Sirs                          | 0         | 1          | 0          | 0           | 0           | 0         |
| 67   | Dalbergia latifolia    | Fabaceae     | Vulnerable  | Sissam                        | 0         | 9          | 6          | 2           | 0           | 0         |
| 68   | Other                  |              |             | Sowar                         | 2         | 33         | 8          | 1           | 1           | 0         |
| 69   | Other                  |              |             | Sukini                        | 42        | 1258       | 359        | 59          | 5           | 2         |
| 70   | Calophyllum inophyllum | Clusiaceae   |             | Surahonne                     | 0         | 16         | 7          | 7           | 3           | 6         |
| 71   | Other                  |              |             | Surgi                         | 0         | 16         | 7          | 2           | 2           | 0         |
| 72   | Terminalia bellirica   | Combretaceae |             | Tare                          | 0         | 6          | 18         | 13          | 11          | 12        |
| 73   | Other                  |              |             | Uppage                        | 0         | 10         | 0          | 1           | 1           | 0         |
| 74   | Other                  |              |             | Vel                           | 3         | 36         | 4          | 0           | 0           | 0         |
|      |                        |              |             | Total                         | 734       | 8950       | 3688       | 1560        | 600         | 414       |
|      |                        |              | 1           | Sub Total<br>(No of<br>Trees) |           |            | 15         | 5946        |             |           |

Page 78

Project No.: 0476969

Based on the survey a total of 15946 indivduals of various tree species are enumerated within the RoW of 46 m for a 440 kV transmission line. However, based on the consultation with Sterlite's personel only 35% of the RoW will be required to disturbed largely at the tower location and stringing to maintain the required mandatory ground clearance.

Faunal species comprising of twenty-one (21) species of amphibians, sixty (60) species of reptiles, forty four (44) species of avifauna and twenty nine (29) species of mammals are reported from the area.

Of the above-listed species we have IUCN listed threatened species such as in amphibians; Amboli Bush Frog *Pseudophilautus amboli* IUCN CR v2020.2, Malabar Tree Toad *Pedostibes tuberculosus*, and Marbled Ramanella *Uperodon mormorata* IUCN EN v2020.2 and Maharashtra Bush Frog *Raorchestes bombayensis* listed as IUCN VU v2020.2.

In reptiles, Indraneil's Day Gecko (*Cnemaspis cf. indraneildasii*) and Indian rock python (*Python molurus*) listed as IUCN VU v2020.2 are observed from the study area.

There is a significant presence of Sch. I species of Indian Wildlife Protection Act, 1972 in each faunal group (Refer **Section 3.9**)

In avifauna, species such as White-rumped Vulture (*Gyps bengalensis*) IUCN listed CR species, Black-bellied Tern (*Sterna acuticauda*) and Egyptian Vulture (*Neophron percnopterus*) IUCN listed EN species, Lesser Adjutant (*Leptoptilos javanicus*), Tawny Eagle (*Aquila rapax*), Asian Woollyneck (*Ciconia episcopus*) IUCN listed VU species are reported from the study area. A total of 213 species of avifauna are reported from the Dandeli Wildlife Sanctuary.

In mammals, a total of 29 species were reported from the study area. Species such as Tiger (*Panthera tigris*), Dhole (*Cuon alpinus*), Indian Elephant (*Elephas maximus indicus*), Indian Pangolin (*Manis crassicaudata*) are listed as IUCN EN v.2020.2, while species such as Bonnet Macaque (*Macaca radiata*), Sloth Bear (*Melursus ursinus*), Gaur (*Bos gaurus*), Common Leopard (*Panthera pardus*), Sloth Bear (*Melursus ursinus*) and Sambar (*Rusa unicolor*) are listed as IUCN VU v2020.2. These species are reported from the Anshi Dandeli Tiger Reserve and can be potentially impacted due to the transmission line development.

#### Impact Significance

Vegetation clearance along the access road and transmission tower locations for the various construction activities as described in *Table 4.3* will lead to habitat loss, habitat disturbance to faunal species. It will also lead to loss of natural vegetation which will lead to reduced vegetal cover, shrinkage in natural forest cover, loss of nesting and foraging for avifaunal species, arboreal amphibians, reptiles and movement pattern of mammal species in the study area.

The excavation, leveling and removal of vegetation will also result in soil erosion which will be washed and drained with the occurrence of rains will runoff to the natural streams and change the stream characteristics, impacting the aquatic habitat associated amphibians and reptile and mammalian species.

The study area falls within the Dandeli Wildlife Sanctuary/Kali Tiger Reserve with the presence of a significant number of Sch. I species along with the presence of IUCN listed CR, EN and VU species, therefore the resource sensitivity is **High** for habitats and species. The impact will be limited to the activity areas, approach roads and transmission line RoW activity areas as described above and will not cause a significant change in the population of these species and therefore the impact magnitude has been deemed as **Medium.** The construction period suggested is of 6 months hence, the impact duration suggested as **Short term** and likely to be reduced in subsequent years due to high regeneration rate. **(**Refer **Table 4.4**). The net impact hence assessed as **Major.** 

## Residual Impacts

Removal of vegetation, development of approach roads and construction activities can have a direct and indirect impact on the local ecology. The impact is limited to the construction phase of the Project, following which the vegetation can recover, however, recovery as back to original stage will require significant duration of undisturbed state. The significance of the residual impacts is **Minor** for habitats and species. (Refer **Table 4.5**)

Table 4.5 Impact significance of Overall Construction Activities

| Impact                                    | During Constru                                                                                    | ction Pha          | se                |              |           |        |         |          |         |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------|-------------------|--------------|-----------|--------|---------|----------|---------|--|
| Impact Nature                             | Negative                                                                                          |                    | Positive          | Positive Neu |           |        |         | ral      |         |  |
| Impact Type                               | Direct                                                                                            | Indirect           |                   |              |           | Induc  | ed      |          |         |  |
| Impact Duration                           | Temporary                                                                                         | Sho                | rt-term           |              | Long-term | า      |         | Perma    | nent    |  |
| Impact Extent                             | Local                                                                                             |                    | Regional          |              |           |        | Intern  | ational  |         |  |
| Impact Scale                              | Limited to tower location, approach roads, stringing and immediate surroundings mostly within RoW |                    |                   |              |           |        |         |          |         |  |
| Frequency                                 | Construction pl                                                                                   | Construction phase |                   |              |           |        |         |          |         |  |
| Likelihood                                | Likely                                                                                            |                    |                   |              |           |        |         |          |         |  |
| Impact Magnitude                          | Positive                                                                                          | Neglig             | ible              | ole Small I  |           | Ме     | Medium  |          | Large   |  |
| Resource Sensitivity (Agricultural lands) | Low                                                                                               |                    | Medium            | Medium       |           |        | High    | High     |         |  |
| Resource Sensitivity (Species)            | Low                                                                                               |                    | Medium            | Medium       |           |        | High    |          |         |  |
| 1                                         | Not Significant                                                                                   | Mino               | or                | r Moderate   |           |        | Major   |          |         |  |
| Impact Significance                       | The significance of impact is considered <b>Major</b> for habitat and species.                    |                    |                   |              |           |        |         |          |         |  |
|                                           | Re                                                                                                | esidual In         | npact Signi       | ficar        | ice       |        |         |          |         |  |
| Residual Impact<br>Magnitude              | Positive Negligible                                                                               |                    | Small             | Small        |           | Medium |         | Large    |         |  |
| Residual Impact                           | Not Significant                                                                                   | Min                | Moderate Moderate |              |           | Major  |         |          |         |  |
| Significance                              | The significand                                                                                   | e of impa          | ct is conside     | ered         | Moderate  | for    | habitat | ts and s | pecies. |  |

## 4.5.2 Impacts during operation Phase

### Context

The context for impacts of various activities during operation phase are provided as per Table 4.3

Table 4.6 Context of various impacts during the operation phase

| Impacts during the operation phase                                   | Context                                                                                                                                               |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Impacts due to electrocution and collision of avifaunal species with | Mortality by Electrocution: Electrocution may happen if the avifaunal species sitting on the conductor and touching two-phase                         |
| conductor                                                            | Mortality by collision Mortality by collision may happen if the avifauna flying near the conductor did not spot the conductor and collides with it in |

| Impacts during the operation phase                                        | Context                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                           | full force, leading to physical injury (Like broken wings etc) resulting into death.                                                                                                                                                                                                          |
| Disturbance to vegetation during maintenance of required ground clearance | Preventive and Corrective Maintenance of the transmission line and for maintenance of the mandatory vertical clearance between vegetation and the lowest point of conductor sag. This will involve lopping and pruning of existing tree species leading to loss of nesting and perching sites |
| Electrocution of Arboreal mammals                                         | The arboreal mammals in the study area may face changes in the movement within traditional corridors and mortality due to electrocution while moving from one canopy to another canopy with transmission line as the barrier in between.                                                      |

#### Receptors

The avifaunal species observed and reportedly present within the study area and in the larger landscape of the wildlife sanctuary such as Black Stork (*Ciconia nigra*), Asian Woollyneck(*Ciconia episcopus*), Malabar Grey Hornbill (*Ocyceros griseus*)\* Western Ghats endemic, Indian grey hornbill (*Ocyceros biroslris*), Malabar Pied Hornbill (*Anlhracoceros coronatus*), Great Pied Hornbill (*Buceros bicornis*) have larger wingspan and face risk of electrocution while perching on the conductor and mortality due to collision while flying into conductor and getting injured.

Raptor species listed as Sch.I of the Indian Wildlife Protection Act, 1972 such as, Oriental Honey Buzzard (*Pernis ptilorhyncus*), Black winged Kite (*Elanus careleus*), Crested Goshawk (*Accipiter trivirgatus*), Shikra (Accipiter badius), Black Eagle (*Icrillaellts malyanensis*), Tawny Eagle( *Aquila rapax*) from the study area and larger landscape have a perching behavior on the transmission line and nesting in transmission line tower. These are also under potential risk of mortality due to electrocution and collision with conductors.

Arboreal (Tree Dwelling) mammals such as Slender Loris (*Loris lydekkerianus*) Indian Giant Flying Squirrel (*Petaurista philippensis*), Indian/Malabar Giant Squirrel (*Ratufa indica*), Bonnet Macaque (*Macaca radiate*), Hanuman /Black-faced Langur (*Semnopithecus entellus*) may face a barrier in movement due to the transmission line.

Aerial mammalian species such as Fulvous Fruit Bat (*Rousettus leschenaultia*), Lesser False Vampire (*Megaderma spasma*), Indian Pipistrelle (*Pipistrellus coromandra*), Indian Pygmy Bat (*Pipistrellus tenuis*) and Lesser Dog-faced Fruit Bat (*Cynopterus brachyotis*) are also likely to get impacted due to collision with transmission line conductor.

Few IUCN listed species such as Tiger (*Panthera tigris*), Dhole (*Cuon alpinus*), Indian Elephant (*Elephas maximus indicus*), Indian Pangolin (*Manis crassicaudata*) are listed as IUCN EN v.2020.2, while species such as Bonnet Macaque (*Macaca radiata*), Sloth Bear (*Melursus ursinus*), Gaur (*Bos gaurus*), Common Leopard (*Panthera pardus*), Sloth Bear (*Melursus ursinus*) and Sambar (*Rusa unicolor*) are listed as IUCN VU v2020.2may be impacted due to habitat disturbance due to routine and corrective maintenance.

#### Impact Significance

There is a potential of impacts on IUCN listed EN and VU species, Schedule I species of Indian Wildlife Protection Act, 1972 and endemic species from the Western Ghats. The study area falls within the Dandeli Wildlife Sanctuary/Kali Tiger Reserve with the presence of significant number of Sch. I species, IUCN listed CR, EN and VU species, the resource sensitivity as **High** for habitats and species. The impacts described above will not cause a significant change in the population of these species as sufficient habitat is present in the study area and the larger landscape. The impact duration is **Long term** as the impacts will be applicable for entire project cycle. Hence the impact

magnitude is deemed as **medium** as effect may causes a substantial change in abundance and/or reduction in distribution of a population over one, or more generations, but does not threatened the long term viability/ function of that population dependent on it. Overall impact assessed for the operational phase as **Major** for habitat and species.

## Residual Impacts

The residual impacts for the operational phase impacts are deemed as **Moderate** as the implementation of mitigation measures suggested will lower the impact magnitude from **medium to small**. (Refer *Table 4.6*)

**Table 4.7** Impact significance of Operational Activities

| Impact                                    | During Opera  | ation P | hase     |            |       |                    |             |          |       |
|-------------------------------------------|---------------|---------|----------|------------|-------|--------------------|-------------|----------|-------|
| Impact Nature                             | Negative      |         |          | Positive   |       |                    | Neutral     |          |       |
| Impact Type                               | Direct        |         |          | Indirect   |       |                    | Induced     |          |       |
| Impact Duration                           | Temporary     |         | Short    | t-term     |       | Long-tern          | n           | Perma    | nent  |
| Impact Extent                             | Local         |         |          | Regional   |       |                    | Internation | nal      |       |
| Impact Scale                              | Routine and   | Correc  | tive M   | aintenance | 9     |                    |             |          |       |
| Frequency                                 | Operation ph  | ase     |          |            |       |                    |             |          |       |
| Likelihood                                | Likely        |         |          |            |       |                    |             |          |       |
| Impact Magnitude                          | Positive      | N       | legligil | ole        | Sma   | all                | Medium      |          | Large |
| Resource Sensitivity (Agricultural lands) | Low           |         |          | Medium     |       |                    | High        |          |       |
| Resource Sensitivity (Species)            | Low           |         |          | Medium     |       |                    | High        |          |       |
|                                           | Not Significa | nt      | Mino     | •          |       | Moderate           |             | Major    |       |
| Impact Significance                       | Significance  | of impa | act is c | onsidered  | Мај   | <b>or</b> for habi | tat and spe | ecies.   |       |
|                                           | ı             | Residu  | ıal İmp  | oact Signi | ficar | тсе                |             |          |       |
| Residual Impact<br>Magnitude              | Positive      | Neglig  | jible    | Small      |       | Mediun             | า           | Large    |       |
| Residual Impact                           | Not Significa | nt      | Mino     | r          |       | Moderate           | )           | Major    |       |
| Significance                              | Significance  | of impa | act is c | onsidered  | Mod   | lerate for         | habitats ar | nd speci | es.   |

#### 5. MITIGATION MEASURES

#### 5.1 INTRODUCTION

"Mitigation Measures," refer to the actions that can be implemented to minimize the magnitude of the project related detrimental impacts on different physical, biological and social environments of the project area. Mitigation can carry on along three possible courses of actions, either by changing actions (1) at source, (2) on path (3) or at the receiving end.

Based on the present study it is very clear that the prevailing physical environmental conditions of the project location and associated project activities predicted to impact upon some biological attributes of the project area which are at local, shorter period mainly during construction phase and magnitude of low to moderate levels in many cases.

Overall impact statement identified impacts in construction and operation phase. The impact summary prom the previous chapter is provided in *Table 5.1*.

 Impact Description
 Impact Nature
 Impact Significance

 Without Mitigation
 Residual (With Mitigation)

 Construction Phase
 Negative
 Major
 Moderate

 Operation Phase
 Negative
 Major
 Moderate

Table 5.1 Impact Summary

The mitigation measures for the construction phase and operation phase as discussed hereunder;

## **5.2** Construction Phase Mitigation Measures

The proposed transmission line project is estimated to acquire a total of 30.412 ha. area of Dandeli Wildlife Sanctuary which would impact as a loss of forest habitat, change in species composition and change in abundance of faunal groups of the overall project area.

The Transmission line (<u>Refer</u> *Figure 2.1*) route falls in the Tropical semi-evergreen forests (West tropical semi-evergreen forests) habitat and Tropical moist deciduous forests (Sourthern moist mixed deciduous forests and secondary moist mixed deciduous forests) forest area. The tower locations are in the dense to <u>verv</u> dense forest area.

Mitigation measures suggested in the construction phase are discussed below;

- Habitat disturbances to be kept at <u>minimum</u> by using existing trails for transportation of man, material and machinery;
- Any vegetation clearance required should be limited to the minimum area required for such passages;
- Alternate mode of transportation such as Rope-ways should be considered were ever feasible to the maximum extent;
- Tree enumeration for clearance has been already undertaken. During the vegetation removal, a <u>trained</u> botanist will be required in order to seek guidance to avoid, restore and replant species of conservation significance such as IUCN listed threatened species, endemic species <u>and</u> medicinal plants as per **section 3.8**;
- Construction activity, man and material movement should be limited to the day time and early morning, late evening and night activity should be completely avoided to allow the unrestricted wildlife movement;
- No night stay at the construction site should be planned, proper planning of day work (within the daylight hours) should be done;

- Movement within the wildlife area should be entirely regulated, each work force party/gang should be trained in do's and don't's and how to deal in a situation of wildlife encounter before entering the wildlife area.
- Tree felling should be in compliance of all the statutory requirements, tree felling in the nesting season of endemic avifaunal species (Refer *Table 3.19*) should carefully examine the active nest on trees before felling, relocation of active nest should be undertaken with the help of State Forest Department and/or wildlife NGO;
- Hunting, trapping and poaching by the employed work force should be completely banned and no poaching tolerance strategy should be covered under contractual obligations;
- Vehicle speed while travelling to the activity area should be regulated and minimized as required;
- The vegetation clearance along the RoW of the transmission line will create a canopy break for the arboreal mammals (Tree dwelling) construction of *canopy bridges* at key locations (where such canopy breaks are very evident) are suggested.
- Proper housekeeping of the construction areas should be followed during and after construction phase is completed.
- Independent monitoring agency (preferably a local wildlife NGO) should be appointed to oversee and guide the mitigation measure implementation during the construction phase and should periodically update the higher official of Sterlite.

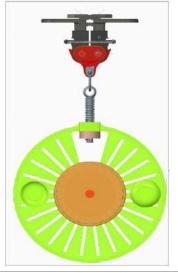
## 5.3 Mitigation for Operational Phase

Operational Phase impacts will be associated to the routine and corrective maintenance, potential risk of electrocution and collision for avifaunal species and electrocution for arboreal mammalian species. In the routine maintenance, in order to require the mandatory vertical clearance pruning and lopping of trees may be required within the RoW.

Mitigation measures suggested in the operation phase are discussed below;

- Any routine and corrective maintenance schedule planned should be undertaken only after preinforming the forest department;
- Sterlite should make an arrangement for dedicated personal from forest department, trained in dealing situations of wildlife encounters, movement, rescue and rehabilitation (preferably reptiles and mammalians) while under taking such routine visits;
- Pre nest search before commencing any pruning and lopping to be undertaken;
- Suggesting artificial nest boxes along the transmission line route to mitigate the loss of nesting sites along the transmission line route;
- Periodic review of condition of canopy bridges and undertake required maintenance;
- Installation of bird diverters on the conductor and perch rejecters on transmission tower along the transmission line corridor should be undertaken along the wildlife stretch;
- In addition to the above, artificial nesting platform for raptor species to be built along the transmission line at a distance of 200 m;
- Structures to climb transmission towers should have a restriction guards (to avoid access to for arboreal species (Maccaques, Langurs, Loris, Giant Squirrels etc.)
- Rapid carcass search along the transmission line corridor for possible victims of collision and electrocution should be undertaken once in 6 months

The suggested mitigation structures are depicted in Figure 5.1.


Figure 5.1 Mitigation Structures for Transmission Line








Canopy bridge construction for arboreal mammals movement in canopy break area







High temperature Power line Markers

#### 6. BIODIVERSITY MANAGEMENT PLAN

#### 6.1 Introduction

Where biodiversity values of importance to conservation are associated with a project site or its area of influence, the preparation of a Biodiversity Management Plan (BMP) provides a useful means to focus a project's mitigation and management strategy. The development of a BMP for transmission line project is a requirement for regulatory clearances as it documents the process, actions, responsibilities and budget allocation. It also gives the opportunities to investigate the effectiveness of the mitigation measures suggested and provides as chance to revisit them and make timely changes to update/upgrade the mitigation actions for better management of biodiversity.

## 6.2 Biodiversity Management Plan

The biodiversity management plan has been devised on the following aspects;

- Ecological Sensitivities along the transmission line corridor;
- Species of conservational significance along the transmission line corridor;
- Impacts during the construction and operation phase;
- Proposed mitigation measures;
- Parameters to be monitored;
- Measurement and frequency;
- Institutional responsibility;
- Implementation schedule

### 6.2.1 Ecological Sensitivity

The ecological sensitivities along the transmission line are;

**Habitats:** The transmission line passes through the protected area, "**Dandeli Wildlife Sanctuary/Kali Tiger Reserve**". This sanctuary contains pristine vegetation classified as Tropical semi-evergreen forests (West tropical semi-evergreen forests) and Tropical moist deciduous forests (Sourthern moist mixed deciduous forests and secondary moist mixed deciduous forests).

**Species of Conservational Significance**: The species of conservational significance (IUCN listed Critically Endangered, Endangered and Vulnerable species, Indian Wildlife Protection Act, 1972 listed Schedule I species observed and reported from the transmission line corridor are listed in *Table 6.1*.

The threatened species observed in the transmission line corridor and the buffer area are given as per *Table 6.1*;

Table 6.1 Threatened Species

| Common Name | Scientific Name                     | IUCN<br>v.2020.2 | IWPA,1972 | Observed<br>/Reported |
|-------------|-------------------------------------|------------------|-----------|-----------------------|
| Plants      |                                     |                  | ·         |                       |
| Tree        | Diospyros paniculata Dalzell        | VU               |           | Observed              |
| Tree        | Holigarna grahamii (Wight)<br>Kurz. | LC               |           | Observed              |
|             | Dalbergia latifolia Roxb.           | VU               |           | Tree Enumeration      |
| Tree        | Myristica magnifica                 | EN               |           | Tree Enumeration      |

| Common Name               | Scientific Name              | IUCN<br>v.2020.2 | IWPA,1972    | Observed /Reported |
|---------------------------|------------------------------|------------------|--------------|--------------------|
| Tree                      | Garcinia indica              | VU               |              | Tree Enumeration   |
| Amphibian                 |                              | 1                | 1            |                    |
| Malabar Tree Toad         | Pedostibes tuberculosus      | EN               | IV           | Observed           |
| Marbled Ramanella         | Uperodon mormorata           | EN               | IV           | Reported           |
| Amboli Bush Frog          | Pseudophilautus amboli       | CR               | IV           | Observed           |
| Maharashtra Bush<br>Frog  | Raorchestes bombayensis      | VU               | IV           | Observed           |
| Reptiles                  |                              |                  |              |                    |
| Indian flapshell turtle   | Lissemys punctata            | LC               | 1            | Reported           |
| Indraneil's Day Gecko     | Cnemaspis cf. indraneildasii | VU               | IV           | Observed           |
| Bengal Monitor Lizard     | Varanus bengalensis          | LC               | 1            | Reported           |
| Indian rock python        | Python molurus               | VU               | 1            | Observed           |
| Avifauna                  |                              | ,                |              |                    |
| Wooly-necked stork        | Ciconia episcopus            | VU               | IV           | Reported           |
| Oriental Honey<br>Buzzard | Penlis ptilorhyncus          | LC               | I (part III) | Reported           |
| Black shouldered Kite     | Elanus careleus              | LC               | I (part III) | Reported           |
| Crested Serpent eagle     | Spilornis cheela             | LC               | I (part III) | Reported           |
| Crested Goshawk           | Accipiter trivirgatus        | LC               | I (part III) | Reported           |
| Shikra                    | Accipiter badius             | LC               | I (part III) | Reported           |
| Black Eagle               | Icrillaellts malyanensis     | LC               | I (part III) | Reported           |
| Tawny Eagle               | Aquila rapax                 | LC               | I (part III) | Reported           |
| Malabar Pied Hornbill     | Anlhracoceros coronatus      | NT               | I (part III) | Observed           |
| Great pied Hornbill       | Buceros bicornis             | NT               | I (part III) | Reported           |
| Sri Lanka frogmouth       | Batrachostomus moniliger     | LC               | I (part III) | Observed           |
| Mammals                   |                              |                  | 1            |                    |
| Bonnet Macaque            | Macaca radiata               | VU               | П            |                    |
| Grey Slender Loris        | Loris lydekkerianus          | EN               | 1            |                    |
| Tiger                     | Panthera tigris              | EN               | 1            |                    |
| Leopard                   | Panthera pardus              | VU               | 1            |                    |
| Dhole                     | Cuon alpinus                 | EN               | П            |                    |
| Sloth Bear                | Melursus ursinus             | VU               | 1            |                    |
| Common Otter              | Lutra lutra                  | NT               | 1            |                    |
| Indian Elephant           | Elephas maximus indicus      | EN               | 1            |                    |
| Gaur                      | Bos gaurus                   | VU               | 1            |                    |
| Sambar                    | Rusa unicolor                | VU               | III          |                    |
| Indian spotted chevrotain | Moschiola indica             | LC               | 1            |                    |
| Indian giant squirrel     | Ratufa indica                | LC               | 1            |                    |
| Short nosed Fruit Bat     | Cynopterus brachyotis        | LC               | V            |                    |

The plan is described in Table 6.2 below

**Biodiversity Management Plan** Table 6.2

| Activity                                                      | Impact                                                                  | Target species groups                                       | Phase<br>(Construction/<br>Operation) | Proposed mitigation measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Parameters to be monitored                                                                 | Measurement and frequency                                        | Institutional responsibility                                                                                                                    |
|---------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Route Survey<br>and Planning                                  | Habitat<br>disturbance<br>due to<br>clearance of<br>bushes while<br>new | Faunal groups<br>(Herpetofauna,<br>Avifauna and<br>Mammals) | Construction<br>Phase                 | <ul> <li>Habitat disturbances to be kept at minimum by using existing trails for transportation of man, material and machinery;</li> <li>Any vegetation clearance required should be limited to the minimum area required for such passages;</li> <li>Alternate mode of transportation such as Ropeways should be considered were ever feasible to the maximum extent</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Physical<br>demarcation<br>of the Right of<br>Way before<br>any<br>vegetation<br>clearance | Visual inspection on monthly basis during the construction phase | Third Party<br>Inspection<br>report to<br>GTTPL                                                                                                 |
| Impacts during vegetation clearance on approach roads and RoW | Habitat Loss<br>and habitat<br>disturbance,<br>loss of nesting<br>sites | Flora and Faunal groups                                     | Construction<br>Phase                 | <ul> <li>Tree cutting for the approach roads and RoW should be undertaken where only it is absolutely necessary,</li> <li>Tree enumeration for clearance should be undertaken in presence to trained botanist/forest department in order to seek guidance to avoid, restore and replant species of conservation significance such as IUCN listed threatened species, endemic species and medicinal plants as per section 3.8;</li> <li>Tree felling should be in compliance of all the statutory requirements; tree felling in the nesting season (March to September) should carefully examine the active nest on trees before felling; relocation of active nest should be undertaken with the help of State Forest Department and/or wildlife NGO;</li> <li>Cleared wood material removal should be undertaken as per guidance of the state forest department;</li> <li>The ground dwelling fauna in the area should be approached carefully and removed from the direct path by trained experts, no direct attendance of the wildlife encounters</li> </ul> | Physical demarcation of the vegetation in approach roads before clearance                  | Visual inspection on weekly basis during the construction phase  | Third Party<br>Inspection<br>report to<br>GTTPL,<br>GTTPL to<br>prepare a<br>clearance<br>schedule<br>based on<br>tree<br>enumeration<br>survey |
| Impacts<br>during<br>vegetation                               | Habitat loss<br>and Habitat<br>disturbance                              | Floral and faunal groups                                    | Construction phase                    | The tower location need 10 m radius working area<br>for tower erection for which vegetation clearance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Third party verification during                                                            | Visual inspection on weekly basis                                | Third Party<br>Inspection                                                                                                                       |

## BIA AND BMP FOR 400 KV TRANSMISSION LINE CORRIDOR PASSING THROUGH PROTECTED AREAS OF KARNATAKA STATE Final Report

| Activity                                                                     | Impact                  | Target species groups | Phase<br>(Construction/<br>Operation) | Proposed mitigation measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parameters to be monitored                        | Measurement and frequency                                       | Institutional responsibility                    |
|------------------------------------------------------------------------------|-------------------------|-----------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|
| clearance on<br>Tower<br>locations                                           |                         |                       |                                       | <ul> <li>will be required. The clearance should be confined within the designated area</li> <li>The various components of tower will be stored in the tower locations resuting in additional areas for clearance. The site manager will ensure that minimum area disturbance is made during tower erection;</li> <li>No night stays should be made inside the Sanctuary area. Entire day activities should be planned in a way, early morning, night and late evening time should be avoided.</li> <li>No blasting with the sanctuary area should be made for excavation of rocks for foundation, alternative less disruptive methods should be identified;</li> <li>The cleared vegetation should be removed from the construction area. A designated place for the storage of the cleared wood as per direction of forest department should be made;</li> <li>No wildlife should be harmed by the work force in the forest and sanctuary area.</li> </ul> | construction period                               | during the construction phase                                   | report to<br>GTTPL                              |
| Impacts during man and material transportation on each of the tower location | Habitat<br>disturbances | Fauna group           | Construction phase                    | <ul> <li>Material movement will be through trucks till the road end and further on tractor trolley to the end possible. In case the last location is not approachable then matrial will be transported either on foot by labourers or through rope way likely to be erected for transporation which required minimum disturbances;</li> <li>Man movement will be on foot, damage to flora and fauna should be avoided to maximum extent,</li> <li>Contractual obligations should clearly define zero tolearance to hunting, trapping and poaching.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                               | Material<br>movement at<br>each tower<br>location | Visual inspection on weekly basis during the construction phase | Third Party<br>Inspection<br>report to<br>GTTPL |
| Impacts<br>during<br>stringing of<br>conductor                               | Habitat disturbances    | Fauna group           | Construction phase                    | Stringing on conductor will involve vegetation<br>clearance, as any obstruction during stringing will<br>be chopped, lopped and pruned as per<br>requirement. Before undertaking such activity, it is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Stringing the towers                              | Visual inspection during stringing                              | Third Party<br>Inspection<br>report to<br>GTTPL |

#### BIA AND BMP FOR 400 KV TRANSMISSION LINE CORRIDOR PASSING THROUGH PROTECTED AREAS OF KARNATAKA STATE Final Report

| Activity                                                            | Impact                                                       | Target species groups               | Phase<br>(Construction/<br>Operation) | Proposed mitigation measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Parameters to be monitored                                             | Measurement and frequency                                                                                       | Institutional responsibility        |
|---------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|
|                                                                     |                                                              |                                     |                                       | to be ensured that the remaing tree left will grow further;  Nesting sites of avifaunal species to be avoided to the extent possible, if not then the nest translocation should be undertaken by trained wildlife personels, pre-identification of nesting site should be under taken;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |                                                                                                                 |                                     |
| Risk of<br>mortality due<br>to<br>electrocution<br>and collision    | mortality in<br>Species of<br>conservational<br>significance | Avifauna and<br>Arboreal<br>mammals | Operation<br>Phase                    | <ul> <li>Any routine and corrective maintenance schedule planned should be undertaken only after pre informing the forest department;</li> <li>GTTPL should make an arrangement for dedicated personal from forest department, trained in dealing situations of wildlife encounters, movement, rescue and rehabilitation (preferably reptiles and mammalians) while under taking such routine visits;</li> <li>Structures to climb transmission towers should have a restriction guards (to avoid access to for arboreal species (Macaques, Langurs, Loris, Giant Squirrels etc.)</li> <li>Rapid carcass search along the transmission line corridor for possible victims of collision and electrocution</li> <li>Installation of canopy bridges in the canopy break areas for zero hinderance movement of arboreal mammals. Periodic review of condition of canopy bridges and undertake required maintenance;</li> <li>Installation of bird diverters on the conductor and perch rejecters on transmission tower along the transmission line corridor;</li> <li>In addition to the above artificial nesting platform for raptor species to be built along the transmission line at a distance of 200 m;</li> </ul> | Species<br>mortality and<br>effectiveness<br>to mitigation<br>measures | Quaterly<br>during first<br>two years of<br>energization<br>and then six<br>monthly<br>during next<br>two years | External<br>Consultant<br>and GTTPL |
| Vegetation<br>removal for<br>maintaining<br>mandatory<br>electrical | Habitat loss<br>and habitat<br>disturbances                  | Floral and faunal groups            | Operation<br>Phase                    | Pre nest search before commencing any pruning<br>and lopping to be undertaken;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nesting<br>frequency of<br>avifaunal<br>species                        | Quarterly<br>during first<br>two years of<br>energization<br>and then six                                       | External<br>Consultant<br>and GTTPL |

#### **BIA AND BMP FOR 400 KV TRANSMISSION LINE CORRIDOR** PASSING THROUGH PROTECTED AREAS OF KARNATAKA STATE Final Report

| Activity                          | Impact | Target species groups | Phase<br>(Construction/<br>Operation) | Proposed mitigation measures                                                                                                                      | Parameters to be monitored | Measurement and frequency           | Institutional responsibility |
|-----------------------------------|--------|-----------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------|------------------------------|
| safety<br>vegetation<br>clearance |        |                       |                                       | Suggesting artificial nest boxes along the<br>transmission line route to mitigate the loss of<br>nesting sites along the transmission line route. |                            | monthly<br>during next<br>two years |                              |

Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL) www.erm.com Version: 1.0 Project No.: 0476969

## 6.3 Cost of the Biodiversity Management Plan

The cost for the implementation of the conservation plan is provided in *Table 6.3* below. There costs are indicative and will be updated in consultation of the state forest and wildlife department.

Table 6.3 Cost of Implementation of BMP

| Sn. | Activity                                                                                                                                     | Budget in Rupees |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| A.  | Project Specific Cost                                                                                                                        |                  |
| 1.  | Bird diverters along the transmission line                                                                                                   | Rs. 25 .0 Lakhs  |
|     | Sub Total A                                                                                                                                  |                  |
| В   | Management Actions through Agencies                                                                                                          |                  |
| 1.  | Professional and administrative support from Forest Department for vegetation clearance, monitoring and implementation, and overall guidance | Rs. 30 Lakhs     |
| 2.  | Biodiversity Monitoring during construction and operation phase                                                                              | Rs.10.0 Lakhs    |
| 3.  | Creation of Nest boxes, nesting platforms and canopy bridges                                                                                 | Rs. 10.0 Lakhs   |
|     | Total                                                                                                                                        | Rs. 75.0 Lakhs   |

APPENDIX A TOWER DESIGN DETAILS

www.erm.com Version: 1.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL) 21 December 2020



To.

Mr. Rajiv Ranjan, M/s Larsen & Toubro Ltd. Power Transmission & Distribution, Mount Poonamallee Road, Manapakkam, P.B. No. 979, Chennai -600089

Ref No: SPGVL/GTTPL/ENGG/L&T/22

Dated: 10th August'2018

PROJECT: 765 kV, 400 kV & 220 kV Transmission lines associated with Goa Tamnar

**Transmission Project Limited** 

LOA No: SPGVL/17-18/LOA/009 Dated: 29-12-2017.

Subject: Issuance of Final Approved Tower Spotting data for 400kV D/C Quad AAAC Moose T/L (WZ-1 & WZ-2) including additional family of Towers.

Dear Sir,

This is with reference to 400kV D/C Quad AAAC Moose T/L (WZ-1 & WZ-2) for GTTPL Project. We are hereby releasing the below mentioned approved documents for your reference and use in same: -

| Sr.No | Description                   | Document No. | Rev. No. |
|-------|-------------------------------|--------------|----------|
| Tower | Spotting Data for WZ-1        |              |          |
| 1.    | 400kV D/C Quad AAAC Moose T/L | DS-1003      | 1        |
| Tower | Spotting Data for WZ-2        |              |          |
| 1.    | 400kV D/C Quad AAAC Moose T/L | DS-1008      | 1        |

Approval conveyed herein neither relieve M/s L&T of his contractual obligation & his responsibilities for correctness of dimension, materials of construction, weights, designed details, assembly fits, performance particulars & conformity of the supplies with the Indian statutory laws as may be applicable, nor does it limit the SPGVL rights under the contract.

Regards

Dr. Deepak Lakhapati Chief Design Officer

Encl: As Above

Copy to:

1. Mr. Amitanshu along with Encl

## ///Sterlite Power

Project: 400 KV D/C TRANSMISSION LINE

<u>Line:</u> Xeldam- Narendra 400 KV D/C Transmission

Line with Quad AAAC Moose Conductor (WZ-

1)

Wind Zone: I (33 m/s)

Owner: Sterlite Power Grid Ventures Limited

<u>Description</u>: TOWER SPOTTING DATA (Upto +9M)

ERLITE POWER SRID VENTURES LTD SLEASED FOR CONSTRUCTION ONTROLLED COPY

Approved Vide Ref. Letter No.S.PGVL/GTTPL)

ENGG/14T/22 Date 10 08 2018
Engineering Deptt.
the above does not relieve the contractor from their

contractual obligations

| Document | Date       | Rev | Remarks                            | Desn | CTATUC |
|----------|------------|-----|------------------------------------|------|--------|
| no.      | ļ          | no. | if any                             | by   | STATUS |
| D\$-1003 | 10-08-2018 | 01  | Additional Tower Families Included | АМ   |        |
|          |            |     |                                    |      |        |
|          |            |     |                                    |      |        |
|          |            |     |                                    |      |        |

| 2        | NORTH CONTRACTOR                                                    |           |                 | (QUAD AAAC MOOSE CONDUCTOR) | (QUAD AAAC M  | MOOSE CONDUCTOR) | UCTOR)  |                                | ( - z) -:  |                    |           |                                               |             |                  |         |
|----------|---------------------------------------------------------------------|-----------|-----------------|-----------------------------|---------------|------------------|---------|--------------------------------|------------|--------------------|-----------|-----------------------------------------------|-------------|------------------|---------|
| Ž.       | ok. NO. DESCRIPTION                                                 | DA (0-2   | DA (0-2 DEGREE) | DBN (0-8 DEGREE)            |               | DB (0-15 DEGREE  | EGREE   | DC (15:30 DEGREE)              | EGREEI     | DON (30-45 DEGREE) | DECREE    | DD /30.40 NEC DEC                             | NEC DEC     | 20.00            | 1140    |
| _ ,      | MAX ANGLE OF DEVIAIION                                              |           | 2               | 1 3                         |               | 15               |         |                                |            | 45                 |           | 00000100                                      | DECAREE     | DE (U-13 DEGREE) | S SKEE) |
| N        | VERTICAL LOAD LIMITATION ON WEIGHT                                  | DOWNWA    | RDS ONLY        | Q,                          |               | ဂ္ဂ              | UPWARD  | DOWNWAR                        | UPWARD     | UPWARD DOWNWARD    | UPWARD    | DOWNWARD                                      | UPWARD      | DOWNWARD         | DAMADI  |
| 2.1      | GROUNDWIRE FREET                                                    | MAX       | Z X             | MAX                         | Z             | MAX              | WIN     | MAX                            | ΝĮΨ        | MAX                | ZIW       | _                                             | ZIX         | MAX              | Z       |
|          | III ON BOTH SPAN (M.)                                               | 700       | 000             | 900                         | 0000          |                  |         |                                |            |                    |           |                                               |             |                  |         |
|          | III ONE SPAN IM                                                     | 370       | 200             | 000                         | 307-          | 9009             | -200    | 909                            | -200       | 009                | -200      | 009                                           | -200        | 009              | -200    |
| 2.2      | CONDUCTOR EFFECT                                                    | 200       | 3               | 300                         | BOI-          | 360              | -100    | 360                            | -18        | 360                | -100      | 360                                           | -100        | 360              | -100    |
|          | II) ON BOTH SPAN (M.)                                               | 009       | 200             | VUV                         | W.C.          | 900              | 900     | 200                            | 004        |                    |           |                                               |             |                  |         |
|          | (II) ONE SPAN (M.)                                                  | 380       | 201             | 340                         | 100           | 370              | 2007-   | 909                            | -200       | 009                | -500      | 009                                           | -200        | 009              | -200    |
| m        | WEIGHTS                                                             |           |                 | 200                         | 8             | 200              | 3       | 360                            | 97         | 360                | 81,       | 390                                           | -100        | 360              | -100    |
| 3.1      | GROUNDWIRE EFFECT                                                   |           |                 |                             |               |                  |         |                                |            |                    |           |                                               |             |                  |         |
|          | (I) ON BOTH SPAN (KG.)                                              | 290       | 1 26            | 290                         | -67           | 290              | 107     | 000                            | 100        | 000                | -         |                                               |             |                  |         |
|          | (II) ONE SPAN (KG)                                                  | 174       | 49              | 174                         | OP-           | 174              | 10      | 777                            | 14-        | 0.67               | /4-       | 290                                           | -97         | 290              | 16-     |
| 3.2      | CONDUCTOR EFFECT                                                    |           |                 |                             |               |                  | , i     | 1/4                            | -47        | 1/4                | -49       | 174                                           | -49         | 174              | -49     |
|          | (I) ON BOTH SPAN (KG)                                               | 1000      | 334             | 1000                        | -334          | 1000             | 1 788°  | 0001                           | 700        | 2001               | 700       |                                               |             |                  |         |
|          | (II) ONE SPAN (KG)                                                  | 009       | 191             | 009                         | -147          | 007              |         | 800                            | 3          | 989                | 455       | 000                                           |             | 1000             | -334    |
| 4        | PERMISSIBLE SUM OF ADJACENT SPANS IN                                | EVN ANG   | 1               | DEVN ANGLE                  | t             | DEVN ANGLE       | /OI.    | OCO OCO                        | /01-       | 900                | 4         | 00%                                           |             | 009              | -167    |
| _        | M FOR VARIOUS DEVIATION ANGLES.                                     | 74        |                 | 8                           | $^{+}$        | 15               | 008     | 30                             | 200        | DEVIN ANGLE        | SPAN SPAN | DEVN ANGLE                                    |             | DEVN ANGLE       | SPAN    |
| _        | PERMISSIBLE ONE SPAN FOR VARIOUS                                    |           | 850             | 7                           | 188           | 1                | 098     | 8                              | Sko        | 24                 | 200       | 8 8                                           | 000         | э !              | \$      |
| _        | DEVIATION ANGLES SHOULD NOT EXCEED                                  | 0         | 900             | 9                           | 922           | 23               | 921     | 38                             | 920        | 42                 | /CO       | à s                                           | 202         | 15               | 욯       |
| -        | 60% OF THE VALUE SHOWN FOR THE SUM                                  |           |                 | 5                           | 984           | 12               | 982     | 27                             | 679        | CP CP              | 07.1      | 84                                            | 9020        |                  |         |
|          | OF ADJACENT SPANS SUBJECTED TO                                      |           |                 | 4                           | 1044          | Ε                | 1042    | 26                             | 1039       | 717                | 1008      | 75                                            | 1010        |                  |         |
| `        | AVAILABILITY OF GROUND CLERANCES.                                   |           |                 | 3                           | 1105          | Ot.              | 1104    | 25                             | 1098       | 40                 | 1084      | 3 5                                           | 1044        |                  |         |
|          |                                                                     |           |                 | 2                           | 1166          | ٥                | 1164    | 24                             | 1158       | 36                 | 1141      | 3 2                                           | 1118        |                  |         |
|          |                                                                     |           | II Car          |                             | 1227          | 83               | 1225    | 23                             | 1216       | 89                 | 1198      | 2                                             | 221         |                  |         |
|          |                                                                     |           |                 | 0                           | 1288          | 7                | 1285    | 22                             | 1276       | 37                 | 1254      | 52                                            | 1994        |                  |         |
|          |                                                                     |           |                 |                             |               | 9                | 1347    | 21                             | 1335       | 38                 | 1311      | 15                                            | 1278        |                  |         |
| _        |                                                                     |           | 1               |                             |               | 40               | 1407    | 20                             | 1393       | 35                 | 1367      | S                                             | 1330        |                  |         |
|          |                                                                     |           | 1               |                             |               | 4 (              | 1469    | 61                             | 1453       | 34                 | 1425      | 49                                            | 1384        |                  |         |
|          |                                                                     |           |                 |                             |               | n                | 1529    | <u>∞</u>                       | 1512       | ಜ                  | 1482      | 48                                            | 1438        |                  |         |
|          |                                                                     |           | 1               |                             |               | 2                | 1590    | 17                             | 1572       | 32                 | 1540      | 47                                            | 1493        |                  |         |
|          |                                                                     |           | +               |                             |               | & Delow          | 1651    | 91                             | 1631       | 31                 | 1598      | 46                                            | 1548        |                  |         |
| 5        | DESIGN LOAD TENSION                                                 |           |                 |                             |               |                  |         | 15                             | 1691       | 30                 | 1656      | 45 & below                                    | 1603        |                  |         |
| 5,1<br>C | OPGW -(32C AND Full Wind)                                           |           |                 |                             |               |                  |         |                                |            |                    |           |                                               |             |                  |         |
| ۲        | OPGW -(32C AND 75% of Full Wind)                                    |           |                 |                             |               |                  |         | 2374.                          | 2374.00 Kg |                    |           |                                               |             |                  |         |
| ۲        | OPGW-IOC AND 36% of Full Winds                                      |           |                 |                             |               |                  |         | 2045.                          | 2045.00 Kg |                    |           |                                               |             |                  |         |
| 5.2 C    | CONDUCTOR-(32C AND Bull Wind)                                       |           |                 |                             |               |                  |         | 1748.                          | 1748.00 Kg |                    |           |                                               |             |                  |         |
| T        | CONDICTOR (320 AND 75% AFE.II MEAN)                                 |           |                 |                             |               |                  |         | 5694.                          | 00 Kg      |                    |           |                                               |             |                  |         |
| 1        | CONDICTOR-(SC AND 34% of Full Wind)                                 |           |                 |                             |               |                  |         | 5024.                          | 5024,00 Kg |                    |           |                                               |             |                  |         |
| ,        | DILLA DI DONO DI DONO DI SALO                                       |           |                 |                             |               |                  |         | 5035                           | 5035.00 Kg |                    |           |                                               |             |                  |         |
| S O      | BACKEN WIKE CONDITION (BROKEN ON THE<br>SAME SIDE ON THE SAME SPAN) | CONDUCTOR | CONE            | GW+AN                       | GW+ANY ONE CO | NDUCTOR OR       | ANY TWO | ONDUCTOR OR ANY TWO CONDUCTORS |            | €W+                | ANY TWO C | GW+ANY TWO CONDUCTORS OR ALL THREE CONDUCTORS | R ALL THREE | CONDUCTORS       |         |
|          | -                                                                   |           |                 |                             |               |                  |         |                                |            |                    |           |                                               |             |                  |         |

# PROJECT DETAILS: 400 KV D/C TRANS. LINE WITH QUAD AAAC MOOSE CONDUCTOR (WZ-1) OWNER: STERLITE POWER GRID VENTURES LIMITED - NEW DELHI

## SAG TENSION CALCULATIONS

Ruling span; (L) 400.00 m

Design Wind Pressure: (Pd): 346.00 N/Sq.mt

35.30 kg/\$q.mt

Gust response factor (for wire): Gc: 2.22 2.30

Final wind pressure (for wire): 79.00 kg/Sq.mt 98.00 kg/Sq.mt

79.00 kg/Sq.mt 98.00 kg/Sq.mt 2.52 kg/m 1.18 kg/m

Final wind pressure (for Insulator): 106.00 kg/Sq.mt

<u>Particulars</u> <u>Conductor</u> <u>Earth-wire</u>

Code : AAAC Moose OPGW (24F)

Area, (A): 6.040 sq.cm 0.7737 sq.cm

Unit Wt : 1.666 kg/m 0.483 kg/m

Diameter : (D) 3.195 cms 1.200 cms

Tensile strength: (T) 17130.00 kgs 8410.00 kgs

Elast, Mod : (E) .5508E+06 kg/sq.cm .1417E+07 kg/sq.cm

Expns. Coef : (∞) .2300E-04 /Deg.Cnt .1380E-04 /Deg.Cnt

## BASIC EQUATION OF SAG TENSION CALCULATIONS :-

F^2 [F-{K-∞\*t\*E}] = Z

STARTING CASE - (CASE: 1)

TEMP 32 0 WIND 0 0

K CAL BY FOS OR SAG
FOS OR SAG FOS SAG
FOS OR SAG REQ.

4.55

|                    |             |            | Conductor       |          |            | <u>Earth-wire</u> |             |
|--------------------|-------------|------------|-----------------|----------|------------|-------------------|-------------|
| Loading Conditions |             | sag<br>(m) | Ulf.<br>Tension | % OF UTS | sag<br>(m) | Ult.<br>Tension   | % OF<br>UTS |
| 0 - Dgr.           | No - Wind   | 7.110      | 4686.07         | 27.36 %  | 6.399      | 1509.52           | 17.95 %     |
| 0 - Dgr.           | 36% - Wind  | -          | 5034.25         | 29.39 %  |            | 1747.99           | 20.78 %     |
| 32 - Dgr.          | No - Wind   | 8.841      | 3768.60         | 22.00 %  | 7.462      | 1294.54           | 15.39 %     |
| 32 - Dgr.          | 75% - Wind  |            | 5023,37         | 29.32 %  | •          | 2044.76           | 24.31 %     |
| 32 - Dgr.          | Full - Wind |            | 5693.07         | 33.23 %  |            | 2373.67           | 28.22 %     |
| 53 - Dgr.          | No - Wind   |            |                 |          | 8.178      | 1181.29           | 14.05 %     |
| 85 - Dgr.          | No - Wind   | 11.621     | 2867.16         | 16.74 %  |            |                   |             |

# TOWER SPOTTING DATA FOR XELDAM- NARENDA 400 KV D/C TRANSMISSION LINE (WZ-1) [QUAD AAAC MOOSE CONDUCTOR]

#### (I) GENERAL DETAILS:

Normal Span (M) = 400

Design Wind Span (M) =

(1) Face Established to the con-

| Type of Condition | DA  | DBN | DB  | DC  | DDN | DD  | DE  |
|-------------------|-----|-----|-----|-----|-----|-----|-----|
| NC                | 400 | 400 | 400 | 400 | 400 | 400 | 260 |
| BWC               | 240 | 240 | 240 | 240 | 240 | 240 | 156 |

#### (II) TOWER TYPES:

- a) Tower type "DA" Shall be used as Tangent tower with Double Suspension Insulator String.
- b) Tower type "DBN/DB/DC/DDN/DD" Shall be used as Tension tower with Quad Tension Insulator String.
- c) Tower type "DBN/D8" Shall also be used as Section tower.
- d) Dead End tower shall have provision of 0 to 15 Degree deviation on line side as well as slack side.
- e) Suitable Pilot String Shall be Used for Tower type "DC". DC Tower shall not use as section tower.

## (III) ELECTRICAL CLERANCES FOR RAILWAY CROSSING

- a) Crossing should be done with DDN/DD type tower with Quad tension insulator string with limiting span as 300m.
- b) The crossing shall normally be at right angle to the railway track.

## Minimum Clerance between lowest point of 400 KV line conductor & Rail level shall be as below.

| (1) For Existing Power Line Crossings :- | 17.90 m |
|------------------------------------------|---------|
| (2) For New Paris Charles Co.            |         |

(2) For New Power Line Crossings or Alteration to Existing Power Line Crossing in Electrified Sections:
18.26 m (Clearance at OHE structures in mm)
15.434 m (Clearance at Mid OHE span in mm)

(3) For Power Line Crossings in Non-Electrified Sections:
14.46 m (Line is not anticipated to be electrified)

18.26 m (Line to be electrified in future)

(4) For Highest Traction Conductor & Lowest crossing conductor :- 5.49 m

However, approval of Railway Crossing from railway authority has to be obtained in each case.

## (IV) MINIMUM CLERANCE FOR POWER LINE CROSSING WHEN CROSSING EACH OTHER FOR System 400 KV

| For 11KV to 66 KV   | 5.49 m  |
|---------------------|---------|
| For 110KV to 132 KV | 5.49 m  |
| For 220 KV          | 5.49 m  |
| For 400 KV          | 5.49 m  |
| For 765 KV          | 7.94 m  |
| For 1200 KV         | 10.44 m |
| For 500 KV HVDC     | 6.79 m  |
| For 800 KV HVDC     | 9.04 m  |
|                     |         |

#### (V) TELECOMMUNICATION LINE CROSSING

The angle of crossing shall be as near to 90 deg as possible. However deviation to the extent of 30 deg may be permitted under exceptional difficult situation.

For 400 KV 4.48 m

#### (VI) SECTION TOWER

The No. of consective spans between the section points shall not exceed 15 or 5kms in plain terrain & 10 spans or 3kms in hilly terrain. A section point shall comprise of tension point with DBN/DB type tower.

(VII) Minimum ground clerance required = 8840 mm.

(VIII) For all national highways crossings, tension towers is to be used and crossing span is not to exceed 250 m

(IX) Way leave clerance: 26 m from the cl of tower on either side of tower.

(X) Maximum span of adjucent spans for various angle of deviation are subjected to the condition that minimum specified live metal clerances and minimum around clerances are available.

(XI) suspension towers shall be spotted such that vertical load of individual spans shall be acting downwards only, no uplift is permitted in suspension towers.

(XII) tower type "DC" shall be used for transposition with 0 deg. deviation with modification of cross arms.

(XIII) Intermediate spans in a section shall be as near as possible to the normal span.

(XIV) For Body & Leg Extensions Arrangement - Refer attached Annexture - I

Body Extensions : - -3MBE, +0M BE, +3M BE & +6M BE

Leg Extensions : - -3.0M LE, -1.5M LE, +0.0M LE, +1.5M LE, +3.0M LE

These positive and negative extensions shall be used to achieve required ground clearance.

Maximum allowable difference in two legs at one tower is 4,5m.

(XV) Normal tower consists of Basic Body + (+0M B.E.) + (+0M L.E.).

(XVI) Height of bottom conductor from ground level for tower combination Basic Body + (+0M B.E.) + (+0M L.E.) is 20,900m.

# Max. Individual Span Calculation

L = Normal Span (m)

400

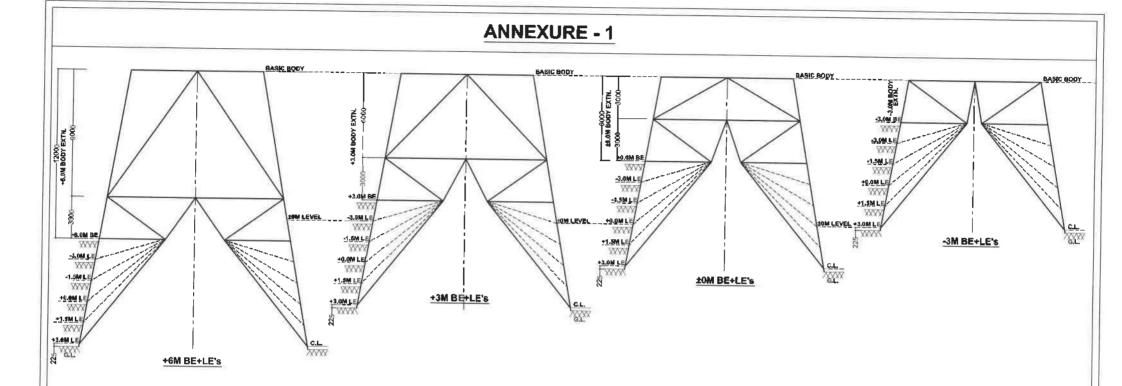
V = System voltage in kVs

400

 $S = Max. Sag (incliding Sag error){m}$ 

11.621

$$L_{max} = L \sqrt{\frac{K}{S}}$$


K = Max. Sag factor corresponding to Max.
Individual span & is given by the equation written Below

$$VS = 0.75\sqrt{K + SI} + \frac{V}{150}$$

VS = Vertical Seperation

SI = Suspension insulator Assembly Length

| TOWER | VS   | \$I | К      | L <sub>max</sub> (m) | Span limit for permissible sum of adjacent span (m) (L <sub>max</sub> x 2) |
|-------|------|-----|--------|----------------------|----------------------------------------------------------------------------|
| DA    | 8.45 | 4.8 | 54.661 | 868.0                | 1736.0                                                                     |
| DBN   | 8.00 | 0   | 50.568 | 834.0                | 1668.0                                                                     |
| DB    | 8.00 | 0   | 50.568 | 834.0                | 1668.0                                                                     |
| DC    | 8.20 | 0   | 54.432 | 866.0                | 1732.0                                                                     |
| DDN   | 8.35 | 0   | 57.423 | 889.0                | 1778.0                                                                     |
| DD    | 8.35 | 0   | 57.423 | 889.0                | 1778.0                                                                     |



#### Notes:-

- 1. Body Extensions: -3M BE, -+0M BE, +3M BE & 6M BE.
- 2. Leg Extensions: -3.0M LE, -1.5M LE, +0.0M LE, +1.5M LE, +3.0M LE.
- 3. These positive and negative extensions shall be used to achieve required ground clearance.
- 4. Maximum allowable difference in two legs at one tower is 4.5m.
- 5. Normal tower consists of Basic Body + (+0M B.E.) + (+0M L.E.).
- 6. Height of bottom conductor from ground level for tower combination Basic Body + (+0M B.E.) + (+0M L.E.) is 20.900m.

## GENERAL ARRANGEMENT FOR UNIVERSAL BODY & LEG EXTENSION COMBINATION

### ////Sterlite Power

Project:

400 KV D/C TRANSMISSION LINE

<u>line :</u>

Xeldam- Mapusha 400 KV D/C Transmission

Line with Quad AAAC Moose Conductor (WZ-

2)

Wind Zone :

II (39 m/s)

Owner:

Sterlite Power Grid Ventures Limited

Description:

TOWER SPOTTING DATA (Upto +9M)

FERLITE POWER GRID VENTURES LTD ELEASED FOR CONSTRUCTION ONTROLLED COPY

Approved Vide Ref. Letter No. SPGNL/GTTPL/

ENGG / L4 T/22 Date: 10/03/2013
Engineering Deptt.
the above does not relieve the contractor from their contractual obligations

| Document<br>no. | Date       | Rev<br>no. | Remarks<br>if any                  | Desn<br>by | STATUS |
|-----------------|------------|------------|------------------------------------|------------|--------|
| DS-1008         | 10-08-2018 | 01         | Additional Tower Families Included | АМ         |        |
|                 |            |            |                                    |            |        |
|                 |            |            |                                    |            |        |
|                 |            |            |                                    |            |        |

| Þ | SR. NO. IDESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DA (02) DEGREE | CRFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DAN (0-8 DECREE) | (Jace)  | CAN (CA DECREE) DR (C.15 DECREE)           | EC.PED.   | DAY (15,20 DECEPTE) | DECEPTED    | DON FOLAS DECEDED | Decree     | AD PALAD DECIDER                              | DEC DEEL     | Do to Te Devoce | P. Dec   |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|--------------------------------------------|-----------|---------------------|-------------|-------------------|------------|-----------------------------------------------|--------------|-----------------|----------|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                |         | 15                                         |           | 2                   |             | 57                | CECANEC    | no not an                                     | DECKEL!      | מבוייום בי      | 200      |
|   | VERTICAL LOAD LIMITATION ON WEIGHT SPAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DOWNWARDS ONLY | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DOWNWARD         | UPWARD  | UPWARD DOWNWARD                            | UPWARD    | DOWNWARD            | IIPWARD     | DOWNWARD          | IIPWAPD    | DOWNWARD I                                    | CIDMANI      | COMMINATOR OF   | HDWADD   |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAX            | П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | NE      | MAX                                        | MIN       | MAX                 | +-          | MAX               | +          | MAX                                           | MM           | MAX             | N        |
|   | GROUNDWIRE EFFECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           |                     |             |                   |            |                                               |              |                 |          |
|   | ( ON BOTH SPAN (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 009            | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 009              | 0       | 9009                                       | 0         | 8                   | 0           | 009               | 0          | 009                                           | 0            | 300             | 0        |
|   | III ONE SPAN (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 390            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 360              | -200    | 360                                        | -200      | 340                 | -200        | 360               | -300       | 340                                           | -300         | 300             | 0        |
|   | CONDUCTOR EFFECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           |                     |             |                   |            |                                               |              |                 |          |
|   | (I) ON BOTH SPAN (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 900            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 900              | ٥       | 009                                        | 0         | 009                 | ٥           | 900               | 0          | 009                                           | ¢            | 300             | Ĺ        |
|   | (II) ONE SPAN (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 360            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 340              | -200    | 360                                        | -200      | 360                 | -200        | 340               | 900        | 360                                           | -300         | 300             | 0        |
|   | WEIGHTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           |                     |             |                   |            |                                               |              |                 | L        |
|   | GROUNDWIRE EFECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           |                     |             |                   |            |                                               |              |                 |          |
|   | II) ON BOTH SPAN (KG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 350            | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 350              | 0       | 350                                        | ٥         | 320                 | 0           | 350               | c          | 350                                           | -            | 175             |          |
|   | (B) ONE SPAN (CG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 210            | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 210              | -111-   | 210                                        | -117      | 210                 | -1117       | 210               | -175       | 210                                           | -175         | 175             | ) c      |
|   | CONDICTOR FFFCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           |                     |             |                   | ,          | 2                                             | 2            | 2               |          |
|   | CAL NAGO HICANO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000           | 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0001             | -       | 0001                                       | 0         | 0001                |             | 000               | <          | 0001                                          | 4            | 8               |          |
|   | A CALCAST AND A  | 007            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8                | 200     | 283                                        |           | 3 8                 | Š           | 300               | 3          | 332                                           | 2            | 300             | 1        |
|   | PERMISSIBLE SHADE AD LACENT SPANS IN MEDID MANDERS BANDAN ANCHES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEVN ANGIE     | 117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DEVN ANGIE       | NAG     | DEVA ANGIE                                 | APAN N    | DEVN ANGIE          | ľ           | DEVN ANCHE        | ONG.       | DEVALANCE C                                   | (A) (A)      | 200             | 5        |
|   | CHECKEL ON CHICAN AND TO THE CHICAN AND THE CHICAN  | -              | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90               | 000     | 5                                          |           | 9                   | 1           | 46                | 1          | 9                                             | 2            | 2000            | 2        |
|   | AND DETAILS VALUE SHOWS FOR THE SIGNATURE SHOULD SAVE OF AN INCIDENT SOURCE OF THE STATE OF THE SIGNATURE SHOWS FOR THE SIGNAT |                | 284D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,                |         |                                            | 35        | 3 8                 | 850         | 44                | 848        | 8 8                                           | 200          | 2 4             | 3 8      |
|   | BOW OF THE VALUE WHO WHO THE SOME OF RUSALITING STANS SUBSECTION TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 4              |         | r e                                        | ફ         | S &                 | 300         | 2                 | 708        | 5 8                                           | 000          | 2               | <u> </u> |
|   | A PLABILITY OF GROONE CERTANCES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         | 212                                        | 957       | 76                  | 96          | \$ £              | 070        | 8 0                                           | 907          |                 |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                | 5 20    | 2 [                                        | 2001      | 120                 | 2 2         | 47                | 3 8        | ò                                             | 3 5          |                 |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         | - 5                                        | 1000      | 97                  | 1000        | 4 3               | 200        | 8 8                                           | //6          |                 |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 0              | 1107    | 2 0                                        | 100       | 5 6                 | 200         | 8 8               | 029        | 8 3                                           | 1201         |                 |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                |         | ^ 0                                        | 3 2       | 47                  | 36          | 200               | 200        | 3 2                                           | 900          |                 |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 900     | ,                                          | 2007      | 3 8                 | è           | 8 6               | 38         | 3 5                                           |              |                 |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 707     | ,                                          | 1000      | 77.                 | 200         | 36                | 081        | 75                                            | 100          |                 |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            | 0000      | 4 8                 | 702         | 3 8               | 977        | 5 6                                           | 197          |                 |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 1       | ,                                          | 1000      | 3 5                 | //2/        | 3 3               | 12/4       | 8 9                                           | 3            |                 |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 1       | 4 (                                        | 200       | 4                   | 1300        | 3 8               | 1322       | 49                                            | 1200         |                 |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | 1       | 1                                          | 1411      | 2 !                 | 1370        | 3                 | 0/5        | 6                                             | 1333         |                 |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         | 2                                          | 1462      | 17                  | 1446        | 32                | 418        | 47                                            | 1378         |                 |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         | & Delow                                    | 1513      | 9                   | 1496        | E 8               | 1467       | 46                                            | 424          |                 |          |
|   | DESIGN LOAD TENSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           | 2                   | 246         | 8                 | 1515       | 45 & Delow                                    | 1470         |                 |          |
|   | 7/3.66 -(32C AND Full Wind)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           | FLOS                | PA 00 F 100 |                   |            |                                               |              |                 |          |
|   | 7/3.66 - (32C AND 75% of Full Wind)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           | 2582                | 0200        |                   |            |                                               |              |                 |          |
|   | 7/3 44 - 10C AND 34% of Bull Windt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           | 2,000.              | 23 00 LT    |                   |            |                                               |              |                 |          |
|   | OPGW - (30C AND Fill Ward)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           | 7147.               | Q 12        |                   |            |                                               |              |                 |          |
|   | OPCINE (22.0 AND 75% OF FILL Model)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           | 2000.               | 2000,00 kg  |                   |            |                                               |              |                 |          |
|   | CHANGE OF AND SAME ALCOHOLD IN THE COLUMN CO |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           | 7447.               | OU KG       |                   |            |                                               |              |                 |          |
|   | OF CANDOON OF THE WHILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           | 1921,               | 00 Kg       |                   |            |                                               |              |                 |          |
|   | CONDUCTOR-(SZC AND PULL WING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           | 6766                | 20 Kg       |                   |            |                                               |              |                 |          |
|   | CONDUCTOR-(52C AND 25% OF FULL WING)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           | 5814                | 5814.00 Kg  |                   |            |                                               |              |                 |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           | 5317                | 2           |                   |            |                                               |              |                 |          |
|   | BROKEN WIRE CONDITION (BROKEN ON THE SAME SIDE ON THE SAME SPAU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GW/ANY ONE     | 10 ON | ŧ                | ANY ONE | GW+ANY ONE CONDUCTOR OR ANY TWO CONDUCTORS | R ANY TWO | CONDUCTOR           | (0)         | Š                 | HANY TWO ( | GW+ANY TWO CONDUCTORS OR ALL THREE CONDUCTORS | OR ALL THREE | CONDUCTORS      |          |
| 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           |                     |             |                   |            |                                               |              |                 | 1        |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           |                     |             |                   |            |                                               |              |                 |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           |                     |             |                   |            |                                               |              |                 |          |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |         |                                            |           |                     |             |                   |            |                                               |              |                 |          |

### Xeldam- Mapusha 400 KV D/C Transmission Line with Quad AAAC Moose Conductor (WZ-2) OWNER: STERLITE POWER GRID VENTURES LIMITED - NEW DELHI

### **SAG TENSION CALCULATIONS**

Ruling span: (L) 400.00 m

Design Wind Pressure: (Pd): 483.00 N/Sq.mt

49.20 kg/Sq.mt

Gust response factor (for wire) : Gc: 2.22 2.30

Final wind pressure (for wire): 110.00 kg/\$q.mt 136.00 kg/\$q.mt 3.51 kg/m 1.49 kg/m

Final wind pressure (for Insulator): 148.00 kg/Sq.mt

<u>Particulars</u> <u>Conductor</u> <u>Earth-wire</u>

Code: AAAC Moose 7/3.66

Area, (A): 6.040 sq.cm 0.7365 sq.cm

Unit Wt : 1.666 kg/m 0.583 kg/m

Diameter : (D) 3.195 cms 1.098 cms

Tensile strength: (T) 17130.00 kgs 6973.00 kgs

Elast. Mod : (E) .5508E+06 kg/sq.cm .1936E+07 kg/sq.cm

Expns. Coef: (∞) .2300E-04 /Deg.Cnt .1150E-04 /Deg.Cnt

### BASIC EQUATION OF SAG TENSION CALCULATIONS :-

F^2 [ F - (K-∞\*†\*E)] = Z

STARTING CASE - (CASE: 1)

TEMP 32 0 WiND 0 0

 K CAL BY FOS OR SAG
 FOS
 SAG

 FOS OR SAG REQ.
 4.55
 6.399

|             |             | 10         | Conducto        | <u>or</u> | <u>Earth</u> | ı-wire          |             |
|-------------|-------------|------------|-----------------|-----------|--------------|-----------------|-------------|
| Loading Cor | ditions     | sag<br>(m) | Ult.<br>Tension | % OF UTS  | sag<br>(m)   | Ult.<br>Tension | % OF<br>UTS |
| 0 - Dgr.    | No - Wind   | 7.110      | 4686.07         | 27.36 %   | 6.399        | 1822.05         | 26.13 %     |
| 0 - Dgr.    | 36% - Wind  | -          | 5316.60         | 31.04 %   | -            | 2146.42         | 30.78 %     |
| 32 - Dgr.   | No - Wind   | 8.841      | 3768.60         | 22.00 %   | 7.312        | 1594.66         | 22.87 %     |
| 32 - Dgr.   | 75% - Wind  |            | 5814.00         | 33.94 %   | -            | 2587.54         | 37.11 %     |
| 32 - Dgr.   | Full - Wind |            | 6765.07         | 39.49 %   | -            | 3013.72         | 43.22 %     |
| 53 - Dgr.   | No - Wind   | -          |                 |           | 7.923        | 1471.62         | 21.10 %     |
| 85 - Dgr.   | No - Wind   | 11.621     | 2867.16         | 16.74 %   | •            | l -             |             |

### Xeldam- Mapusha 400 KV D/C Transmission Line with Quad AAAC Moose Conductor (WI-2) OWNER: STERLITE POWER GRID VENTURES LIMITED - NEW DELHI

### **SAG TENSION CALCULATIONS**

Ruling span: (L) 400.00 m

Design Wind Pressure: (Pd) 483.00 N/Sq.mt

49.20 kg/Sq.mt

Gust response factor (for wire) : Gc: 2.22 2.30

Final wind pressure (for wire): 110.00 kg/Sq.mt 136.00 kg/Sq.mt 3.51 kg/m 1.66 kg/m

Final wind pressure (for Insulator): 148.00 kg/Sq.mt

<u>Particulars</u> <u>Conductor</u> <u>Earth-wire</u>

Code: AAAC Moose OPGW (24F)

Area, (A): 6.040 sq.cm 0.7565 sq.cm

Unit Wt : 1.666 kg/m 0.483 kg/m

Diameter : (D) 3.195 cms 1.220 cms

Tensile strength: (T) 17130.00 kgs 9032.00 kgs

Elast. Mod : (E) .5508E+06 kg/sq.cm .1417E+07 kg/sq.cm

Expns. Coef: (∞) .2300E-04 /Deg.Cnt .1380E-04 /Deg.Cnt

### BASIC EQUATION OF SAG TENSION CALCULATIONS :-

F^2 [ F - (K-∞\*†\*E)] = Z

STARTING CASE - (CASE: 1)

TEMP 32 0 WIND 0 0

K CAL BY FOS OR SAG
FOS OR SAG
FOS OR SAG REQ.

4.55

|                   |             |            | Conducto        | 10       | Eartt      | n-wire          |             |
|-------------------|-------------|------------|-----------------|----------|------------|-----------------|-------------|
| Loading Condition | ns          | sag<br>(m) | Ult.<br>Tension | % OF UTS | sag<br>(m) | Ulf.<br>Tension | % OF<br>UTS |
| 0 - Dgr.          | No - Wind   | 7.110      | 4686.07         | 27.36 %  | 6.399      | 1509.52         | 16.71 %     |
| 0 - Dgr.          | 36% - Wind  | _          | 5316.60         | 31.04 %  |            | 1920.80         | 21.27 %     |
| 32 - Dgr.         | No - Wind   | 8.841      | 3768.60         | 22.00 %  | 7.451      | 1296.43         | 14.35 %     |
| 32 - Dgr.         | 75% - Wind  | •          | 5814.00         | 33.94 %  |            | 2441.18         | 27.03 %     |
| 32 - Dgr.         | Full - Wind |            | 6765.07         | 39.49 %  |            | 2879.04         | 31.88 %     |
| 53 - Dgr.         | No - Wind   | -          |                 |          | 8.161      | 1183.71         | 13.11 %     |
| 85 - Dgr.         | No - Wind   | 11.621     | 2867.16         | 16.74%   | -          | T -             |             |

## TOWER SPOTTING DATA FOR XELDAM- MAPUSHA 400 KV D/C TRANSMISSION LINE (WZ-2) (QUAD AAAC MOOSE CONDUCTOR)

## (I) GENERAL DETAILS:

8 Normai Span (M) =

Design Wind Span (M) =

| Type of Condition | DA  | DBN | DB  | 2   | NOO | 99  | E PE |
|-------------------|-----|-----|-----|-----|-----|-----|------|
| UZ                | 400 | 400 | 400 | 400 | VUV | 400 | 976  |
| Care              |     |     |     | 2   | 200 | 3   | 707  |
| SWC.              | 240 | 240 | 240 | 240 | 240 | 240 | 154  |

### (II) TOWER TYPES:

d) Tower type "DA" Shall be used as Tangent tower with Double Suspension Insulator String.

b) Tower type "DBN/DB/DC/DDN/DD" Shall be used as Tension tower with Quad Tension Insulator String.

c) Tower type "DBN/DB" Shall also be used as Section tower.

d) Dead End tower shall have provision of 0 to 15 Degree deviation on line side as well as slack side,

# (III) ELECTRICAL CLERANCES FOR RAILWAY CROSSING

a} Crossing should be done with DDN/DD type tower with Quad tension insulator string with limiting span as 300m.

b) The crossing shall normally be at right angle to the railway track.

# Minimum Clerance between lowest point of 400 KV line conductor & Rail level shall be as below.

| 17.90 m                                  | 18.26 m (Clearance at OHE structures in mm) 15.434 m (Clearance at Mid OHE span in mm)                    |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| (1) For Existing Power Line Crossings :- | (2) For New Power Line Crossings or Alteration to Existing Power Line Crossing in Electrified Sections :- |

14.46 m 18.26 m (3) For Power Line Crossings in Non-Electrified Sections :-

(Line is not anticipated to be electrified)

(Line to be electrified in future)

5.49 m

(4) For Highest Traction Conductor & Lowest crossing conductor :-

However, approval of Railway Crossing from railway authority has to be obtained in each case.

### (IV) MINIMUM CLERANCE FOR POWER LINE CROSSING WHEN CROSSING EACH OTHER For System 400 KV

| For 11KV to 66 KV   | 5.49 m  |
|---------------------|---------|
| For 110KV to 132 KV | 5.49 m  |
| For 220 KV          | 5.49 m  |
| For 400 KV          | 5.49 m  |
| For 765 KV          | 7.94 m  |
| For 1200 KV         | 10.44 m |
| For 500 KV HVDC     | 6.79 m  |
| For 800 KV HVDC     | 9.04 m  |
|                     |         |

### (V) TELECOMMUNICATION LINE CROSSING

The angle of crossing shall be as near to 90 deg as possible. However deviation to the extent of 30 deg may be permitted under exceptional difficult situation.

For 400 KV 4.48 m

### (VI) SECTION TOWER

The No. of consective spans between the section points shall not exceed 15 or 5kms in plain terrain & 10 spans or 3kms in hilly terrain. A section point shall comprise of tension point with DBN/DB type tower.

- (VII) Minimum ground clerance required = 8840 mm.
- (VIII) For all national highways crossings, tension towers is to be used and crossing span is not to exceed 250 m
- (IX) Way leave clerance: 26 m from the cl of tower on either side of tower.
- (X) Maximum span of adjucent spans for various angle of deviation are subjected to the condition that minimum specified live metal clerances and minimum around clerances are available.
- (XI) suspension towers shall be spotted such that vertical load of individual spans shall be acting downwards only, no uplift is permitted in suspension towers.
- (XII) tower type "DC" shall be used for transposition with 0 deg. deviation with modification of cross arms.
- (XIII) Intermediate spans in a section shall be as near as possible to the normal span.

### Max. Individual Span Calculation

L = Normal Span (m)

400

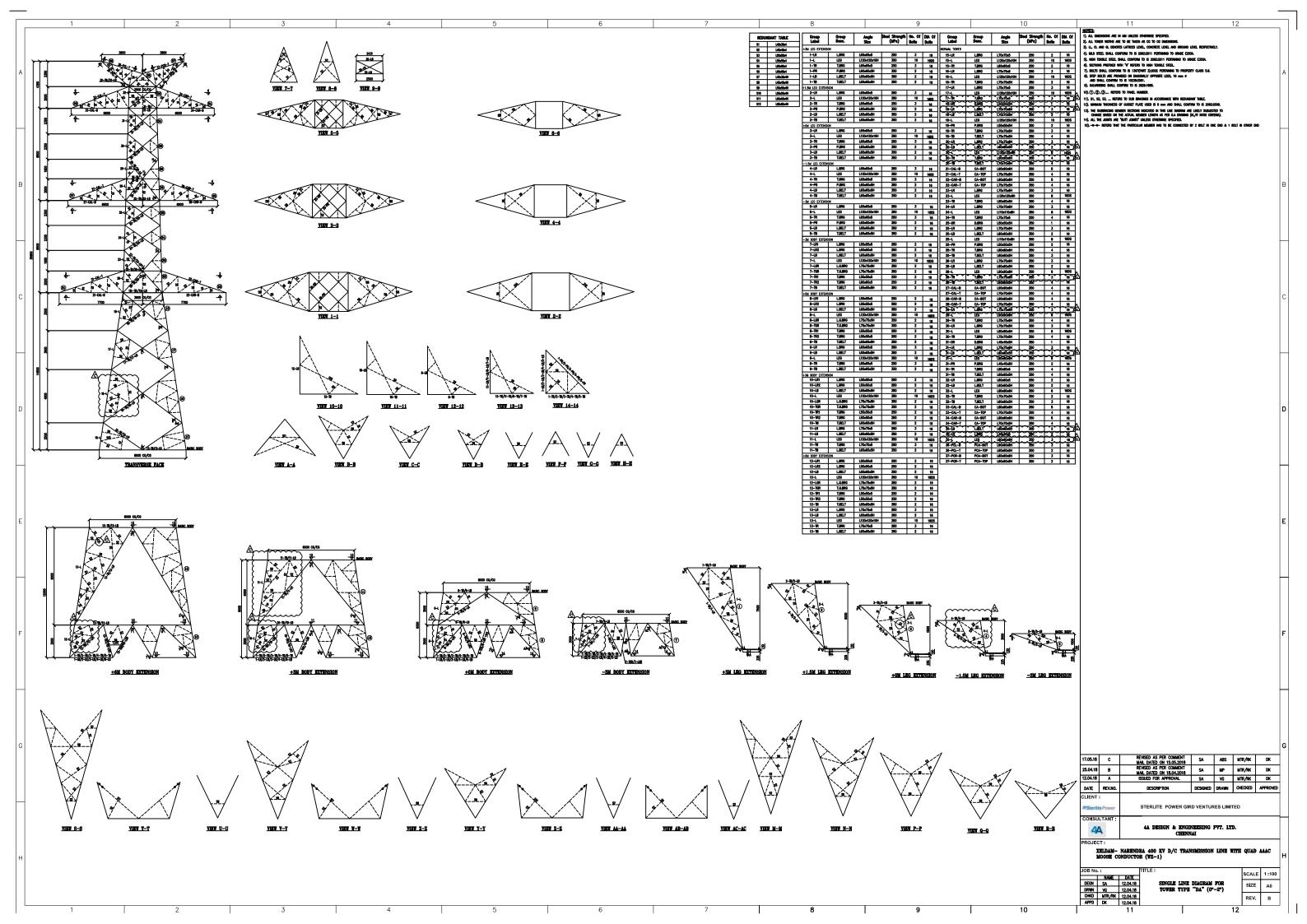
V = System voltage in kVs

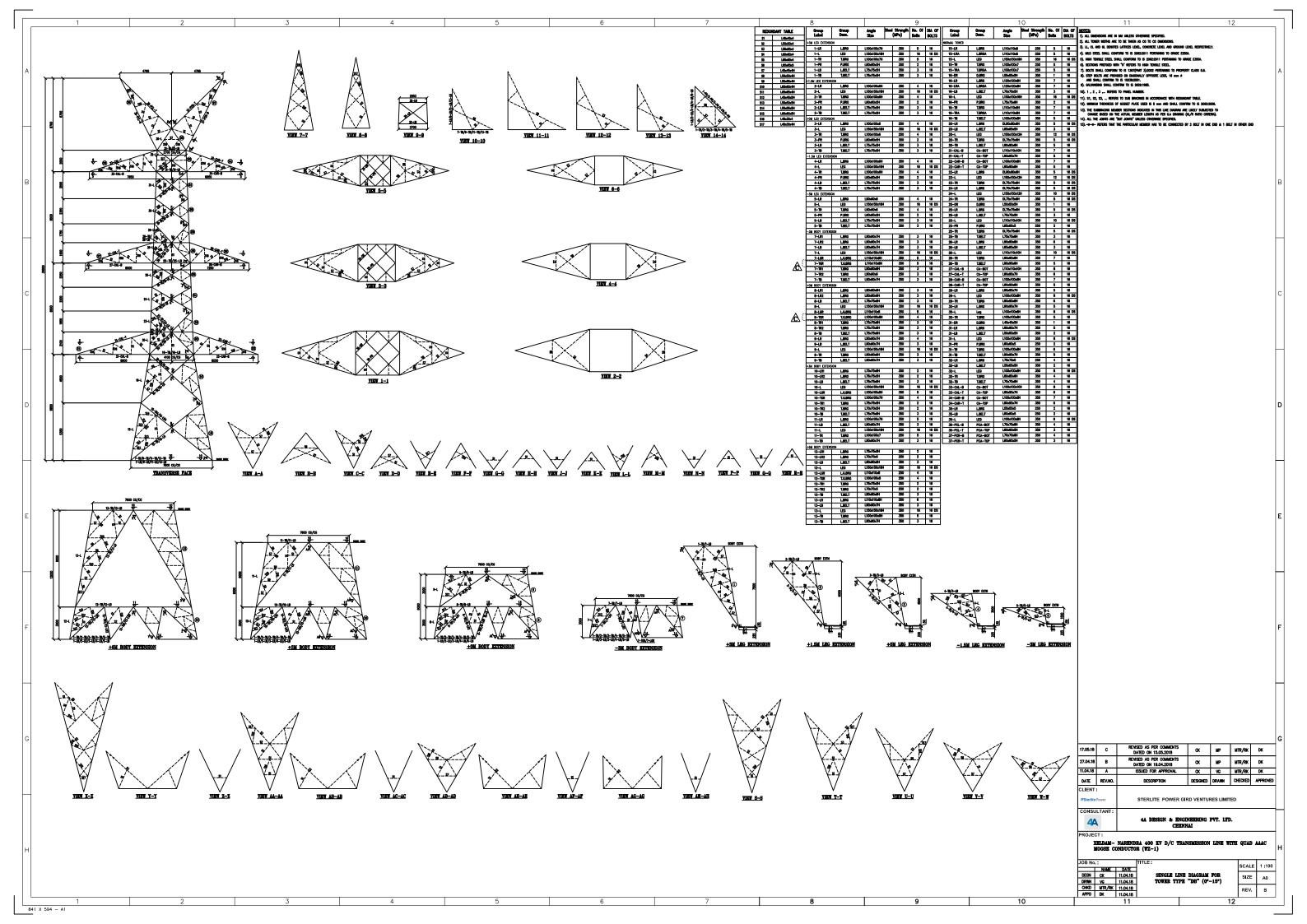
400

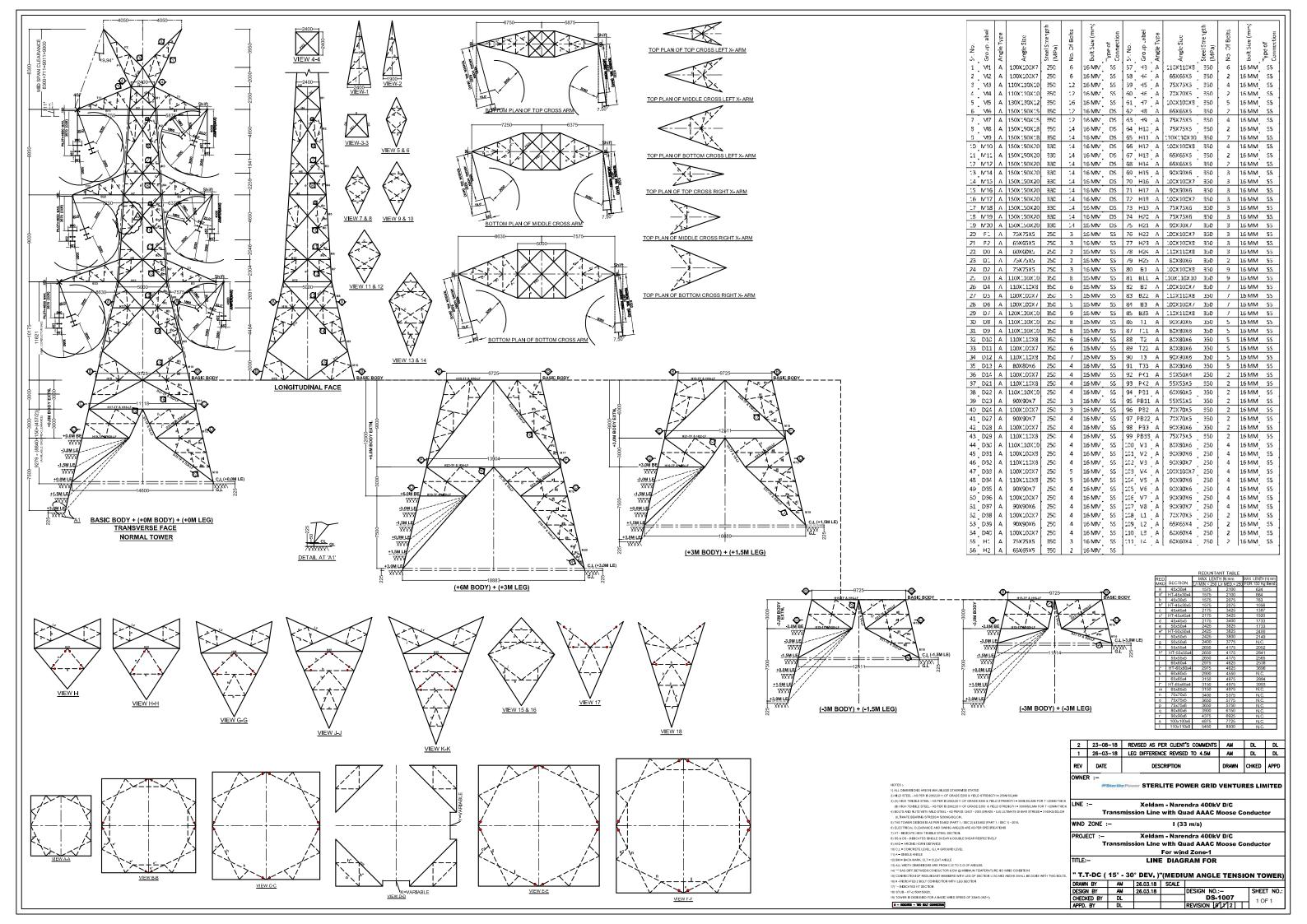
S = Max. Sag (incliding Sag error) (m)

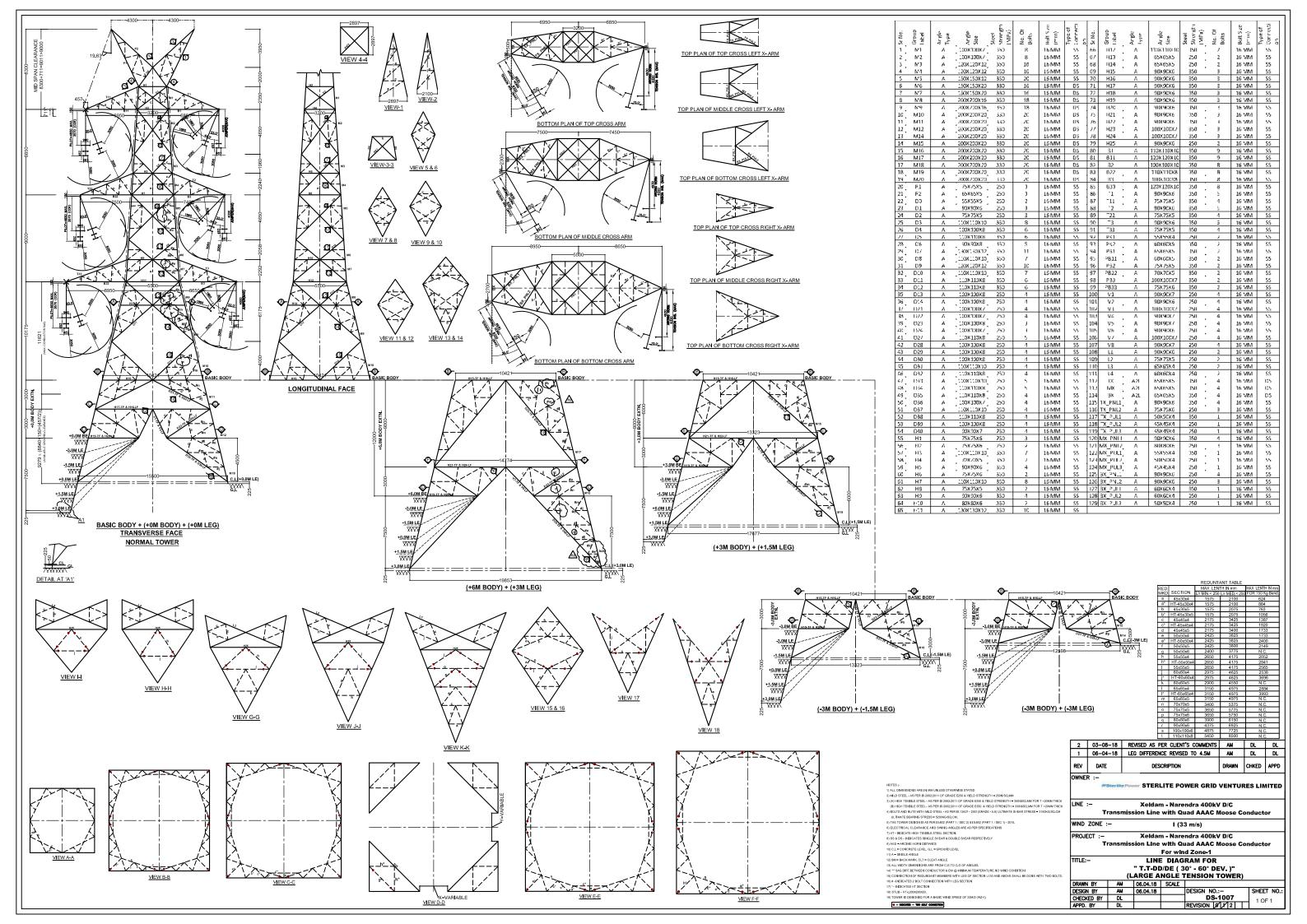
11.621

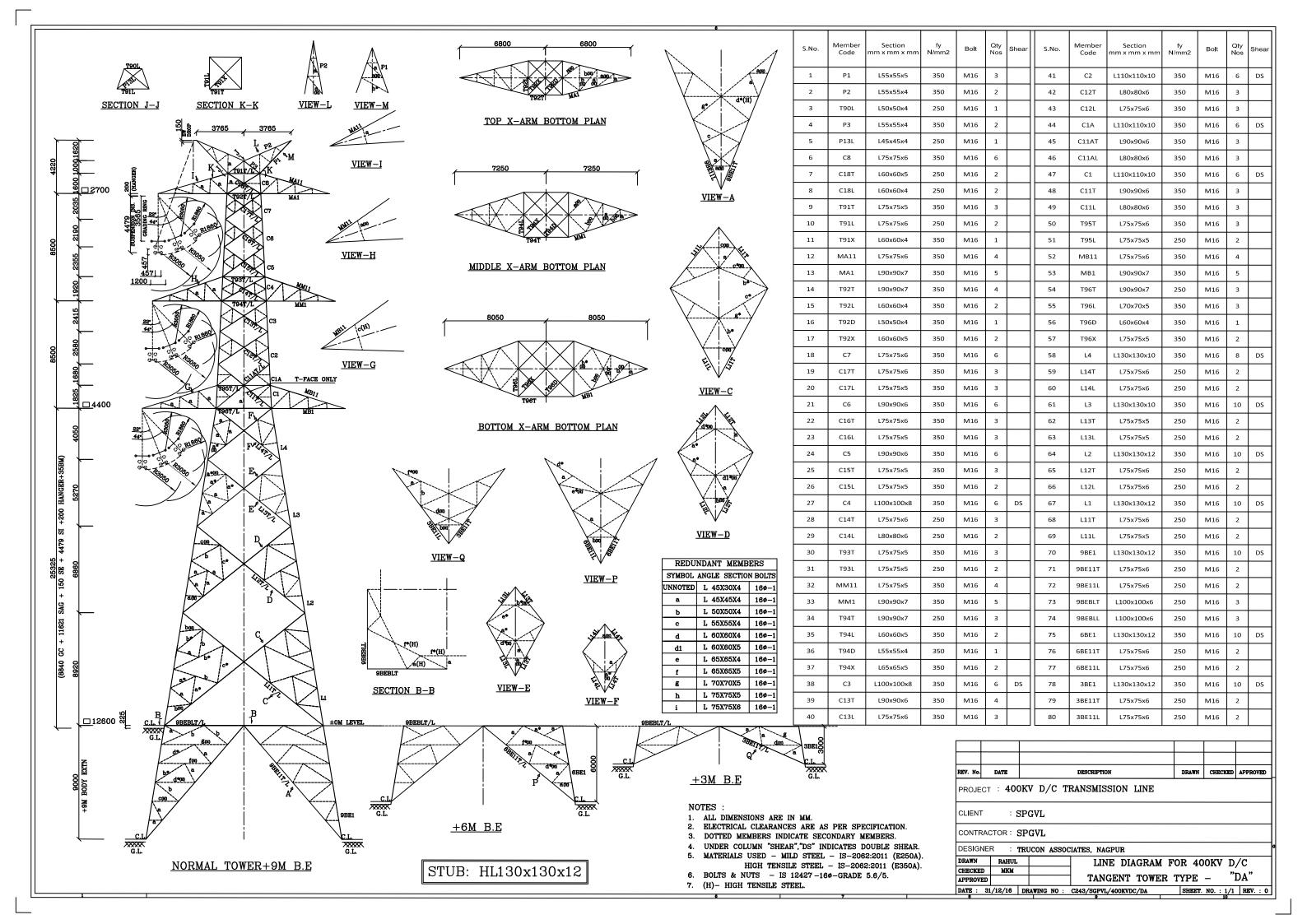
$$L_{\text{max}} = L\sqrt{\frac{K}{S}}$$

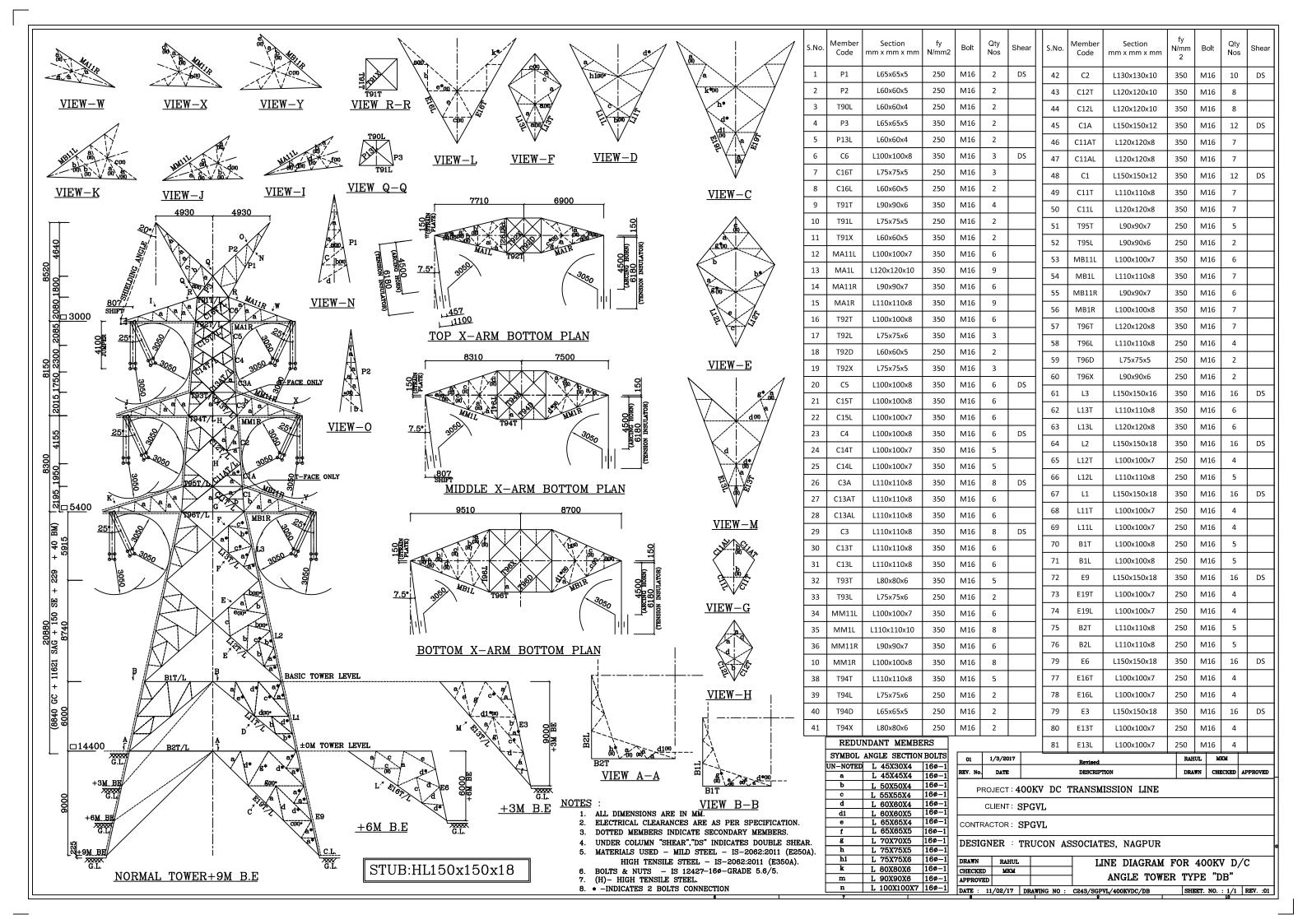

K = Max. Sag factor corresponding to Max.Individual span & is given by the equation written Below

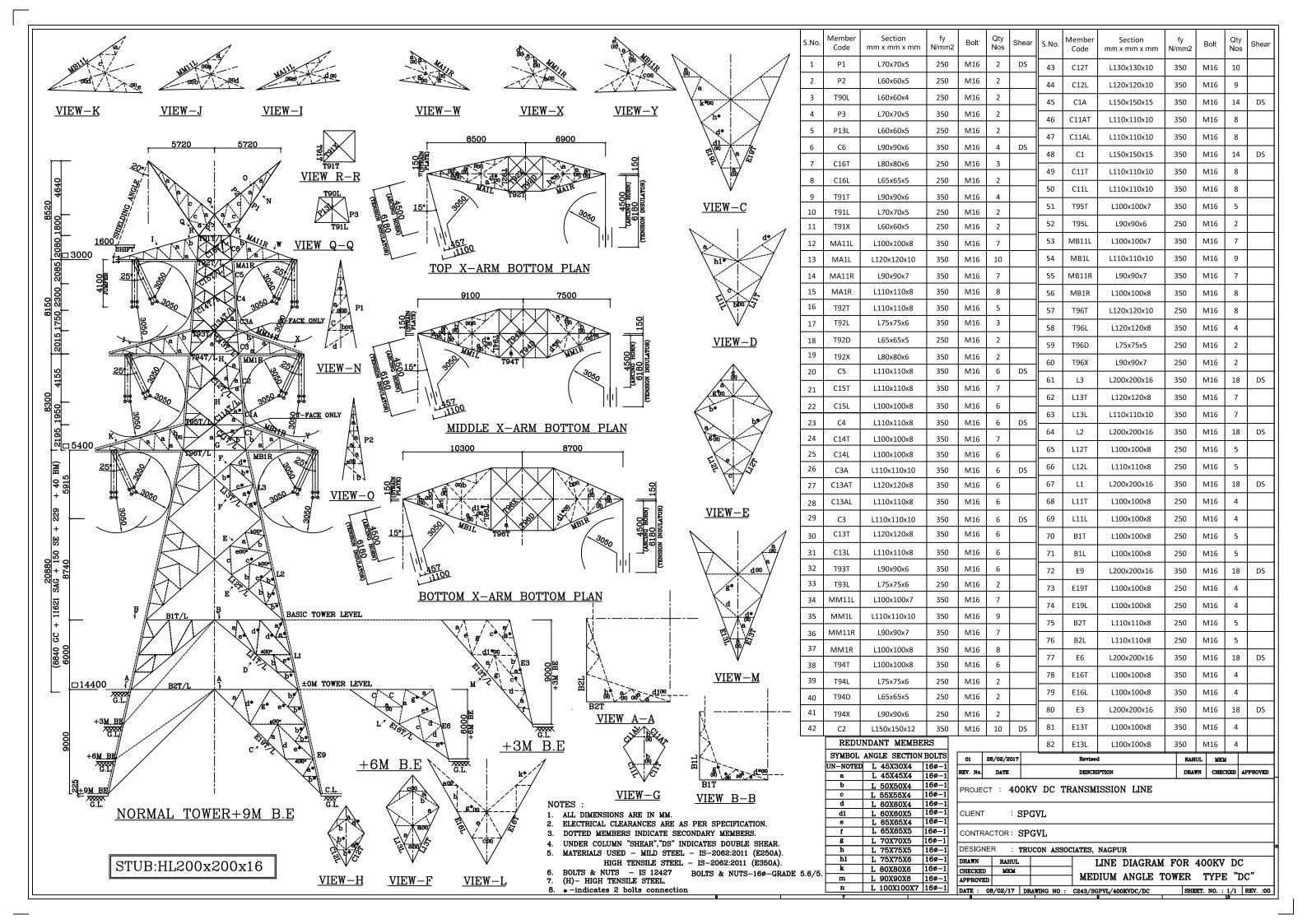

$$VS = 0.75\sqrt{K + SI} + \frac{V}{150}$$

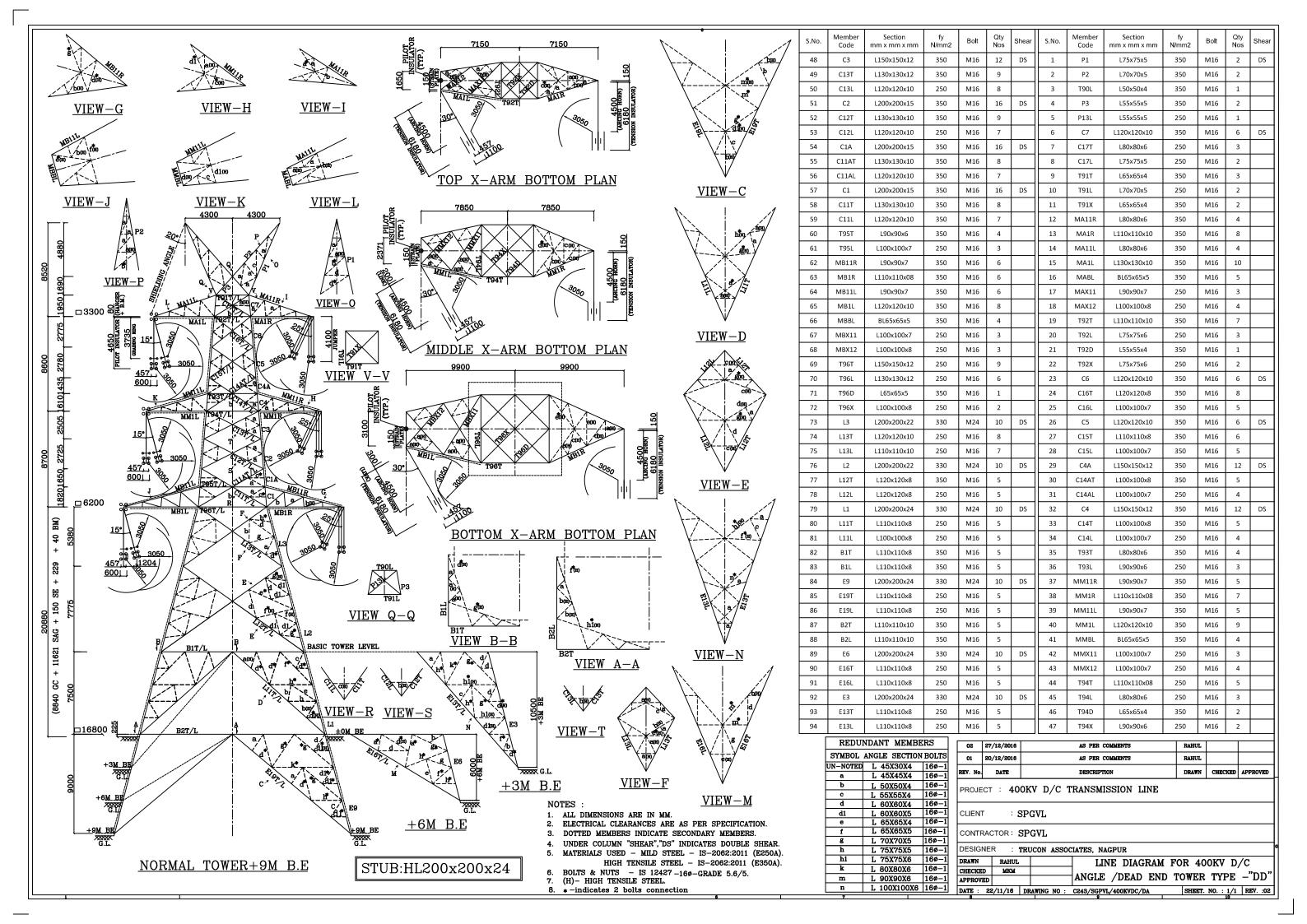

VS = Vertical Seperation


SI = Suspension insulator Assembly Length


| TOWER | VS   | SI  | K      | L <sub>max</sub> (m) | Span limit for permissible sum of adjacent span (m) (L <sub>max</sub> x 2) |
|-------|------|-----|--------|----------------------|----------------------------------------------------------------------------|
| DA    | 8.45 | 4.8 | 54.661 | 868.0                | 1736.0                                                                     |
| DB    | 8.00 | 0   | 50.568 | 834.0                | 1668.0                                                                     |
| DC    | 8.20 | 0   | 54.432 | 866.0                | 1732.0                                                                     |
| DD    | 8.35 | 0   | 57.423 | 889.0                | 1778.0                                                                     |

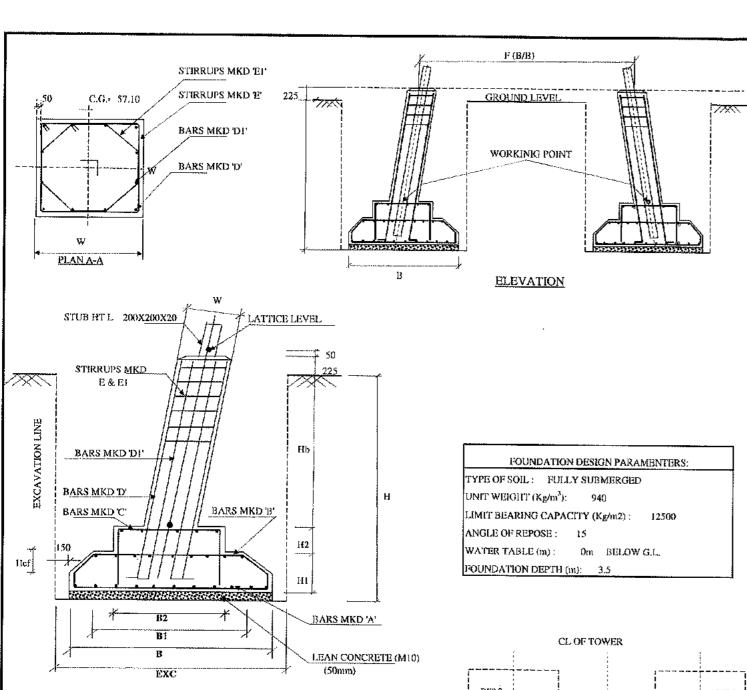











APPENDIX B FOUNDATION DESIGN DETAILS

www.erm.com Version: 1.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL) 21 December 2020



| RETE (M10) |       | /<br>!                                | CL OF TOV        | YER<br>: |   |       |                     |
|------------|-------|---------------------------------------|------------------|----------|---|-------|---------------------|
|            | Ptrá  | · · · · · · · · · · · · · · · · · · · | 3<br>4<br>4<br>1 | :        | 1 | PIT 2 |                     |
|            |       | :<br>:                                |                  |          |   | >     | <br> <br> <br> <br> |
|            |       | :                                     |                  |          |   |       |                     |
|            |       |                                       | /                | N        |   |       |                     |
|            |       |                                       |                  |          |   |       | <br>                |
|            | PIT 4 |                                       |                  | ~ ~      |   | PIT I |                     |
|            |       | 4                                     |                  | M        |   |       |                     |
|            |       |                                       | PET MARKI        | NG PLAN  |   |       |                     |


EXC W **B2** Ш Hef HЬ 7530 7230 3500 700 6630 2000 400 300 300 2750

| BAR<br>MKD | BAR BENDING SKETCH    | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FON | LENGTH   | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|-----------------------|--------------------------|---------------------|------------------------|----------|----------------|-------------------|---------------------|
|            |                       |                          | (mm)                | (no)                   | (mm)     | (kg/m)         | (kg)              | (kg)                |
| Λ          | 7130                  | PAD REINFORCEMENT        | 20                  | 72                     | 7130     | 2.46           | 1265.44           | 5061.76             |
| ß          | 6530<br>50 354 354 50 | PAD REINFORCEMENT        | 16                  | 76                     | 7337     | 1.58           | 879.72            | 3518.86             |
| С          | 1900<br>560 50 50 560 | PAD REINFORCEMENT        | 16                  | 2:0                    | 3 20     | 1.58           | 98.47             | 393,87              |
| D          | 3503                  | CHIMNEY BAR              | 32                  | 4                      | 4003     | 6.31           | 101.04            | 404.17              |
| D1         | 500                   | CHIMNEY BAR              | 28                  | 8                      | 4003     | 4.83           | 154.71            | 618.88              |
| E          | 600                   | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 2592     | 0.39           | 13.29             | 53,18               |
| E1         | 200 283               | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 2123     | 0.39           | 10,89             | 43.57               |
|            |                       |                          |                     |                        | TOTAL RE | INFORCEME      | VIV TOWER=        | 10094,3             |

### NOTES:

- LDRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS O'THERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10,
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm<sup>2</sup>)
- 5.STUB BELOW GROUND LEVEL = 3300
- 6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR POUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.5 TUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| QUANTITIES/ STRU              | CTURE   |
|-------------------------------|---------|
| CONCRETE (M20) m <sup>3</sup> | 89.21   |
| CONCRETE (M10) m <sup>3</sup> | 10.45   |
| TOTAL CONCRETE m <sup>3</sup> | 99.66   |
| EXCAVATION m3                 | 793.81  |
| REINFORCEMENT Kg              | 10094.3 |



|        |       | 1      |              |                            | 1         | <u> </u> | T    |
|--------|-------|--------|--------------|----------------------------|-----------|----------|------|
| REV NO | DATE  |        |              | DESCRIPTION                | DRAWN     | СНКО     | APPI |
| PRO    | JECT  | 400KV  | / D/C XELDAI | M-NARENDRA TRANSMISSIO     | N LTD     |          |      |
| CLI    | ENT   | STERI  | LITE POWER   | GRID VENTURES LIMITED      |           |          |      |
| DESIG  | ONER: | STERI  | LITE POWER   | GRID VENTURES LIMITED      |           |          |      |
| DRWN   | RT    | 21-09- | 18           | FOUNDATION DRAWING FOR T   | WED TVDE  |          |      |
| CHKĐ   | AM    | 21-09- | 18           | DD-3/+0/+3/+6M 400KV D/C   |           |          |      |
| APPD   | DL    | 21-09- | 18           | FULLY SUBMERGED SOIL (3.5  | •         |          |      |
| DATE   | 21-0  | 19-18  | DRAWING NO.  | GTTPL/400DC/WZ-1/DD/P-004A | SHEET NO. | 1/2 RI   | ev o |

REFER SHEET 2 OF 2 FOR PIT DIMENSION TABLE FOR SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

FOUNDATION ELEVATION (CROSS SECTION)

2 TAN B =

FACE =

DEV =

TAN B =

VERTICAL SLOPE

IN FACE SLOPE

0.241965602

0.483931204

1.028857304

1.05692701

0.235178971

1.027282409

copyright Studies (incl.). M. 2011. ALL RIGHTS RESERVED.

No part of this copyrightful material on the regressheed or transmitted in any form by any means for any improve without given written permission of the count. The Universitied use of any, will amount to infungation and the infringer shall be held.

| Project<br>GOA                            |                               | 400 K                         | V D/C -                    | 1-X & M-X<br>1              | V (WZ-1)<br>PIT D <b>IM</b> E | - TT "D         | D" SOII    | L TYPE                    | - FS (3.5 | М ОЕРТН)      |             | Client:  |          |
|-------------------------------------------|-------------------------------|-------------------------------|----------------------------|-----------------------------|-------------------------------|-----------------|------------|---------------------------|-----------|---------------|-------------|----------|----------|
|                                           | ****                          |                               | ľ                          |                             | 1. OHAL                       | 1401011         | IADLE      |                           | ****      |               |             | SPGVL    |          |
| 400 KV D/C-X-M & X                        | -N- TT "DD"                   | * F * 9/B of To<br>3MBE(+)-3k | ALE (TF)                   | " F " B/B of T<br>3M8E(+)-3 |                               | Stub Sec        | ction (HT) | Lattice<br>Level to<br>CL | cg        | sec B1        | 2*Tan B1    | sec 82   | 2ºTan Ba |
|                                           |                               | 1271                          | 3                          | 127                         | 13                            | 200X2           | 200X20     | 50                        | 57.1      | 1.028857      | 0.483931204 | 1.028857 | 0.48393  |
| Tower Dotali                              | Extra from -3MBE(+)-3MLE (mm) | cg-cg dim at<br>CL (TF)       | eg-eg dim<br>al CL<br>(LF) | Foundation<br>Base Width    | work pl                       | G.L. TO<br>C.L. | A1         | A2                        | В         | E             | F1          | F2       | Ħ        |
| -3MBE (+) -3M LE                          | . 0                           | 12623                         | 12623                      | 7230                        | 2750                          | 225             | 7031       | 7031                      | 9944      | 7530          | 10796       | 10796    | 3500     |
| -3M8E (+) -1.5M LE                        | 1500                          | 13349                         | 13349                      | 7230                        | 2750                          | 225             | 7394       | 7394                      | 10457     | 7530          | 11159       | 11159    | 3500     |
| -3MBE (+) +0M LE                          | 3000                          | 14074                         | 14074                      | 7230                        | 2750                          | 225             | 7757       | 7757                      | 10970     | 7530          | 11522       | 11522    | 3500     |
| 3MBE (+) +1.5M LE                         | 4500                          | 14800                         | 144100                     | 7230                        | 2750                          | 225             | 8120       | 8120                      | 11483     | 7530          | 11885       | 11885    | 3500     |
| 3M8E (+) +3M LE                           | 6000                          | 15526                         | 15526                      | 7230                        | 2750                          | 225             | 6483       | 8483                      | 11997     | 7530          | 12248       | 12248    | 3500     |
| -0M8E (+) -3M LE                          | 3000                          | 14074                         | 14074                      | 7230                        | 2750                          | 225             | 7757       | 7757                      | 10970     | 7590          | 11522       | 1‡522    | 3500     |
| +0MBE (+) -1.5M LE                        | 4500                          | 14800                         | 14800                      | 7230                        | 2750                          | 225             | 8120       | 8120                      | 11489     | 7530          | 11885       | 11885    | 3500     |
| OMBE (+) +OM LE                           | 6000                          | 15526                         | 15526                      | 7230                        | 2750                          | 225             | 8483       | 8483                      | 11997     | 7530          | 12248       | 12248    | 3500     |
| OMBE (+) +1.5M LE                         | 7500                          | 16252                         | 16252                      | 7230                        | 2750                          | 225             | 8846       | 8846                      | 12510     | 7530          | 12611       | 12611    | 3500     |
| OMBE (+) +3M LE                           | 9000                          | 16978                         | 16978                      | 7230                        | 2750                          | 225             | 9209       | 9209                      | 13023     | 7630          | 12974       | 12974    | 3500     |
| 3MBE (+) -3M LE                           | 8000                          | 15526                         | 15526                      | 7230                        | 2750                          | 225             | 8483       | 8483                      | 11997     | 7530          | 12248       | 12248    | 3600     |
| 3MBE (+) -1.5M LE                         | 7500                          | 16252                         | 16252                      | 7230                        | 2750                          | 225             | 8846       | 8646                      | 12510     | 7530          | 12611       | 12611    | 3500     |
| 3MBE (+) +0M LE                           | 9000                          | 16978                         | 16978                      | 7230                        | 2750                          | 225             | 9209       | 9209                      | 13023     | 7530          | 12974       | 12974    | 3500     |
| -3MBE (+) +1.5M LE                        | 10500                         | 17704                         | 17704                      | 7230                        | 2750                          | 225             | 9572       | 9572                      | 13537     | 7530          | 13337       | 13397    | 3500     |
| -3M86 (+) +3M LE                          | 12000                         | 18430                         | 18430                      | 7230                        | 2750                          | 225             | 9935       | 9935                      | 14050     | 7530          | 13700       | 13700    | 3500     |
| 6MBE (+) -3M LE                           | 9000                          | 16978                         | 16978                      | 7230                        | 2750                          | 225             | 9269       | 9209                      | 13023     | 7530          | 12974       | 12974    | 3500     |
| 6M8E (+) -1.5M LE                         | 10500                         | 17704                         | 17704                      | 7230                        | 2750                          | 225             | 9572       | 9572                      | 13537     | 7530          | 13337       | 13337    | 3500     |
| 6MBE (+) +0M LE                           | 12000                         | 1B430                         | 18430                      | 7230                        | 2750                          | 225             | 9935       | 9935                      | 14050     | 7530          | 13700       | 13700    | 3500     |
| 6MBE (+) +1.5M LE                         | 13500                         | 19156                         | 19156                      | 7230                        | 2760                          | 225             | 10298      | 10298                     | 14563     | 7530          | 14063       | 14063    | 3500     |
| 6M8E (+) +3M LE                           | 15000                         | 19882                         | 19882                      | 7290                        | 2750                          | 225             | 10661      | 10661                     | 15076     | 7530          | 14426       | 14426    | 3500     |
|                                           |                               |                               |                            |                             |                               |                 |            | CL of found               |           |               | 14420       | 14450    | จจบบ     |
|                                           |                               |                               |                            |                             |                               | _               |            | 7                         | <u></u>   |               | CL          |          |          |
| 8 · b · b · - · · · · · · · · · · · · · · |                               |                               |                            |                             |                               |                 |            | ┑                         | 111       | / I           | G.L.        |          |          |
|                                           |                               |                               |                            | 710-2141                    | $\lambda$                     |                 | ·          |                           | -MI       |               |             |          |          |
|                                           | ∯It C                         |                               | į                          |                             | p tB                          | ,               | A2 F2      |                           | -7#7      |               |             |          |          |
| iasi                                      | i                             |                               | į                          | В                           |                               | İ               |            |                           | 111       | <b>⇒</b> (  " |             |          |          |
| -RACE                                     |                               |                               | / لا                       |                             |                               | Working         | 1          | Ĺ                         |           |               |             |          |          |
| a l                                       |                               |                               |                            |                             |                               | Point A         |            | L                         | 1         | ,             |             |          |          |

Limit Boaring Capacity

Veight of soil (Dry portion)

Weight of soil (Wet portion)

Angle of Repose (Wet portion)

Water Table

Kg/Sqm

Kg/cum

Kg/cum

Deg

Deg

Below G

1440

940

30

15

0.0M

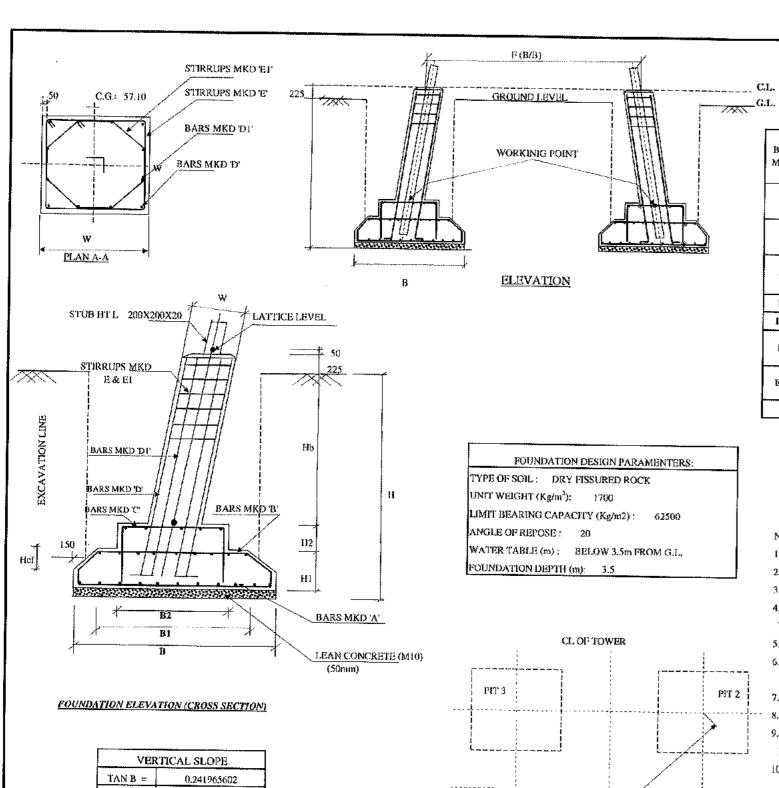
### NOTE:

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD, IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY,
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

| SRTICAL SLOPE       |  |  |  |  |  |  |  |
|---------------------|--|--|--|--|--|--|--|
| 0.241965602         |  |  |  |  |  |  |  |
| 0.483931204         |  |  |  |  |  |  |  |
| 1.028857304         |  |  |  |  |  |  |  |
| 1.05692701          |  |  |  |  |  |  |  |
| N PACE SLOPE        |  |  |  |  |  |  |  |
| 0.235178971         |  |  |  |  |  |  |  |
| SGC H = 1,027282409 |  |  |  |  |  |  |  |
|                     |  |  |  |  |  |  |  |

### NOTES:

- LDRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20,LBAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEYEL =


3300 mm

- $6. \mbox{WHENEVER}$  NBCESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS SUMM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.



|        |          | 1.                                                                               |                                   |                  |             |             |  |  |  |  |  |  |
|--------|----------|----------------------------------------------------------------------------------|-----------------------------------|------------------|-------------|-------------|--|--|--|--|--|--|
| RBV NO | DATE     |                                                                                  | DESCRIPTION DRAWN CLIKED APP      |                  |             |             |  |  |  |  |  |  |
| PRO    | JECT     | 400KV D/C XE                                                                     | LDAM-NARENDRA TRANSMI             | ISSION LTD       |             |             |  |  |  |  |  |  |
| CLI    | ENT      | STERLITE POV                                                                     | VER GRID VENTURES LIMITE          | ED               | <del></del> | <del></del> |  |  |  |  |  |  |
| DESIG  | ONER:    | STERLITE POV                                                                     | VER GRID VENTURES LIMITE          | ßD               |             | ······      |  |  |  |  |  |  |
| DRWN   | k†       | 21-09-18                                                                         | EOINDATION DRAWN                  | 7 F/10 100 100 1 |             |             |  |  |  |  |  |  |
| нкр    | ΑM       | FOUNDATION DRAWING FOR TOWER TYPE   21-09-18   DD-3/4(V/+3/46M 400K.V D/C (WZ-1) |                                   |                  |             |             |  |  |  |  |  |  |
| \PPD   | DL       | 21-09-18                                                                         | FULLY SUBMERGED SOIL (3.5M DEPTH) |                  |             |             |  |  |  |  |  |  |
| DATE   | 21-09-18 | DRAWING NO.                                                                      | ALCO-P/OD/P-2/ACALILIA            | SHEET NO.        | 2/2 RT      |             |  |  |  |  |  |  |

empings Serbet extent to the Adjusted a Receipted to Server of the copyrighted in contact to apper food or bosonded passed from the copyrighted in contact to apper food or to the contact of the copyrighted and the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyrighted to the copyr



| В    | ŀΙ   | W   | Bi   | B2   | HĮ  | 112 | Hef | Hb   |
|------|------|-----|------|------|-----|-----|-----|------|
| 4860 | 3500 | 700 | 4260 | 2000 | 400 | 300 | 300 | 2750 |

| BAR<br>MKD | BAR BENDING SKETCH    | BAR DETAILS              | SECTION<br>DIAMETER | NO, OF BARS<br>PER FDN | LENGTH    | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|-----------------------|--------------------------|---------------------|------------------------|-----------|----------------|-------------------|---------------------|
|            |                       |                          | (mm)                | (no)                   | (aum)     | (ˈkg/m)        | (kg)              | (kg)                |
| A          | 4760                  | PAD REINFORCEMENT        | 16                  | 68                     | 4760      | 1.58           | 510.68            | 2042.71             |
| В          | 4160<br>50 354 354 50 | PAD REINFORCEMENT        | 16                  | 32                     | 4967      | 1.58           | 250.80            | 1003,18             |
| С          | 1900<br>568 50 50 568 | PAD REINFORCEMENT        | 16                  | 18                     | 3136      | 1.58           | 89.08             | 356.32              |
| D          | 3511                  | CHIMNEY BAR              | 32                  | 4                      | 4011      | 6.31           | 101.24            | 404.98              |
| D1         | 500                   | CHIMNEY BAR              | 28                  | 8                      | 401 l     | 4.83           | 155.02            | 620.11              |
| E          | 600                   | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 2592      | 0.39           | 13.29             | 53,18               |
| EI         | 200 283               | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 2123      | 0.39           | 10.89             | 43.55               |
|            |                       |                          | I                   |                        | TOTAL REI | NFORCEMEN      | TY TOWER:         | 4524.U              |

NOTES:

LDRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.

4. REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm<sup>2</sup>)

5.STUB BELOW GROUND LEVEL = 3300

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH

LOCATION OF TOWER,

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| QUANTITIES/STRUCTURE          |        |  |  |  |  |  |  |
|-------------------------------|--------|--|--|--|--|--|--|
| CONCRETE (M20) m <sup>3</sup> | 45.07  |  |  |  |  |  |  |
| CONCRETE (M10) m <sup>3</sup> | 4.72   |  |  |  |  |  |  |
| TOTAL CONCRETE m <sup>3</sup> | 49.79  |  |  |  |  |  |  |
| EXCAVATION m3                 | 293.64 |  |  |  |  |  |  |
| REINFORCEMENT Kg              | 4524.6 |  |  |  |  |  |  |

Approved to profession of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the

|        |      | Т      |              | 0.                           | ·         | ·      |     |
|--------|------|--------|--------------|------------------------------|-----------|--------|-----|
| REV NO | DATE |        |              | DESCRIPTION                  | DRAWN     | CHKD   | APP |
| PRO    | JECT | 400K   | V D/C XELDAI | M-NARENDRA TRANSMISSION      | LTD       |        |     |
| CLII   | ENT  | STER   | LITE POWER ( | GRID VENTURES LIMITED        |           |        |     |
| DESIC  | NER: | STER   | LITE POWER ( | GRID VENTURES LIMITED        |           |        |     |
| DRWN   | RT   | 21-09- | -18          | FOUNDATION DRAWING FOR TO    | WED WYDD  |        |     |
| CHKD   | AM   | 21-09- | -18          | DD-3/+0/+3/+6M 400K V D/C    |           |        |     |
| APPD   | DL   | 21-09- | -18          | DRY FISSURED ROCK SOIL (3.5) |           |        |     |
| DATE   | 21-0 | 9-18   | DRAWING NO.  | GTTPL/400DC/WZ-I/DD/F-005A   | SHEET NO. | 1/2 RI | v r |

|                 |           | :            |      | i     |   |
|-----------------|-----------|--------------|------|-------|---|
| <br>  PET 3<br> |           |              | <br> | PIT 2 |   |
| <br> <br>       |           |              |      |       |   |
|                 |           | N            | -,   |       | - |
| PIT 4           |           |              |      | PIT I |   |
|                 | PIT MARKU | M<br>NG PLAN |      |       |   |

REFER SHEET 2 OF 2 FOR PIT DIMENSION TABLE FOR SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

0.483931204

1.028857304

1.05692701

0.235178971

1.027282409

IN FACE SLOPE

2 TANB =

FACE =

DEV =

TANB =

SECB =

coppengic Stepline Grief Ltd. 20a LALS, RIGHTS RESELECTED
No part of this copyrighted treaterial can be re-produced on tamarainted in any form
by any means for any purpose without prod written permission of the owner.
The Manufacined uses if any, with amount to intragence and the infringer sholl be held
Eacher by the say destrates and quantilateness with intrageometra.

| Project                                |                                     | 400 K                   | V D/C -X                   |                             |         |                    |              |                     | DFR (3,  | 5M DEPTH)       |                | Client:  | •        |
|----------------------------------------|-------------------------------------|-------------------------|----------------------------|-----------------------------|---------|--------------------|--------------|---------------------|----------|-----------------|----------------|----------|----------|
| GOA                                    |                                     |                         | 1                          | PIT DIMENSION TABLE         |         |                    |              |                     |          |                 |                | SPGVL    |          |
| 400 KV D/C-X-M & X-                    | N- TT "DD"                          |                         |                            | " F " B/B of T<br>3MBE(+)-3 |         | Stuty Section (HT) |              | Lattice<br>Level to | cg       | sec B1          | 2°Tan B1       | sec B2   | 2"Tan Bi |
| · · · · · · · · · · · · · · · · · · ·  |                                     | 1271                    | 3                          | 127                         | 13      | 200X               | 200X20       | 50                  | 67.1     | 1.028857        | 0.483931204    | 1.028857 | 0.483931 |
| Tower Detail                           | Exin from<br>-SMBE(+)-<br>3MLE (mm) | og-og dim at<br>CL (TF) | og-og dim<br>at CL<br>(LF) | Foundation<br>Base Width    | work pt | G.L. TO<br>C.L.    | A1           | A2                  | В        | E               | F1             | F2       | Н        |
| -3MBE (+) -3M LE                       | 0                                   | 12623                   | 12823                      | 4860                        | 2750    | 225                | 7031         | 7031                | 9944     | 4860            | 9461           | 9461     | 3500     |
| -3MBE (+) -1.5M LE                     | 1500                                | 13349                   | 19349                      | 4860                        | 2750    | 225                | 7394         | 7394                | 10457    | 4860            | 9824           | 9824     | 3500     |
| -3MBE (+) +0M LE                       | 300D                                | 14074                   | 14074                      | 4860                        | 2750    | 225                | 7757         | 7757                | 10970    | 4860            | 10187          | 10187    | 3500     |
| -3MBE (+) +1.5M LE                     | 4500                                | 14800                   | 14800                      | 4860                        | 2750    | 225                | 8120         | 8120                | 11483    | 4860            | 10560          | 10550    | 3500     |
| -3MBE (+) +3M LE                       | 8000                                | 15526                   | 15626                      | 4860                        | 2750    | 225                | 8483         | 8483                | 11997    | 4960            | 10913          |          |          |
| +0MBE (+) -3M LE                       | 3000                                | 14(174                  | 14074                      | 4860                        | 2750    | 225                | 7757         | 7757                | 10970    | 4860            | 10187          | 10913    | 3500     |
| +0MBE (+) -1.5M LE                     | 4500                                | 14800                   | 14800                      | 4860                        | 2760    | 225                | 8120         | 8120                | 11483    | 4860            |                |          | 3500     |
| +0M8E (+) +0M LE                       | 8000                                | 15526                   | 15526                      | 4860                        | 2750    | 225                | 8483         | 8483                | 11997    | 4860            | 10550<br>10913 | 10550    | 3500     |
| +0MBE (+) +1.5M LE                     | 7500                                | 18252                   | 16252                      | 4860                        | 2750    | 225                | 9846         | 8846                | 12510    | 4860            | 11276          | 10913    | 3500     |
| +0MBE (+) +3M LE                       | 9000                                | 16978                   | 1697B                      | 4860                        | 2750    | 225                | 9209         | 9209                | 13023    |                 |                | 11276    | 3500     |
| +3M8E (+) -3M LE                       | 6000                                | 15526                   | 15526                      | 4860                        | 2750    | 225                | 8483         | 8483                | 11997    | 4860            | 11639          | 11639    | 3500     |
| +3MBE (+) -1.5M L€                     | 7500                                | 16252                   | 16252                      | 4860                        | 2750    | 225                | 8846         | 8846                | T        | 4860            | 10913          | 10913    | 3500     |
| +3MBE (+) +0M LE                       | 9000                                | 16978                   | 16978                      | 4860                        | 2750    | 225                | 9209         | 9209                | 12510    | 4860            | 11276          | 11276    | 3500     |
| +3MBE (+) +1.5M LE                     | 10500                               | 17704                   | 17704                      | 4860                        | 2750    | 225                | 9572         | 9572                | 13023    | 4860            | 11639          | 11639    | 3500     |
| +3MBE (+) +3M LE                       | 12000                               | 18430                   | 18430                      | 4860                        | 2750    | 225                |              |                     | 13537    | 4860            | 12002          | 12002    | 3500     |
| +6MBE (+) -3M LE                       | 9000                                | 16978                   | 16978                      | 4860                        | 2750    | 225                | 9935<br>9209 | 9935                | 14050    | 4860            | 12365          | 12365    | 3500     |
| +6MBE (+) -1.5M LE                     | 10500                               | 17704                   | 17704                      | 4860                        | 2750    | 225                |              | 9209                | 13023    | 4860            | 11639          | 11839    | 3500     |
| +6MBE (+) +0M LE                       | 12000                               | 18430                   | 18430                      | 4860                        | 2750    | 225                | 9572         | 9572                | 13537    | 4860            | 12002          | 12002    | 3500     |
| +6M8E (+) +1.5M LE                     | 13500                               | 19156                   | 19156                      | 4860                        | 2750    | 225                | 9935         | 9935                | 14050    | 4860            | 12365          | 12365    | 3500     |
| +6MBE (+) +3M LE                       | 15000                               | 19882                   | 19882                      | 4860                        | 2750    |                    | 10298        | 10298               | 14563    | 4960            | 12728          | 12728    | 3500     |
|                                        |                                     | 14002                   | 13002 ]                    | 4000                        | 2/50    | 225                | 10661        | 10661               | 15076    | 4860            | 13091          | 13091    | 3500     |
|                                        | ;                                   |                         | :                          |                             | ;       | <b>≠</b>           |              | CL of found         | fation ! |                 | CL             |          |          |
|                                        |                                     |                         | :                          | [                           |         |                    | 1            |                     |          |                 | G.L.           |          |          |
| ************************************** |                                     |                         |                            | •                           | ·       | ·-·· <del></del>   | <b>←</b>     |                     | - 14     | '               | V-1-           |          |          |
| l                                      | 44.6                                |                         | 1                          | Į                           | 4       |                    |              |                     | -MI      |                 |                |          |          |
|                                        | filt C                              |                         |                            |                             | pļt B   | ľ                  | A2 F2        | -                   | 111      | н               |                |          |          |
| 빙                                      |                                     |                         |                            | /8                          |         |                    |              |                     | 1        | <del>-</del>    |                |          |          |
|                                        |                                     |                         |                            |                             |         | Working<br>Paint A | <del>-</del> | <br>                | 71       |                 |                |          |          |
| ONGITUDINAL FACE                       |                                     | . /                     |                            |                             |         | 1                  |              | <del>/</del>        | iE /     | /               |                |          |          |
| 2                                      | į                                   | В                       |                            |                             | /       | ´                  | 12 F2        | ı                   | ,        | <b>\</b> 1      |                |          |          |
| <u> </u>                               | <del></del>                         |                         |                            | г                           |         | <del></del>        | ļ            | <u>5</u>            | EC X-X   | Working Point A |                |          |          |

Al

Limit Bearing Capacity

Weight of soil (Dry portion)

Weight of soil (Wei portion)

Angle of Repose (Dry portion)

Angle of Repose (Wet portion)

Water Table

62500

20

10

3.5M

Kg/Sqm

Deg

Deg

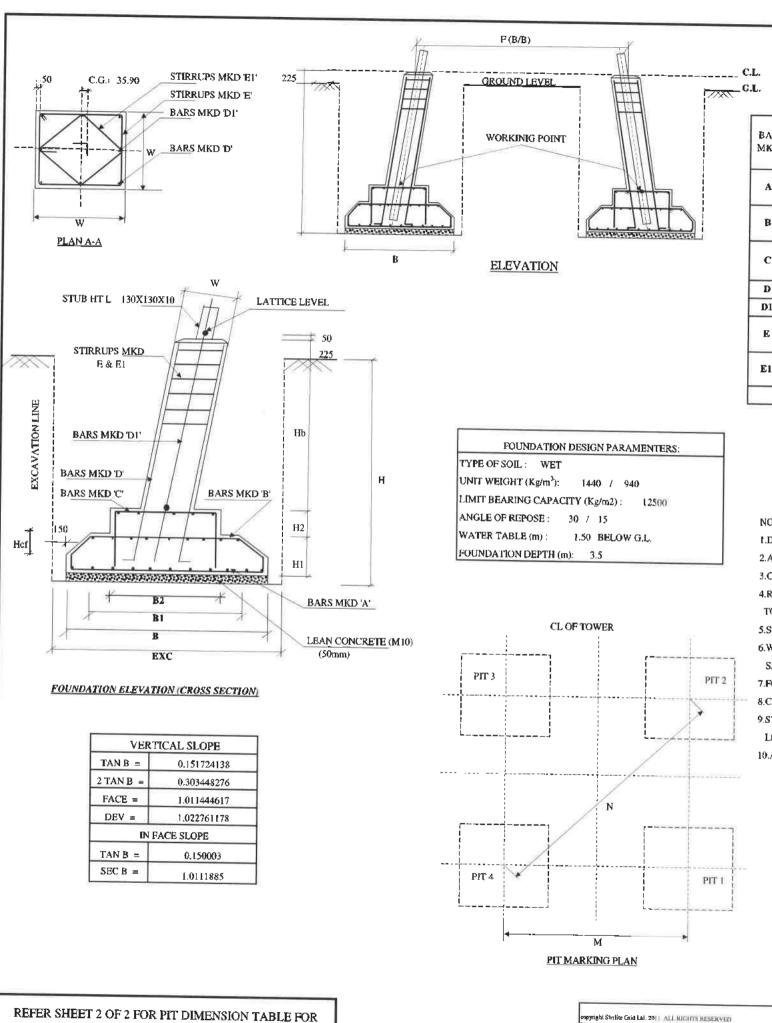
### NOTE

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD, IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING THAM FOR CORRECTIVE ACTION.
- 2, FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUE AT CONCRETE LEVEL SHALL, BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

| VERTICAL SLOPE     |                     |  |  |  |  |  |  |  |  |
|--------------------|---------------------|--|--|--|--|--|--|--|--|
| TANU =             | 0.241965602         |  |  |  |  |  |  |  |  |
| 2 TAN B =          | 0.483931204         |  |  |  |  |  |  |  |  |
| FACE = 1.028857304 |                     |  |  |  |  |  |  |  |  |
| DBV a              | 1.05692701          |  |  |  |  |  |  |  |  |
|                    | IN PACE SLOPE       |  |  |  |  |  |  |  |  |
| TAN B =            | 0.235176971         |  |  |  |  |  |  |  |  |
| SEC B =            | SEC B = 1.027282409 |  |  |  |  |  |  |  |  |

### NOTES:

- LDRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL, =


3900 mm

- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STERRUPS SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9 STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.
- 10 AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.



| REV NO | DATE     |              | DESCRIPTION                         | DRAWN      | CI    | IKD | APPID |  |  |
|--------|----------|--------------|-------------------------------------|------------|-------|-----|-------|--|--|
| PRO    | JECT     | 400KV D/C XE | LDAM-NARENDRA TRANSM                | ISSION LTD |       |     |       |  |  |
| CLI    | ENT      | STERLITE POV | VER GRID VENTURES LIMITE            | ED .       |       |     |       |  |  |
| DESIG  | GNER:    | STERLITE POV | VER GRID VENTURES LIMITE            | ID .       |       |     |       |  |  |
| RWN    | RT       | 21-89-18     | FOUNDATION DRAWING                  | EOD TOUGHT | ·vni: |     |       |  |  |
| RKD    | AM       | 21-69-18     | DD-3/+0/+3/+6M 400                  |            |       |     |       |  |  |
| PPD    | DL       | 21-09-18     | DRY FISSURED ROCK SOIL (3.5M DEPTH) |            |       |     |       |  |  |
| ATE    | 21-09-1H | DRAWING NO.  | GTTM-2400DC/WZ-1/DD/F-005A          | SHEET NO   | 2/2   | REV | 0     |  |  |

ergraphs Sector ship for 1741 ANS-RESIGNED SECTIONS Respondence unphysical assembles householded in terremodel on the by any most of any proper and substitution of the properties of the conferpe and the section of the properties of the section of the section of the conferlence of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the



| EXC  | В    | Н    | W   | B1   | B2   | H1  | Н2  | Hef | НЬ   |
|------|------|------|-----|------|------|-----|-----|-----|------|
| 3250 | 2950 | 3500 | 420 | 2650 | 1410 | 250 | 200 | 150 | 3000 |

| BAR<br>MKD | BAR BENDING SKETCH    | BAR DETAILS              | SECTION<br>DIAMETER | NO, OF BARS<br>PER FDN | LENGTH    | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PEI<br>TOWER |
|------------|-----------------------|--------------------------|---------------------|------------------------|-----------|----------------|-------------------|---------------------|
|            |                       |                          | (mm)                | (no)                   | (mm)      | ('kg/m)        | (kg)              | (kg)                |
| A          | 2850                  | PAD REINFORCEMENT        | 12                  | 30                     | 2850      | 0.89           | 75.93             | 303.72              |
| В          | 2550<br>50 141 141 50 | PAD REINFORCEMENT        | 10                  | 24                     | 2933      | 0.62           | 43.42             | 173.70              |
| c          | 1310<br>326 50 50 326 | PAD REINFORCEMENT        | 10                  | 18                     | 2062      | 0.62           | 22.90             | 91.61               |
| D          | 3531                  | CHIMNEY BAR              | 20                  | 4                      | 3831      | 2,46           | 37.77             | 151.11              |
| D1         | 300                   | CHUMNEY BAR              | 20                  | 4                      | 3831      | 2.46           | 37.77             | 151.11              |
| E          | 320                   | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1472      | 0.39           | 7.55              | 30.21               |
| E1         | 226 226               | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1097      | 0.39           | 5.62              | 22.52               |
|            |                       |                          |                     |                        | TOTAL REI | NFORCEMEN      | T/ TOWER=         | 924.0               |

NOTES:

LDRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm<sup>2</sup>)

5.STUB BELOW GROUND LEVEL = 3300

6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.

7. FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

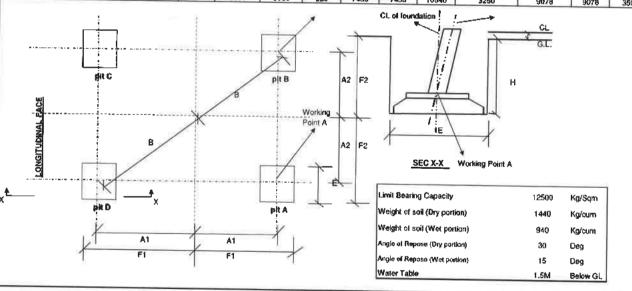
8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| QUANTITIES/STRU               | CTURE  |
|-------------------------------|--------|
| CONCRETE (M20) m <sup>3</sup> | 12.06  |
| CONCRETE (M10) m <sup>3</sup> | 1.74   |
| TOTAL CONCRETE m <sup>3</sup> | 13.8   |
| EXCAVATION m3                 | 147.88 |
| REINFORCEMENT Kg              | 924.0  |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED COPY the above does not relieve


SHEET NO. 1/2 REV 0

|                                             |       | Τ_    |      |           |                                                        |             | _     | _  |    |  |  |  |  |
|---------------------------------------------|-------|-------|------|-----------|--------------------------------------------------------|-------------|-------|----|----|--|--|--|--|
| REV NO                                      | DATE  |       |      |           | DESCRIPTION                                            |             |       |    |    |  |  |  |  |
| PRO.                                        | JECT  | 400K  | V D/ | C XELDA   | M-NARENDRA TRANSMISSION                                | LTD         |       |    |    |  |  |  |  |
| CLIENT STERLITE POWER GRID VENTURES LIMITED |       |       |      |           |                                                        |             |       |    |    |  |  |  |  |
| DESIG                                       | SNER: | STER  | LITE | POWER     | GRID VENTURES LIMITED                                  |             |       |    |    |  |  |  |  |
| DRWN                                        | RT    | 03-08 | -18  |           | FOUNDATION DRAWING FOR TO                              | I TO De com | -     |    | _  |  |  |  |  |
| CHKD                                        | AM    | 03-08 | -18  |           | FOUNDATION DRAWING FOR TO<br>DAL-3/+0/+3/+6M 400KV D/C |             |       |    |    |  |  |  |  |
| APPD                                        | DL    | 03-08 | -18  |           | WET SOIL (3.5M DEPTH                                   |             |       |    |    |  |  |  |  |
| DATE                                        | 03-0  | 8-18  | DR/  | AWING NO. | GTTPI/400DC/WZ-1/DAL/F-002                             | SHEET NO.   | 1/2 E | FV | -0 |  |  |  |  |

SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

popyright Shrilite Grid Ltd. 2011 ALL RIGHTS RESERVED No part of the copyrightest unastralization to reproduced to transmitted in any form by any means for any puspecs without prior written permassion of the owner. The Chamberised use, if any, will amount to intringement and the infringer shall be held. le for heavy datacges and pointstanent with imprisonment.

| GOA                            | 400 KV D/C -X-M & X-N (WZ-1) - TT "DAL" SOIL TYPE - WET PIT DIMENSION TABLE |                               |                            |                             |         |                 |      |      |       |          |             |          |              |
|--------------------------------|-----------------------------------------------------------------------------|-------------------------------|----------------------------|-----------------------------|---------|-----------------|------|------|-------|----------|-------------|----------|--------------|
| 400 KV D/C-X-M & X-N- TT "DAL" |                                                                             | " F " B/B of To<br>3MBE(+)-3M |                            | * F * B/B of T<br>3MBE(+)-3 |         |                 |      |      | cg    | sec B1   | 2*Tan Bf    | sec B2   | 2°Tan B2     |
|                                |                                                                             | 9432                          |                            | 9432                        |         | 130X130X10      |      | 50   | 35.9  | 1.011445 | 0.303448276 | 1.011445 | 0.303448     |
| Tower Detail                   | Exin from<br>-3MBE(+)-<br>3MLE (mm)                                         | cg-cg dim a)<br>CL (TF)       | eg-eg dim<br>at CL<br>(LF) | Foundation<br>Base Width    | work pt | G.L. TO<br>C.L. | AI   | A2   | В     | E        | F1          | F2       | н            |
| -3MBE (+) -3M LE               | 0                                                                           | 9375                          | 9375                       | 2950                        | 3000    | 225             | 5177 | 5177 | 7321  | 3250     | 6802        | 6802     | 3500         |
| -3MBE (+) -1.5M LE             | 1500                                                                        | 9830                          | 9830                       | 2950                        | 3000    | 225             | 5404 | 5404 | 7643  | 3250     | 7029        | 7029     | 3500         |
| 3MBE (+) +0M LE                | 3000                                                                        | 10285                         | 10285                      | 2950                        | 3000    | 225             | 5632 | 5832 | 7965  | 3250     | 7257        | 7257     | 3500         |
| 3MBE (+) +1.5M LE              | 4500                                                                        | 10741                         | 10741                      | 2950                        | 3000    | 225             | 5860 | 5860 | 8287  | 3250     | 7485        | 7485     | 3500         |
| 3MBE (+) +3M LE                | 6000                                                                        | 11198                         | 11196                      | 2950                        | 3000    | 225             | 6087 | 6087 | 8609  | 3250     | 7712        | 7712     | 3500         |
| +0MBE (+) -3M LE               | 3000                                                                        | 10285                         | 10285                      | 2950                        | 3000    | 225             | 5832 | 5632 | 7965  | 3250     | 7257        | 7257     | 3500         |
| +0MBE (+) -1,5M LE             | 4500                                                                        | 10741                         | 10741                      | 2960                        | 3000    | 225             | 5860 | 5860 | 9287  | 3250     | 7485        | 7485     | 3500         |
| -OMBE (+) +OM LE               | 6000                                                                        | 11196                         | 11196                      | 2950                        | 3000    | 225             | 6087 | 6087 | 8609  | 3250     | 7712        | 7712     | 3500         |
| -OMBE (+) +1.5M LE             | 7 <b>5</b> 00                                                               | 11651                         | 11651                      | 2950                        | 3000    | 225             | 6315 | 6315 | 8930  | 3250     | 7940        | 7940     | 3500         |
| -OMBE (+) +3M LE               | 9000                                                                        | 12106                         | 12106                      | 2950                        | 3000    | 225             | 8542 | 5542 | 9252  | 3250     | 8167        | 8167     | 3500         |
| 3MBE (+) -3M LE                | 6000                                                                        | 11196                         | 11196                      | 2950                        | 3000    | 225             | 6087 | 6087 | 8609  | 3250     | 7712        | 7712     | 3500         |
| 3MBE (+) -1.5M LE              | 7500                                                                        | 11651                         | 11651                      | 2950                        | 3000    | 225             | 6315 | 6315 | 8930  | 3250     | 7940        | 7940     | 3500         |
| -3M8E (+) +0M LE               | 9000                                                                        | 12106                         | 12106                      | 2950                        | 3000    | 225             | 6542 | 6542 | 9252  | 3250     | 8167        | 8167     | 3500         |
| 3MBE (+) +1.5M LE              | 10500                                                                       | 12561                         | 12561                      | 2950                        | 3000    | 225             | 6770 | 6770 | 9574  | 3250     | 8395        | 8395     | 3500         |
| 3MBE (+) +3M LE                | 12000                                                                       | 13016                         | 13016                      | 2950                        | 3000    | 225             | 6998 | 6998 | 9896  | 3250     | 8623        | 9623     | 3500         |
| 6MBE (+) -3M LE                | 9000                                                                        | 12106                         | 12106                      | 2950                        | 3000    | 225             | 6542 | 6542 | 9252  | 3250     | 8167        | B167     | 3500         |
| 6MBE (+) -1.5M LE              | 10500                                                                       | 12561                         | 12561                      | 2950                        | 3000    | 225             | 6770 | 6770 | 9574  | 3250     | 8395        | 8395     |              |
| 6MBE (+) +0M LE                | 12000                                                                       | 13016                         | 13016                      | 2950                        | 3000    | 225             | 6998 | 6998 | 9896  | 3250     | 8623        | 8623     | 3500         |
| 6MBE (+) +1.5M LE              | 13500                                                                       | 13472                         | 13472                      | 2950                        | 3000    | 225             | 7225 | 7225 | 10218 | 3250     | 8850        | 8850     |              |
| 6MBE (+) +3M LE                | 15000                                                                       | 13927                         | 13927                      | 2950                        | 3000    | 225             | 7453 | 7453 | 10540 | 3250     | 9078        | 9078     | 3500<br>3500 |



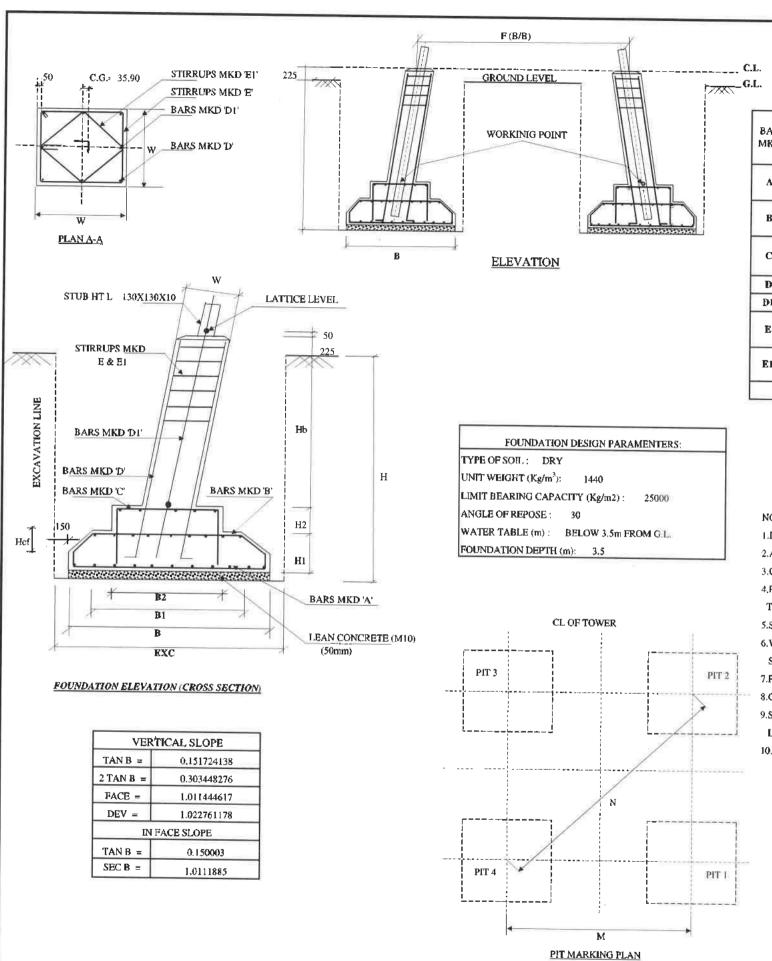
### NOTE:

- BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD, IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

| VERTICAL SLOPE |               |  |  |  |  |  |  |
|----------------|---------------|--|--|--|--|--|--|
| TANB =         | 0.151724138   |  |  |  |  |  |  |
| 2 TAN 8 =      | 0.303448276   |  |  |  |  |  |  |
| FACE =         | 1.011444617   |  |  |  |  |  |  |
| DEV =          | 1,022761178   |  |  |  |  |  |  |
|                | IN FACE SLOPE |  |  |  |  |  |  |
| TAN B =        | 0.150003      |  |  |  |  |  |  |
| SEC B =        | 1.0111885     |  |  |  |  |  |  |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED COPY
Approved Vide Ref. Letter No SUNVLIGHTEL
FHG G LAT 123
Date: (3/08/12)

Engineering Deptt.
the above does not relieve the contractor from their contractual obligations.


### NOTES:

- LDRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3 CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4 REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm<sup>2</sup>)
- 5.STUB BELOW GROUND LEVEL =

3300 mm

- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- 10. AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| REV NO | DATE     |                                      | DESCRIPTION                               |             |      |     |      |  |  |  |  |
|--------|----------|--------------------------------------|-------------------------------------------|-------------|------|-----|------|--|--|--|--|
| PRO    | JECT     | 400KV D/C XE                         | LDAM-NARENDRA TRANSMIS                    | SSION LTD   | ] Ci | HKD | APPD |  |  |  |  |
| CLI    | ENT      | STERLITE POWER GRID VENTURES LIMITED |                                           |             |      |     |      |  |  |  |  |
| DESIG  | GNER:    | STERLITE POV                         | WER GRID VENTURES LIMITEI                 | <b>D</b>    |      |     |      |  |  |  |  |
| DRWN   | RT.      | 03-08-18                             | EQUIDATION DRAWING                        | COR TOWER 6 |      |     |      |  |  |  |  |
| CHKD   | AM       | 03-08-18                             | FOUNDATION DRAWING<br>DAL-3/+0/+3/+6M 400 |             |      |     |      |  |  |  |  |
| APPO   | DL       | 03-08-18                             | WET SOIL (3.5M                            |             |      |     |      |  |  |  |  |
| DATE   | 03-08-18 | DRAWING NO.                          | GTTPL/4000C/WZ-1/DAL/F-002                | SHEET NO    | 2/2  | REV | 0    |  |  |  |  |
|        |          |                                      |                                           |             | _    | 100 |      |  |  |  |  |



| EXC  | В    | Н    | W   | Bl   | B2   | H1  | H2  | Hef | Hb   |
|------|------|------|-----|------|------|-----|-----|-----|------|
| 2450 | 2150 | 3500 | 420 | 1850 | 1410 | 250 | 200 | 150 | 3000 |

| BAR<br>MKD | BAR BENDING SKETCH            | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTH    | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|-------------------------------|--------------------------|---------------------|------------------------|-----------|----------------|-------------------|---------------------|
|            |                               |                          | (mm)                | (no)                   | (mm)      | (ˈkg/m)        | (kg)              | (kg)                |
| Λ          | 2050                          | PAD REINFORCEMENT        | 12                  | 24                     | 2050      | 0.89           | 43.72             | 174.87              |
| В          | 1750<br>50 141 141 50         | PAD REINFORCEMENT        | 10                  | 14                     | 2133      | 0.62           | 18,45             | 73.80               |
| С          | 1310<br>326 50 5 <u>0</u> 326 | PAD REINFORCEMENT        | 10                  | 18                     | 2062      | 0.62           | 22.90             | 91.61               |
| D          | 3531                          | CHIMNEY BAR              | 20                  | 4                      | 3831      | 2.46           | 37,77             | 151.11              |
| D1         | 300                           | CHIMNEY BAR              | 20                  | 4                      | 3831      | 2.46           | 37.77             | 151.11              |
| E          | 320                           | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1472      | 0.39           | 7.55              | 30.21               |
| El         | 226 226                       | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1097      | 0.39           | 5.62              | 22.52               |
|            |                               |                          |                     |                        | TOTAL REI | INFORCEMEN     | T/ TOWER=         | 695.2               |

### NOTES:

- LDRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fc 500N/mm<sup>2</sup>)
- 5.STUB BELOW GROUND LEVEL = 3300
- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE,

| QUANTITIES/STRU               | CTURE |
|-------------------------------|-------|
| CONCRETE (M20) m <sup>3</sup> | 8.12  |
| CONCRETE (M10) m <sup>3</sup> | 0.92  |
| TOTAL CONCRETE m <sup>3</sup> | 9.04  |
| EXCAVATION m3                 | 84.04 |
| REINFORCEMENT Kg              | 695.2 |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CCPY
Approved Vide Ref. Letter No.S. 617L 677
ENG. 6/207/23
Date: 13(-3/2)
Engineering Deptt.
the above does not relieve the contractual obligations

|                                             |       | 1      |                                           |           |                             |           |     |     |      |  |  |
|---------------------------------------------|-------|--------|-------------------------------------------|-----------|-----------------------------|-----------|-----|-----|------|--|--|
| -                                           |       | -      |                                           |           |                             |           |     |     |      |  |  |
| REV NO                                      | DATE  |        |                                           |           | DESCRIPTION                 | DRAWN     | CHK | D A | APPD |  |  |
| PRO                                         | JECT  | 400K   | V D/                                      | 'C XELDAN | M-NARENDRA TRANSMISSION LT  | ľD        |     |     |      |  |  |
| CLIENT STERLITE POWER GRID VENTURES LIMITED |       |        |                                           |           |                             |           |     |     |      |  |  |
| DESI                                        | GNER: | STER   | LITI                                      | E POWER ( | GRID VENTURES LIMITED       |           |     |     |      |  |  |
| DRWN                                        | RT    | 03-08- | -18                                       |           | FOUNDATION DRAWING FOR TOWE | R TYPE    |     |     |      |  |  |
| CHKD                                        | AM    | 03-08- | 03-08-18 DAL-3/+0/+3/+6M 400KV D/C (WZ-1) |           |                             |           |     |     |      |  |  |
| APPD                                        | DL    | 03-08- | -18                                       |           | DRY SOIL (3.5M DEPTH)       | ·         |     |     |      |  |  |
| DATE                                        | 03-0  | 08-18  | DR                                        | AWING NO. | GTTPL/400DC/WZ-1/DAL/F-001  | SHEET NO. | 1/2 | REV | 0    |  |  |

REFER SHEET 2 OF 2 FOR PIT DIMENSION TABLE FOR SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

oopyright Sterlise Srid Ltd. 2011. ALL RIGHTS RESERVED.

No part of this copyrighted materialcan be reproduced or treasurated in any firth
by any means for any purpose without price written pertainsion of the owner.

The Unauthorized userf any, will amount to infirm press and the infringer shall be held
inside for beavy damages and punishment with imprisonment.

| Project<br>GOA      |                                     |                               |                            | D/C -X-M                    |          | ENSION             |            |                               |                                  | UNI             |             | Client:       |              |
|---------------------|-------------------------------------|-------------------------------|----------------------------|-----------------------------|----------|--------------------|------------|-------------------------------|----------------------------------|-----------------|-------------|---------------|--------------|
|                     |                                     |                               | Г —                        |                             | TT DINIE | 1431014            | IADLE      |                               |                                  |                 |             | SPGVL         |              |
| 400 KV D/C-X-M & X- | N- TT "DAL"                         | * F * B/B of To<br>3MBE(+)-3f |                            | * F * B/B of T<br>3MBE(+)-3 |          | Stub Se            | clion (HT) | Lattice<br>Level to<br>CL     | cg                               | sec B1          | 2*Tan B1    | sec B2        | 2*Tan E      |
|                     |                                     | 9432                          |                            | 9432                        |          | 130X130X10         |            | 50                            | 35.9                             | 1.011445        | 0.303448276 | 1.011445      | 0.30344      |
| Tower Detail        | Exto from<br>-3MBE(+)-<br>3MLE (mm) | og-og dim at<br>CL (TF)       | eg-eg dim<br>at CL<br>(LF) | Foundation<br>Base Width    | work pt  | G.L. TO<br>C.L.    | A1         | A2                            | В                                | E               | F1          | F2            | н            |
| -3MBE (+) -3M LE    | 0                                   | 9375                          | 9375                       | 2150                        | 3000     | 225                | 5177       | 5177                          | 7321                             | 2450            | 6402        | 6402          | 0500         |
| -3MBE (+) -1.5M LE  | 1500                                | 9830                          | 9830                       | 2150                        | 3000     | 225                | 5404       | 5404                          | 7643                             | 2450            | 6629        | 6629          | 3500<br>3500 |
| -3MBE (+) +0M LE    | 3000                                | 10285                         | 10285                      | 2150                        | 3000     | 225                | 5632       | 5632                          | 7965                             | 2450            | 6857        | 6857          |              |
| -3MBE (+) +1.5M LE  | 4500                                | 10741                         | 10741                      | 2150                        | 3000     | 225                | 5860       | 5860                          | 8287                             | 2450            | 7085        | 7085          | 3500<br>3500 |
| -3MBE (+) +3M LE    | 6000                                | 11196                         | 11196                      | 2150                        | 3000     | 225                | 6087       | 6087                          | 8609                             | 2450            | 7312        |               |              |
| +0MBE (+) -3M LE    | 3000                                | 10285                         | 10285                      | 2150                        | 3000     | 225                | 5632       | 5632                          | 7965                             | 2450            | 6857        | 7312<br>6857  | 3500         |
| +0MBE (+) -1.5M LE  | 4500                                | 10741                         | 10741                      | 2150                        | 3000     | 225                | 5860       | 5860                          | 8287                             | 2450            | 7085        | 7085          | 3500         |
| +0MBE (+) +0M LE    | 6000                                | 11196                         | 11196                      | 2150                        | 3000     | 225                | 6087       | 6087                          | 8609                             | 2450            | 7312        |               | 3500         |
| +0MBE (+) +1,5M LE  | 7500                                | 11651                         | 11651                      | 2150                        | 3000     | 225                | 6315       | 6315                          | 9930                             | 2450            | 7540        | 7312          | 3500         |
| +0MBE (+) +3M LE    | 9000                                | 12106                         | 12106                      | 2150                        | 3000     | 225                | 6542       | 6542                          | 9252                             | 2450            |             | 7540          | 3500         |
| +3MBE (+) -3M LE    | 6000                                | 11196                         | 11196                      | 2150                        | 3000     | 225                | 6087       | 6087                          | 8609                             |                 | 7767        | 7767          | 3500         |
| +3MBE (+) -1.5M L€  | 7500                                | 11651                         | 11651                      | 2150                        | 3000     | 225                | 6315       | 6315                          | 3930                             | 2450            | 7312        | 7312          | 3500         |
| +3MBE (+) +0M LE    | 9000                                | 12106                         | 12106                      | 2150                        | 3000     | 225                | 6542       | 5542                          | 9252                             |                 | 7540        | 7540          | 3500         |
| -3M8E (+) +1.5M LE  | 10500                               | 12561                         | 12561                      | 2150                        | 3000     | 225                | 6770       | 6770                          | 9574                             | 2450            | 7767        | 7767          | 3500         |
| 3MBE (+) +3M LE     | 12000                               | 13016                         | 13016                      | 2150                        | 3000     | 225                | 6998       | 6998                          | 9896                             | 2450            | 7995        | 7995          | 3500         |
| -6MBE (+) -3M LE    | 9000                                | 12106                         | 12106                      | 2150                        | 3000     | 225                | 6542       | 6542                          | 9252                             |                 | 8223        | 8223          | 3500         |
| 6M8E (+) -1.5M LE   | 10500                               | 12561                         | 12561                      | 2150                        | 3000     | 226                | 6770       | 6770                          | 9574                             | 2450            | 7767        | 7767          | 3500         |
| -6MBE (+) +OM LE    | 12000                               | 13016                         | 13016                      | 2150                        | 3000     | 225                | 6998       | 6998                          | 9896                             | 2450<br>2450    | 7995        | 7995          | 3500         |
| 6MBE (+) +1.5M LE   | 13500                               | 13472                         | 13472                      | 2150                        | 3000     | 225                | 7225       | 7225                          | 10218                            |                 | 8223        | 8223          | 3500         |
| 6MBE (+) +3M LE     | 15000                               | 13927                         | 13927                      | 2150                        | 3000     | 225                | 7453       | 7453                          | 10540                            | 2450<br>2450    | 8450        | 8450          | 3500         |
|                     |                                     |                               | 772.                       |                             |          | V-10               | 7 100      | CL of found                   |                                  | 2450            | 8678        | 8678          | 3500         |
| PACE                | all C                               |                               |                            | 8                           | plt B    |                    | A2 F2      |                               |                                  | 1               | GL.         |               |              |
| LONGITUBINAL PA     |                                     | 9/                            | *                          |                             |          | Working<br>Point A | N2 F2      | <u>*</u>                      | I iE                             | Norking Point A |             |               |              |
| <u> </u>            | pit D -                             | <del>*</del> x                |                            | L                           | pit A    | 1                  | 1          | Limit Bearing<br>Weight of so | g Capacity<br>xil (Dry portlo    | nl              |             | (g/Sqm        |              |
|                     | V                                   |                               | i.                         |                             | 1/       |                    | - 1        |                               | xi (Or) portio<br>Xi (Wet portio | -               |             | (g/cum        |              |
| 1                   | 1                                   | A1                            | 1                          | A1                          | 1        |                    |            |                               | ose (Dry portio                  |                 |             | (g/cum<br>Dag |              |
| 1                   |                                     | Ff                            | 1                          | F1                          | -/       |                    | - 1        |                               | ose (Well portion                | •               |             | )eg           |              |
|                     |                                     |                               | 1                          |                             |          |                    | - 1        |                               |                                  |                 |             | . AR          |              |

### NOTE:

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

| VERTICAL SLOPE |
|----------------|
| 0.151724138    |
| 0.303448278    |
| 1.011444617    |
| 1,022761178    |
| IN FACE SLOPE  |
| 0.150003       |
| 1.0111885      |
|                |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED COPY CONTROLLED COPY
Approved Vide Ref. Letter No. S. P. G. L. L. G. TTPL Engineering Deptt.
the above does not reflevel to contractual obligations.

### NOTES:

I.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm<sup>2</sup>)

5.STUB BELOW GROUND LEVEL =

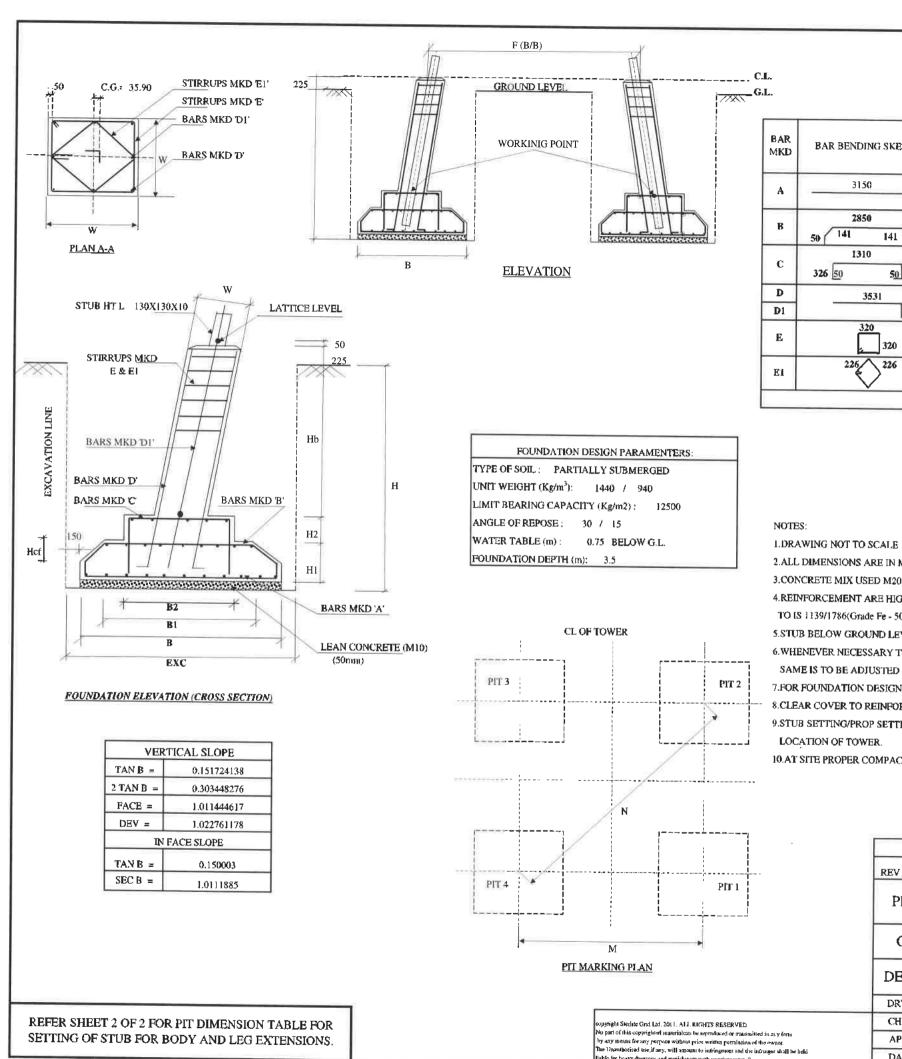
6. WHENRVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7 FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTENO/PROP SETTING TEMPLATE HAS TO BE USED IN EACH


LOCATION OF TOWER.

orpeiste Sicileo Grei Lab 2011. ALL REGITTS RESERVED.

No see of the very higher to married the resolution by expensional Listy force
by any final time properties with one give union seprentiation of discovering
The Constitution of our discovering continuous to be forced the Lefenger this by a held
table to be very damage, and equivations with approximation of the continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continuous continu

16.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

|        |                          |              |                            |               | _    |     | _     |
|--------|--------------------------|--------------|----------------------------|---------------|------|-----|-------|
| REV NO | DATE                     |              | DESCRIPTION                | DRAWN         | СН   | KD  | APPD  |
| PRO    | JECT                     | 400KV D/C XE | LDAM-NARENDRA TRANSM       |               | CII  | KD  | JATTO |
| CLI    | ENT                      | STERLITE POV | VER GRID VENTURES LIMITE   | ED            |      |     |       |
| DESIG  | GNER:                    | STERLITE POV | VER GRID VENTURES LIMITE   | ED.           |      |     |       |
| DRWN   | RT                       | 03-08-18     | FOUNDATION DRAWING         | 2 FOR TOHER # | LODE | _   |       |
| CHKD   | AM                       | 03-08-18     | DAL-3/+0/+3/+6M 40         |               | IPE  |     |       |
| APPD   | DL                       | 03-08-18     | DRY SOIL (3.5)             |               |      |     |       |
| DATE   | ATE 03-08-18 DRAWING NO. |              | GTTPL/400DC/WZ-1/DAL/F-001 | SHEET NO.     | 2/2  | RBV | 0     |



| EXC  | В    | Н    | W   | B1   | B2   | H1  | H2  | Hef | Hb   |
|------|------|------|-----|------|------|-----|-----|-----|------|
| 3550 | 3250 | 3500 | 420 | 2950 | 1410 | 250 | 200 | 150 | 3000 |

| BAR<br>MKD | BAR BENDING SKETCH    | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTH   | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|-----------------------|--------------------------|---------------------|------------------------|----------|----------------|-------------------|---------------------|
|            |                       |                          | (mm)                | (no)                   | (mm)     | ('kg/m)        | (kg)              | (kg)                |
| A          | 3150                  | PAD REINFORCEMENT        | 12                  | 36                     | 3150     | 0.89           | 100.69            | 402.75              |
| В          | 2850<br>50 141 141 50 | PAD REINFORCEMENT        | 10                  | 28                     | 3233     | 0.62           | 55.83             | 223.32              |
| c          | 1310<br>326 50 50 326 | PAD REINFORCEMENT        | 10                  | 18                     | 2062     | 0.62           | 22.90             | 91.61               |
| D          | 3531                  | CHIMNEY BAR              | 20                  | 4                      | 3831     | 2.46           | 37.77             | 151.11              |
| D1         | 300                   | CHIMNEY BAR              | 20                  | 4                      | 3831     | 2.46           | 37.77             | 151.11              |
| E          | 320                   | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1472     | 0.39           | 7.55              | 30.21               |
| E1         | 226 226               | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1097     | 0.39           | 5.62              | 22.52               |
|            |                       |                          |                     |                        | TOTAL RE | INFORCEMEN     | T/TOWER=          | 1072.6              |

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm<sup>2</sup>)

5.STUB BELOW GROUND LEVEL = 3300

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| QUANTITIES/ STRUCTURE         |        |  |  |  |  |  |
|-------------------------------|--------|--|--|--|--|--|
| CONCRETE (M20) m <sup>3</sup> | 13.86  |  |  |  |  |  |
| CONCRETE (M10) m <sup>3</sup> | 2.11   |  |  |  |  |  |
| TOTAL CONCRETE m <sup>3</sup> | 15.97  |  |  |  |  |  |
| EXCAVATION m3                 | 176.44 |  |  |  |  |  |
| REINFORCEMENT Kg              | 1072.6 |  |  |  |  |  |

STERLITE POWER GRID VENTURES LTD. RELEASED FOR CONSTRUCTION CONTROLLED CORY Approved Vide Ref. Letter No S. DINL (0177 PL)
EN GIGH LOT 122 Date: 13(08/18 Engineering Deptt, the above does not relevant contractual obligations

| Г                                           |      |       |      |           |                                                       |          |     |    |      |  |  |
|---------------------------------------------|------|-------|------|-----------|-------------------------------------------------------|----------|-----|----|------|--|--|
|                                             |      | -     |      |           |                                                       |          |     |    |      |  |  |
| REV NO                                      | DATE |       |      |           | DESCRIPTION                                           | DRAWN    | СНІ | Œ. | APPD |  |  |
| PRO.                                        | JECT | 400K  | V D  | C XELDAI  | M-NARENDRA TRANSMISSION I                             | LTD      |     |    |      |  |  |
| CLIENT STERLITE POWER GRID VENTURES LIMITED |      |       |      |           |                                                       |          |     |    |      |  |  |
| DESIG                                       | NER: | STER  | LITI | E POWER ( | GRID VENTURES LIMITED                                 |          |     |    |      |  |  |
| DRWN                                        | RT   | 03-08 | -18  |           | FOUNDATION DRAWING FOR TOW                            | /ER TYPE |     |    |      |  |  |
| CHKD                                        | AM   | 03-08 | 81-  |           | DAL-3/+0/+3/+6M 400KV D/C (WZ-1)                      |          |     |    |      |  |  |
| APPD                                        | DL   | 03-08 | -18  |           | PARTIALLY SUBMERGED SOIL (3.5M DEPTH)                 |          |     |    |      |  |  |
| DATE                                        | 03-0 | 8-18  | DR   | AWING NO. | VING NO. GTTPL/400DC/WZ-1/DAL/F-003 SHEET NO. 1/1 REV |          |     |    |      |  |  |

| Project<br>GOA     |                                     |                               | -700 K                     | / D/C -X-I                  | PIT DIME  | ENSION          | TABL       | AL" SOII                  | L 1YPE  | • PS            |             | Client:<br>SPGVL |         |
|--------------------|-------------------------------------|-------------------------------|----------------------------|-----------------------------|-----------|-----------------|------------|---------------------------|---------|-----------------|-------------|------------------|---------|
| 400 KV D/C-X-M & X | -N- FT "DAL"                        | " F " B/B of To<br>3MBE(+)-3N | ALE (TF)                   | " F " B/B of T<br>3MBE(+)-3 | BMLE (LF) | Slub Se         | ction (HT) | Lattice<br>Level to<br>CL | cg      | sec B1          | 2°Tan B1    | sec B2           | 2°Tan E |
|                    |                                     | 943.                          | 2                          | 94:                         | 32        | 130X            | 130X10     | 50                        | 35.9    | 1.011445        | 0.303448276 | 1.011445         | 0.30344 |
| Tower Detail       | Extn from<br>-3MBE(+)-<br>3MLE (mm) | eg-eg dim at<br>CL (TF)       | eg-eg dim<br>at CL<br>(LF) | Foundation<br>Base Wigth    | work pl   | G.L. TO<br>C.L. | A1         | A2                        | В       | E               | F1          | F2               | н       |
| -3MBE (+) -3M LE   | 0                                   | 9375                          | 9375                       | 3250                        | 3000      | 225             | 5177       | 5177                      | 7321    | 3550            | 6952        | 6952             | 3500    |
| -3MBE (+) -1.5M LE | 1500                                | 9830                          | 9830                       | 3250                        | 3000      | 225             | 5404       | 5404                      | 7643    | 3550            | 7179        | 7179             | 3500    |
| -3MBE (+) +0M LE   | 3000                                | 10285                         | 10285                      | 3250                        | 3000      | 225             | 5632       | 5632                      | 7965    | 3550            | 7407        | 7407             | 3500    |
| -3MBE (+) +1.5M LE | 4500                                | 10741                         | 10741                      | 3250                        | 3000      | 225             | 5860       | 5860                      | 8287    | 3550            | 7635        | 7635             | 3500    |
| -3MBE (+) +3M LE   | 6000                                | 11196                         | 11196                      | 3250                        | 3000      | 225             | 6087       | 6087                      | 8609    | 3550            |             |                  |         |
| +0MBE (+) -3M LE   | 3000                                | 10285                         | 10285                      | 3250                        | 3000      | 225             | 5632       | 5632                      | 7965    |                 | 7862        | 7862             | 3500    |
| +0MBE (+) -1.5M LE | 4500                                | 10741                         | 10741                      | 3250                        | 3000      | 225             | 5860       | 5860                      |         | 3550            | 7407        | 7407             | 3500    |
| +0MBE (+) +0M LE   | 6000                                | 11196                         | 11196                      | 3250                        | 3000      | 225             | 6087       | 6087                      | 8287    | 3550            | 7635        | 7635             | 3500    |
| +0MBE (+) +1.5M LE | 7500                                | 11651                         | 11651                      | 3250                        | 3000      | 225             | 6315       | 6315                      | 8609    | 3550            | 7862        | 7862             | 3500    |
| +0MBE (+) +3M LE   | 9000                                | 12106                         | 12106                      | 3250                        | 3000      |                 |            |                           | 8930    | 3550            | 8090        | 9090             | 3500    |
| +3MBE (+) -3M LE   | 6000                                | 11196                         | 11196                      | 3250                        |           | 225             | 6542       | 6542                      | 9252    | 3550            | 8317        | 8317             | 3500    |
| +3MBE (+) -1.5M LE | 7500                                | 11651                         |                            |                             | 3000      | 225             | 6087       | 6087                      | 8609    | 3650            | 7862        | 7862             | 3500    |
| +3MBE (+) +0M LE   | 9000                                |                               | 11651                      | 3250                        | 3000      | 225             | 6315       | 6315                      | 8930    | 3550            | 8090        | 8090             | 3500    |
| 3MBE (+) +1,5M LE  |                                     | 12106                         | 12106                      | 3250                        | 3000      | 225             | 6542       | 6542                      | 9252    | 3550            | 8317        | 8317             | 3500    |
|                    | 10500                               | 12561                         | 12561                      | 3250                        | 3000      | 225             | 6770       | 6770                      | 9574    | 3550            | 8545        | 8545             | 3500    |
| +3MBE (+) +3M LE   | 12000                               | 13016                         | 13016                      | 3250                        | 3000      | 225             | 6998       | 6998                      | 9896    | 3550            | 8773        | 8773             | 3500    |
| +6MBE (+) -3M LE   | 9000                                | 12106                         | 12106                      | 3250                        | 3000      | 225             | 6542       | 6542                      | 9252    | 3550            | 8317        | 8317             | 3500    |
| -6MBE (+) -1,5M LE | 10500                               | 12561                         | 12561                      | 3250                        | 3000      | 225             | 6770       | 6770                      | 9574    | 3550            | 8545        | 8545             | 3500    |
| +6MBE (+) +0M LE   | 12000                               | 13016                         | 13016                      | 3250                        | 3000      | 225             | 6998       | 5998                      | 9896    | 3550            | 8773        | 8773             | 3500    |
| -6MBE (+) +1.5M LE | 13500                               | 13472                         | 13472                      | 3250                        | 3000      | 225             | 7225       | 7225                      | 10218   | 3650            | 9000        | 9000             | 3500    |
| 6MBE (+) +3M LE    | 15000                               | 13927                         | 13927                      | 3250                        | 3000      | 225             | 7453       | 7453                      | 10540   | 3550            | 9228        | 9228             | 3500    |
|                    |                                     |                               | 10                         |                             | Ð         | *               |            | CL of found               | lation! |                 | A1          |                  |         |
|                    |                                     |                               |                            |                             | 1/        |                 | 1          |                           |         | 7               | G.L.        |                  |         |
|                    |                                     |                               |                            |                             | X         | 1               |            |                           | //      |                 |             |                  |         |
|                    | pit C                               |                               |                            | /                           | plt B     | ۱,              | 12 F2      |                           | / /     | н               |             |                  |         |
| 144                |                                     |                               |                            | B                           |           |                 | _   . •    |                           | 1,1     | <b>→</b>    "   |             |                  |         |
|                    |                                     |                               | ./                         |                             | ١,        | Working         |            |                           | "\      |                 |             |                  |         |
| 4                  |                                     | 000000                        | X                          |                             |           | oint A          |            | b                         | 1 iE    | 1.              |             |                  |         |
| PINA)              | i                                   | в /                           |                            |                             |           | Z ,             | 2 52       | 1                         | 15      | 1               |             |                  |         |
| 팀                  |                                     |                               |                            |                             | /         |                 | 12 F2      |                           |         |                 |             |                  |         |
| TISMOT             |                                     |                               |                            |                             | 1/1       | <del></del>     |            | 5                         | EC X-X  | Working Point A |             |                  |         |
|                    | X                                   | 2.500                         |                            |                             |           | - e             | -          |                           |         |                 |             |                  |         |
|                    | pdt D                               | _ <b></b> _x                  |                            | L                           | nits &    | 1               | 4          | Limit Bearing             |         |                 | 12500 K     | g/Sqm            |         |
|                    | 1005                                |                               | 1                          |                             | pit A     |                 |            | Weight of so              |         | •               | 1440 K      | g/cum            |         |
| 66                 | X-                                  | A1                            | 1                          | 84                          | -1        |                 |            | Weight of so              |         | •               | 940 K       | g/cum            |         |
| ,                  | /'                                  | F1                            | /                          | A1                          |           |                 |            | Angle of Repo             |         | •               | 30 D        | eg               |         |
| 9                  | IV.                                 | FI                            |                            | F1                          | 1         |                 |            | Angle of Repo             |         | lon)            | 15 D        | eg               |         |
|                    |                                     |                               |                            |                             |           |                 |            | Water Table               |         |                 | 0.75M B     | elow GL          |         |

### NOTE:

- I. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD, IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

| VE        | RTICAL SLOPE |
|-----------|--------------|
| TAN B =   | 0.151724138  |
| 2 TAN B = | 0,303448276  |
| FACE =    | 1.011444617  |
| DEA =     | 1.022781179  |
| LN        | FACE SLOPE   |
| TANB -    | 0.150003     |
| SEC B .   | 1,0111885    |

STERLITE POWER GRID VENTURES LTD.

RELEASED FOR CONSTRUCTION
CONTROLLED CC?Y
Approved Vide Ref. Letter No. SP. J. V. L. COTT P. L.

ENGIT LOT 23 Date 12.08.6.19 Engineering Depti.
the above does not relies the contractor from their contractual obligations

SHEET NO. Z/2 REV 0

### NOTES:

LDRAWING NOT TO SCALE

- 2 ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

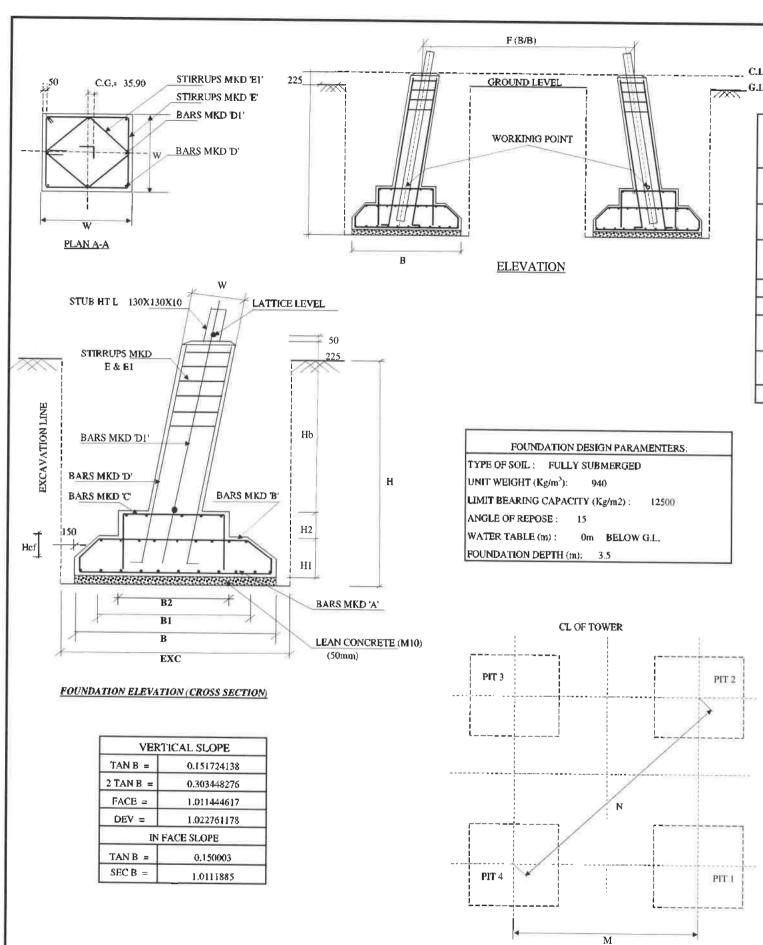
TO IS 1139/1786(Grade Fe - 500N/mm<sup>2</sup>)

5.STUB BELOW GROUND LEVEL = 3300 mm

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8 CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROF SETTING TEMPLATE HAS TO BE USED IN EACH


LOCATION OF TOWER,

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

|        |                          |              |                                            |                |     | _   | _    |  |  |  |
|--------|--------------------------|--------------|--------------------------------------------|----------------|-----|-----|------|--|--|--|
| REV NO | DATE                     |              | DESCRIPTION                                | DRAWN          | СН  | KD  | APPD |  |  |  |
| PRO    | PROJECT 40x              |              | 100KV D/C XELDAM-NARENDRA TRANSMISSION LTD |                |     |     |      |  |  |  |
| CL     | IENT                     | STERLITE POV | WER GRID VENTURES LIMITE                   | D              |     |     |      |  |  |  |
| DESI   | GNER:                    | STERLITE POV | WER GRID VENTURES LIMITE                   | D              |     |     |      |  |  |  |
| DRWN   | RT                       | 03-08-18     | FOUND ATION DO ADVISO                      | TOD TOUTE T    |     | _   |      |  |  |  |
| СНКД   | AM                       | 03-08-18     | FOUNDATION DRAWING<br>DAL-3/+0/+3/+6M 400  | OKV D/C (WZ-1) | (PE |     |      |  |  |  |
| APPD   | PPD DL 03-08-18          |              | PARTIALLY SUBMERGED                        |                |     |     |      |  |  |  |
| DATE   | ATE 03-08-18 DRAWING NO. |              | GTTPL/400DC/WZ-1/DAL/F-003                 | SHEET NO.      | 2/2 | REV | 0    |  |  |  |

experient Statistic Oryal Est. 2018 ALL 2/16/11/S RESERVED.

"No part of size in springlished interfrience to a specialized or processional in our force to your procession of size unsure procession of size unsure. The Unsurbanished size of size you all annound in his financian conducts in the year. The size of size is not provided by the procession of the information of the information of the size of size of the procession of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size



| EXC  | В    | Н    | W   | Bl   | B2   | H1  | H2  | Hef | Hb   |
|------|------|------|-----|------|------|-----|-----|-----|------|
| 3940 | 3640 | 3500 | 420 | 3340 | 1410 | 250 | 200 | 150 | 3000 |

| BAR<br>MKD | BAR BENDING SKETCH    | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTH   | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|-----------------------|--------------------------|---------------------|------------------------|----------|----------------|-------------------|---------------------|
|            |                       |                          | (mm)                | (no)                   | (mm)     | ('kg/m)        | (kg)              | (kg)                |
| A          | 3540                  | PAD REINFORCEMENT        | 12                  | 42                     | 3540     | 0.89           | 131.99            | 527.97              |
| В          | 3240<br>50 141 141 50 | PAD REINFORCEMENT        | 12                  | 26                     | 3623     | 0.89           | 83.63             | 334.54              |
| c          | 1310<br>326 50 50 326 | PAD REINFORCEMENT        | 12                  | 14                     | 2062     | 0.89           | 25.65             | 102.59              |
| D          | 3531                  | CHIMNEY BAR              | 20                  | 4                      | 3831     | 2.46           | 37.77             | 151.11              |
| D1         | 300                   | CHIMNEY BAR              | 20                  | 4                      | 3831     | 2.46           | 37.77             | 151.11              |
| E          | 320                   | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1472     | 0.39           | 7.55              | 30.21               |
| E1         | 226 226               | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1097     | 0.39           | 5.62              | 22.52               |
|            |                       |                          |                     |                        | TOTAL RE | INFORCEMEN     | NT/TOWER=         | 1320.0              |

NOTES:

1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm<sup>2</sup>)

5.STUB BELOW GROUND LEVEL = 3300

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| QUANTITIES/ STRUCTURE         |        |  |  |  |  |  |
|-------------------------------|--------|--|--|--|--|--|
| CONCRETE (M20) m <sup>3</sup> | 16.48  |  |  |  |  |  |
| CONCRETE (M10) m <sup>3</sup> | 2.65   |  |  |  |  |  |
| TOTAL CONCRETE m <sup>3</sup> | 19.13  |  |  |  |  |  |
| EXCAVATION m3                 | 217.33 |  |  |  |  |  |
| REINFORCEMENT Kg              | 1320.0 |  |  |  |  |  |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CHAMILED C. 27
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC?Y
Approved Vide Ref. Letter No. S. DIVL 67 TTPL
CONTROLLED CC. CONTROLLED CC. CONTROLLED CC. CONTROLLED CC. CONTROLLED CC. CONTROLLED CC. CONTROLLED CC. CONTROLLED CC. CONTROLLED CC. CONTROLLED CC. CONTROLLED CC. CONTROLLED CC. CONTROLLED CC. CONTROLLED CC. CONTROLLED CC. CONTROLLED CC. CONTROLLED

|        |       | T      |      |                                                         |                            |           |       |      |  |  |
|--------|-------|--------|------|---------------------------------------------------------|----------------------------|-----------|-------|------|--|--|
| REV NO | DATE  |        |      |                                                         | DESCRIPTION                | DRAWN     | СНКО  | APPD |  |  |
| PRO    |       |        |      |                                                         | M-NARENDRA TRANSMISSION    |           | CHRIS | Arib |  |  |
| CLI    | ENT   | STER   | LITE | GRID VENTURES LIMITED                                   |                            |           |       |      |  |  |
| DESIG  | GNER: | STER   | LITE | POWER (                                                 | GRID VENTURES LIMITED      |           |       |      |  |  |
| DRWN   | ŔŦ    | 03-08- | -18  |                                                         | FOUNDATION DRAWING FOR TO  | OWER TYPE |       |      |  |  |
| CHKD   | AM    | 03-08- | -18  | DAL-3/+0/+3/+6M 400KV D/C (WZ-1)                        |                            |           |       |      |  |  |
| APPD   | DL    | 03-08- | -18  |                                                         | FULLY SUBMERGED SOIL (3.5) | M DEPTH)  |       |      |  |  |
| DATE   | 03-0  | 8-18   | DRA  | RAWING NO. GTTPL/400DC/WZ-I/DAL/F-004 SHEET NO. 1/2 REV |                            |           |       |      |  |  |

REFER SHEET 2 OF 2 FOR PIT DIMENSION TABLE FOR SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

DRWN

copyright Swelie Grid Lid. 2011. ALL RIGHTS RESERVED.

CHKD

No pear of this copyrighted internices be reproduced or transmitted us any form

pa any means for any purpose without prior written permission of the owner.

The Unauthorland use, of any, will amount to infringment and the infringer shall be held

DATE

PIT MARKING PLAN

| Project<br>GOA      |                                     |                               | 400 K                      | V D/C -X-I                  | M & X-N<br>PIT DIME |                 |            |                           | L TYPE -       | - FS            |              | Client:<br>SPGVL |          |
|---------------------|-------------------------------------|-------------------------------|----------------------------|-----------------------------|---------------------|-----------------|------------|---------------------------|----------------|-----------------|--------------|------------------|----------|
| 400 KV D/C-X-M & X- | N- TT "DAL"                         | * F * B/B of To<br>3M8E(+)-38 |                            | * F * B/B of 1<br>3MBE(+)-3 |                     | Stub Sec        | ction (HT) | Lattice<br>Level to<br>CL | cg             | sec B1          | 2°Tan B1     | sec B2           | 2"Tan B2 |
|                     |                                     | 943                           | 2                          | 94                          | 32                  | 130X1           | 30X10      | 50                        | 35.9           | 1.011445        | 0.303448276  | 1.011445         | 0.303448 |
| Tower Detail        | Extn from<br>-3MBE(+)-<br>3MLE (mm) | og-og dim at<br>OL (TF)       | cg-cg dim<br>at CL<br>(LF) | Foundation<br>Base Width    | work pt             | G.L. TO<br>C.L. | A1         | A2                        | 9              | E               | F1           | F2               | Н        |
| -3MBE (+) -3M LE    | 0                                   | 9375                          | 9375                       | 3640                        | 3000                | 225             | 5177       | 5177                      | 7321           | 3940            | 7147         | 7147             | 0500     |
| -3MBE (+) -1.5M LE  | 1500                                | 9830                          | 9830                       | 3640                        | 3000                | 225             | 5404       | 5404                      | 7643           | 3940            | 7374         |                  | 3500     |
| -3MBE (+) +0M LE    | 3000                                | 10285                         | 10285                      | 3640                        | 3000                | 225             | 5632       | 5632                      | 7965           | 3940            | 7602         | 7374             | 3500     |
| -3MBE (+) +1.5M LE  | 4500                                | 10741                         | 10741                      | 3640                        | 3000                | 225             | 5860       | 5860                      | 8287           | 3940            | 7830         | 7602<br>7830     | 3500     |
| -3MBE (+) +3M LE    | 6000                                | 11196                         | 11196                      | 3640                        | 3000                | 225             | 6087       | 6087                      | 8609           |                 |              |                  | 3500     |
| +0MBE (+) -3M LE    | 3000                                | 10285                         | 10285                      | 3640                        | 3000                | 225             | 5632       | 5632                      | 7965           | 3940<br>3940    | 9057<br>7602 | 8057             | 3500     |
| +0M8E (+) -1.5M LE  | 4500                                | 10741                         | 10741                      | 3640                        | 3000                | 225             | 5860       | 5860                      | 8287           | 3940            | 7830         | 7602             | 3500     |
| +0MBE (+) +0M LE    | 6000                                | 11196                         | 11196                      | 3640                        | 3000                | 225             | 6087       | 6087                      | 9609           | 3940            | 8057         | 7830             | 3500     |
| +0MBE (+) +1.5M LE  | 7500                                | 11651                         | 11651                      | 3640                        | 3000                | 225             | 6315       | 6315                      | 8930           | 3940            |              | 8057             | 3500     |
| +0MBE (+) +3M LE    | 9000                                | 12106                         | 12106                      | 3640                        | 3000                | 225             | 6542       | 6542                      | 9252           |                 | 8285         | 9285             | 3500     |
| +3MBE (+) -3M LE    | 6000                                | 11196                         | 11196                      | 3640                        | 3000                | 225             | 6087       | 6087                      |                | 3940            | 8512         | 8512             | 3500     |
| -3MBE (+) -1.5M LE  | 7500                                | 11651                         | 11651                      | 3640                        | 3000                | 225             | 6315       | 6315                      | 8609           | 3940            | 8057         | 8057             | 3500     |
| +3MBE (+) +0M LE    | 9000                                | 12106                         | 12106                      | 3640                        | 3000                | 225             | 6542       |                           | 8930           | 3940            | 8285         | 8285             | 3500     |
| +3MBE (+) +1.5M LE  | 10500                               | 12561                         | 12561                      | 3640                        | 3000                | 225             | 6770       | 6542<br>6770              | 9252<br>9574   | 3940            | 8512         | 8512             | 3500     |
| 3MBE (+) +3M LE     | 12000                               | 13016                         | 13016                      | 3640                        | 3000                | 225             | 6998       | 5998                      |                | 3940            | 8740         | 8740             | 3500     |
| -6MBE (+) -3M LE    | 9000                                | 12106                         | 12106                      | 3640                        | 3000                | 225             | 6542       | 6542                      | 9896           | 3940            | 8968         | 8968             | 3500     |
| 6MBE (+) -1.5M LE   | 10500                               | 12561                         | 12561                      | 3640                        | 3000                | 225             | 6770       | 8770                      | 9252           | 3940            | 8512         | 8512             | 3500     |
| -6MBE (+) +0M LE    | 12000                               | 13016                         | 13016                      | 3640                        | 3000                | 225             | 6998       |                           | 9574           | 3940            | 8740         | 8740             | 3500     |
| 6MBE (+) +1.5M LE   | 13500                               | 13472                         | 13472                      | 3640                        | 3000                | 225             | 7225       | 6998                      | 9896           | 3940            | 8968         | 8968             | 3500     |
| 6MBE (+) +3M LE     | 15000                               | 13927                         | 13927                      | 3640                        | 3000                | 225             | 7453       | 7225                      | 10218          | 3940            | 9195         | 9195             | 3500     |
|                     |                                     | 10021                         | 10021                      | 30-10                       | 3000                | 223             | 1455       | 7453                      | 10540          | 3940            | 9423         | 9423             | 3500     |
|                     |                                     |                               |                            |                             | 1                   | <i>*</i> .      | 1          | CL of found               | auton //       | 7               | G.L.         |                  |          |
|                     | plit C                              |                               |                            |                             | p t B               |                 | A2 F2      |                           |                | н               |              |                  |          |
|                     |                                     |                               | /                          | Æ                           |                     | Working         |            | [                         | //             | 3               |              |                  |          |
| ONGITUDINAL PACE    |                                     | В                             |                            |                             | /                   | Point A         | A2 F2      | <del></del>               | İE             | +               |              |                  |          |
| <b>8</b>            |                                     |                               |                            |                             | A                   | 7               |            | <u>\$</u>                 | EC X-X         | Working Point A |              |                  |          |
| <u>-</u>            |                                     | <del>_</del>                  |                            |                             |                     |                 |            | Limit Bearin              | g Capacity     |                 | 12500 H      | (g/Sqm           |          |
|                     | pit D                               | 1                             |                            |                             | pk A                | -               |            | Weight of so              | oil (Dry porti | on)             | 1440 H       | (g/cum           |          |

Weight of soil (Wet portion)

Angle of Repose (Wet portion)

Water Table

Kg/cum

Deg

Deg

30

15

0.0M

### NOTE:

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

| v                 | ERTICAL SLOPE |  |  |  |  |  |
|-------------------|---------------|--|--|--|--|--|
| TAN B =           | 0.151724138   |  |  |  |  |  |
| 2 TAN B =         | 0.303448276   |  |  |  |  |  |
| FACB =            | 1.011444617   |  |  |  |  |  |
| DEV -             | 1.022761175   |  |  |  |  |  |
| 1                 | N FACE SLOPE  |  |  |  |  |  |
| TANB =            | 0.150003      |  |  |  |  |  |
| SEC B = 1.0111885 |               |  |  |  |  |  |

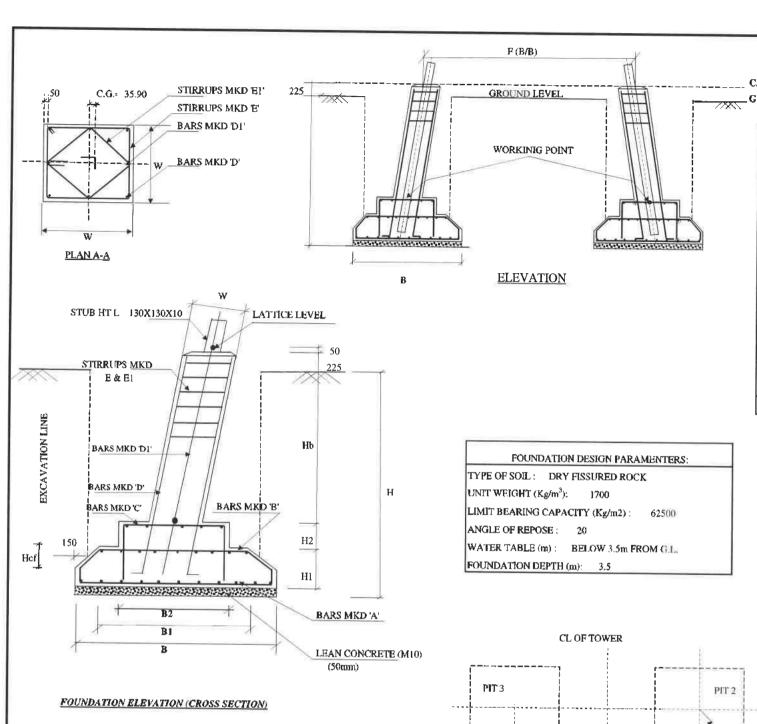
STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CGPY
Approved Vide Ref. Letter No STATY L GTTT/L
Engineering Deptt.
the above does not relieve the solite actor from their contractual obligations

### NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm<sup>2</sup>)
- 5.STUB BELOW GROUND LEVEL =

3300 mm

- $6.\mbox{WHENEVER}$  NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.


Opposite Seafer-Print Ind. 2011. ALL RECRITS RESIDENDED.

No point of the compression interaction to be conveniented or transcented in one forth by our manufactor for your purpose without price vision greater on colors.

The Unpublished out of the ALL SHARM interaction in interpretation and the defininger shall be laid to be a forth of the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction and the ALL SHARM interaction an

 $10.\mathrm{AT}$  SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| REV NO  | DATE     |              | DESCRIPTION                       | DRAWN         | CH  | IKD | APPD |  |
|---------|----------|--------------|-----------------------------------|---------------|-----|-----|------|--|
| PRO     | DJECT    | 400KV D/C XE | LDAM-NARENDRA TRANSM              | ISSION LTD    |     |     |      |  |
| CL      | IENT     | STERLITE POV | VER GRID VENTURES LIMITE          | ED .          |     |     |      |  |
| DESI    | GNER:    | STERLITE POY | VER GRID VENTURES LIMITE          | ED .          |     |     |      |  |
| RWN     | RT       | 03-08-18     | FOUNDATION DRAWING                | 2 BOD TOWER T | Vne | _   | _    |  |
| HKD     | AM       | 03-08-18     | DAL-3/+0/+3/+6M 40                |               |     |     |      |  |
| PPD OPP | DL       | 03-08-18     | FULLY SUBMERGED SOIL (3.5M DEPTH) |               |     |     |      |  |
| ATE     | 03-08-18 | DRAWING NO.  | GTTPL/400DC/WZ-L/DAL/F-004        | SHEET NO.     | 2/2 | REV | 0    |  |



PIT 4

| В    | Н    | W   | B1   | B2   | H1  | Н2  | Hef | Нь   |
|------|------|-----|------|------|-----|-----|-----|------|
| 2170 | 3500 | 420 | 1870 | 1410 | 250 | 200 | 150 | 3000 |

| BAR<br>MKD | BAR BENDING SKETCH    | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTH    | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|-----------------------|--------------------------|---------------------|------------------------|-----------|----------------|-------------------|---------------------|
|            |                       |                          | (mm)                | (no)                   | (mm)      | ('kg/m)        | (kg)              | (kg)                |
| A          | 2070                  | PAD REINFORCEMENT        | 10                  | 26                     | 2070      | 0.62           | 33.23             | 132.90              |
| В          | 1770<br>50 141 141 50 | PAD REINFORCEMENT        | 10                  | 16                     | 2153      | 0.62           | 21.28             | 85.10               |
| c          | 1310<br>330 50 50 330 | PAD REINFORCEMENT        | 10                  | 18                     | 2070      | 0.62           | 22.99             | 91.96               |
| D          | 3535                  | CHIMNEY BAR              | 20                  | 4                      | 3835      | 2.46           | 37.81             | 151.27              |
| D1         | 300                   | CHIMNEY BAR              | 20                  | 4                      | 3835      | 2.46           | 37.81             | 151.27              |
| E          | 320                   | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1472      | 0.39           | 7.55              | 30.21               |
| E1         | 226 226               | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1097      | 0.39           | 5.62              | 22.50               |
|            |                       |                          |                     |                        | TOTAL REI | INFORCEMEN     | NT/ TOWER=        | 665.2               |

### NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm<sup>2</sup>)
- 5.STUB BELOW GROUND LEVEL = 3300
- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

DATE

03-08-18

DRAWING NO.

- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| QUANTITIES/STRU               | CTURE |
|-------------------------------|-------|
| CONCRETE (M20) m <sup>3</sup> | 8.2   |
| CONCRETE (M10) m <sup>3</sup> | 0.94  |
| TOTAL CONCRETE m <sup>3</sup> | 9,14  |
| EXCAVATION m3                 | 50.04 |
| REINFORCEMENT Kg              | 665,2 |

the above does contractual oblig

|           |                            | - NENTI | IRESLTD      | 7   |
|-----------|----------------------------|---------|--------------|-----|
| STERLITE  | POWER G                    | NSTRUCT | ION          | 1   |
| CONTRO    | LED CO?                    | Y       | 51.1         | 411 |
| Approved  | LB.T/2                     | Date:   | 13/08/       | (1) |
| EHBIO     | ing Deptt.                 | War Mar | ctor from th | eir |
| the above | ring Deptt. does not relie | Allera  |              |     |

SHEET NO. 1/2 REV 0

| REV NO                                               | DATE  |          | DESCRIPTION                       | DRAWN | CHKD | APPD |
|------------------------------------------------------|-------|----------|-----------------------------------|-------|------|------|
| PRO.                                                 | IECT  | 400KV D  | C XELDAM-NARENDRA TRANSMISSION LT | D     |      |      |
| CLIENT STERLITE POWER GRID VENTURES LIMITED          |       |          |                                   |       |      |      |
| DESIG                                                | SNER: | STERLIT  | E POWER GRID VENTURES LIMITED     |       |      |      |
| DRWN                                                 | RT    | 03-08-18 | FOUNDATION DRAWING FOR TOWE       | TVDE  |      |      |
| CHKD                                                 | AM    | 03-08-18 | DAL-3/+0/+3/+6M 400KV D/C (WZ     |       |      |      |
| APPD DL 03-08-18 DRY FISSURED ROCK SOIL (3.5M DEPTH) |       |          |                                   |       |      |      |

GTTPL/400DC/WZ-1/DAL/F-005

REFER SHEET 2 OF 2 FOR PIT DIMENSION TABLE FOR SEITING OF STUB FOR BODY AND LEG EXTENSIONS.

VERTICAL SLOPE

IN FACE SLOPE

0.151724138

0.303448276

1.011444617

1.022761178

0.150003

1.0111885

TANB =

2 TAN B =

FACE =

DEV =

TANB =

SEC B =

copyright Sherlite Graf Lid. 2011. ALL RIGHTS RESERVED.

No part of this copyrighted materializan be appreclated or manufaced in any form by any means for any parpose without pures written permission of the owner. The Unumberized use if any, will amount to intringutent and the infringer shall be held [labb] for keeping and positionant with impressument.

M PIT MARKING PLAN PIT I

| 100 101 0 10 11 11  |                                     |                                         |                            |                             | PIT DIME |                    |            |                                           | TYPE -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                         | Client:<br>SPGVL                  |          |
|---------------------|-------------------------------------|-----------------------------------------|----------------------------|-----------------------------|----------|--------------------|------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|-----------------------------------|----------|
| 400 KV D/C-X-M & X- | N- TT "DAL"                         | * F * B/B of To<br>3MBE(+)-3h           |                            | * F * B/B of T<br>3MBE(+)-3 |          | Stub Se            | ction (HT) | Lattice<br>Level to<br>CL                 | ¢g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sec B1   | 2*Tan B1                | sec B2                            | 2*Tan B2 |
|                     |                                     | 943;                                    | 2                          | 94                          | 32       | 130X               | 130X10     | 50                                        | 35.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.011445 | 0.303448276             | 1.011445                          | 0.303448 |
| Tower Detail        | Exin from<br>-3MBE(+)-<br>3MLE (mm) | og-og dim at<br>OL (TF)                 | cg-cg dim<br>at CL<br>(LF) | Foundation<br>Base Width    | work pl  | G.L. TO<br>C.L.    | A1         | A2                                        | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E        | F1                      | F2                                | н        |
| -3MBE (+) -3M LE    | 0                                   | 9375                                    | 9375                       | 2170                        | 3000     | 225                | 5177       | 5177                                      | 7321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 6262                    | 0000                              |          |
| -3MBE (+) -1.5M LE  | 1500                                | 9830                                    | 9830                       | 2170                        | 3000     | 225                | 5404       | 5404                                      | 7643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 6489                    | 6262                              | 3500     |
| -3MBE (+) +0M LE    | 3000                                | 10285                                   | 10285                      | 2170                        | 3000     | 225                | 5632       | 5632                                      | 7965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     |                         | 6489                              | 3500     |
| SMBE (+) +1,5M LE   | 4500                                | 10741                                   | 10741                      | 2170                        | 3000     | 225                | 5860       | 5860                                      | 8287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 6717                    | 6717                              | 3500     |
| 3MBE (+) +3M LE     | 6000                                | 11196                                   | 11196                      | 2170                        | 3000     | 225                | 6087       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 6945                    | 6945                              | 3500     |
| +OMBE (+) -3M LE    | 3000                                | 10285                                   | 10285                      | 2170                        | 3000     | 225                | 5632       | 6087                                      | 8609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 7172                    | 7172                              | 3500     |
| +OMBE (+) -1.5M LE  | 4500                                | 10741                                   | 10741                      | 2170                        | 3000     | 225                | 5860       | 5632<br>5860                              | 7965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 6717                    | 6717                              | 3500     |
| -OMBE (+) +OM LE    | 6000                                | 11196                                   | 11196                      | 2170                        | 3000     | 225                |            |                                           | 9287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 6945                    | 6945                              | 3500     |
| -OMBE (+) +1,5M LE  | 7500                                | 11651                                   | 11651                      | 2170                        | 3000     |                    | 6087       | 6087                                      | 8609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 7172                    | 7172                              | 3500     |
| OMBE (+) +3M LE     | 9000                                | 12106                                   |                            |                             |          | 225                | 6315       | 6315                                      | 8930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 7400                    | 7400                              | 3500     |
| 3MBE (+) -3M LE     | 6000                                |                                         | 12106                      | 2170                        | 3000     | 225                | 6542       | 6542                                      | 9252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 7627                    | 7627                              | 3500     |
| -3MBE (+) -1.5M LE  | 7500                                | 11196                                   | 11196                      | 2170                        | 3000     | 225                | 6087       | 6087                                      | 8609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 7172                    | 7172                              | 3500     |
| -3MBE (+) +0M LE    |                                     | 11851                                   | 11651                      | 2170                        | 3000     | 225                | 6315       | 6315                                      | 8930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 7400                    | 7400                              | 3500     |
| 370                 | 9000                                | 12106                                   | 12106                      | 2170                        | 3000     | 225                | 6542       | 6542                                      | 9252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 7627                    | 7627                              | 3500     |
| 3MBE (+) +1.5M LE   | 10500                               | 12561                                   | 12561                      | 2170                        | 3000     | 225                | 6770       | 6770                                      | 9574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 7855                    | 7855                              | 3500     |
| SMBE (+) +3M LE     | 12000                               | 13016                                   | 13016                      | 2170                        | 3000     | 225                | 6998       | 6998                                      | 9896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 8083                    | 6083                              | 3500     |
| 6MBE (+) -3M LE     | 9000                                | 12106                                   | 12106                      | 2170                        | 3000     | 226                | 6542       | 6542                                      | 9252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 7627                    | 7627                              | 3500     |
| 6MBE (+) -1.5M LE   | 10500                               | 12561                                   | 12561                      | 2170                        | 3000     | 225                | 6770       | 6770                                      | 9574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 7855                    | 7855                              | 3500     |
| 6MBE (+) +OM LE     | 12000                               | 13016                                   | 13016                      | 2170                        | 3000     | 225                | 6998       | 6998                                      | 9896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2170     | 8083                    | 8083                              | 3500     |
| 6MBE (+) +1.5M LE   | 13500                               | 13472                                   | 13472                      | 2170                        | 3000     | 225                | 7225       | 7225                                      | 10218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2170     | 8310                    | 8310                              | 3500     |
| 6MBE (+) +3M LE     | 15000                               | 13927                                   | 13927                      | 2170                        | 3000     | 225                | 7463       | 7453                                      | 10540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2170     | 8538                    | 8538                              | 3500     |
| MA                  | ple C                               | • • • • • • • • • • • • • • • • • • • • |                            | 8                           | p t B    | 1                  | A2 F2      | CL of found                               | lation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7        | G.L.                    |                                   |          |
| LONGITUDINAL FACE   | pit D                               | A1 F1                                   | *                          | A1 F1                       |          | Norking<br>Point A | 1          | Limit Bearing Weight of so Weight of Repo | EC X-X  g Capacity  pil (Dry portion (Wet portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry portions (Dry po | ion)     | 1700 H<br>940 K<br>20 E | (g/Sqm<br>(g/sum<br>(g/sum<br>leg |          |

### NOTE

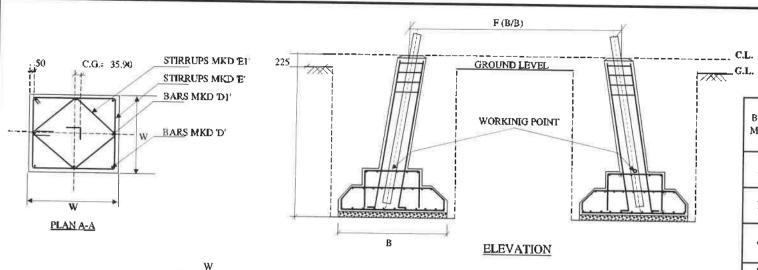
- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD, IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

|           | VERTICAL SLOPE |
|-----------|----------------|
| TANB =    | 0.151724138    |
| 2 TAN B = | 0.303448276    |
| FACE =    | 1.011444617    |
| DEA =     | 1.022761178    |
|           | IN FACE SLOPE  |
| TAN B =   | 0.150003       |
| SEC B =   | 1.0111885      |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION RELEASED FOR CONSTRUCTION CONTROLLED CCPY
Approved Vide Ref. Letter No.Str. Un.V.L. UT TTPL

ENGINEERING Deptly
the above does not relieve the confractor from their contractual obligations.

### NOTES:


- 1.DRAWING NOT TO SCALE
- $2.\mbox{ALL}$  DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- $4. {\tt REINFORCEMENT} \ {\tt ARE} \ {\tt HIGH} \ {\tt STRENGTH} \ {\tt DEFORMED} \ {\tt BARS} \ {\tt CONFIRMING}$
- TO IS 1139/1786(Grade Fe 500N/mm<sup>2</sup>)
- 5.STUB BELOW GROUND LEVEL =
- 3300 mm
- $6.\mbox{WHENEVER}$  NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.

emplicità Storico dinet (set. 2011). ALL. RICALTER RESCRIVED.

No port of the congregated introductual to expending of or creatable and any forest
promy manner for engligation would mapped white or production of the compaThe Complianced cite. In my. and smooth to historical production of the compaThe Complianced cite. In my. and smooth to historical production of the compaThe Complianced cite. In my. and smooth to historical production of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexity of the complexit

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

|                  |          | 1            |                                     |               |      |      |      |  |
|------------------|----------|--------------|-------------------------------------|---------------|------|------|------|--|
| REV NO           | DATE     |              | DESCRIPTION                         | DRAWN         | CI.  | -IKD | APPD |  |
| PRO              | JECT     | 400KV D/C XE | LDAM-NARENDRA TRANSM                |               | ı cı | IKD  | ATTU |  |
| CLI              | ENT      | STERLITE POV | VER GRID VENTURES LIMITE            | ED .          |      |      |      |  |
| DESIG            | GNER:    | STERLITE POV | VER GRID VENTURES LIMITE            | ED .          |      |      |      |  |
| DRWN             | RT       | 03-08-18     | FOUNDATION DRAWING                  | C EOD TOWER T | VDC  | -    |      |  |
| СНКВ             | AM       | 03-08-18     | DAL-3/+6/+3/+6M 40                  |               |      |      |      |  |
| APPD DL 03-08-18 |          |              | DRY FISSURED ROCK SOIL (3.5M DEPTH) |               |      |      |      |  |
| DATE             | 03-08-18 | DRAWING NO.  | GTTPL/400DC/WZ-L/DAL/F-005          | SHEET NO.     | 2/2  | REV  | р    |  |



| EXC  | В    | н    | W   | Bī   | B2   | H1  | H2  | Hcf | Hb   |
|------|------|------|-----|------|------|-----|-----|-----|------|
| 2400 | 2100 | 3500 | 420 | 1800 | (410 | 250 | 200 | 150 | 3000 |

| BAR<br>MKD | BAR BENDING SKETCH                  | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTII  | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|-------------------------------------|--------------------------|---------------------|------------------------|----------|----------------|-------------------|---------------------|
|            |                                     |                          | (mm)                | (no)                   | (mm)     | (ˈkg/m)        | (kg)              | (kg)                |
| A          | 2000                                | PAD REINFORCEMENT        | 10                  | 26                     | 2000     | 0.62           | 32.10             | 128.41              |
| В          | 1700<br>50 141 141 50               | PAD REINFORCEMENT        | 10                  | 14                     | 2083     | 0.62           | 18.02             | 72.08               |
| С          | 1310<br>330 <u>50</u> <u>50</u> 330 | PAD REINFORCEMENT        | 10                  | 18                     | 2070     | 0.62           | 22.99             | 91.96               |
| D          | 3535                                | CHIMNEY BAR              | 20                  | 4                      | 3835     | 2.46           | 37.81             | 151.27              |
| <b>D</b> 1 | 300                                 | CHIMNEY BAR              | 20                  | 4                      | 3835     | 2.46           | 37.81             | 151,27              |
| E          | 320                                 | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1472     | 0.39           | 7.55              | 30.21               |
| E1         | 226 226                             | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1097     | 0.39           | 5.62              | 22,52               |
|            |                                     |                          |                     |                        | TOTAL RE | INFORCEMEN     | VT/ TOWER=        | 647.7               |

### STUB H130X130X10L LATTICE LEVEL STIRRUPS MKD E & E1 Hb BARS MKD 'DI' BARS MKD 'D' BARS MKD 'C' BARS MKD B H2 Hef H1 BARS MKD 'A' **B1** LEAN CONCRETE (M10) (50mm) EXC

### FOUNDATION ELEVATION (CROSS SECTION)

| E                      | XCAVATION I         | PLAN DETAIL                  |       |               |
|------------------------|---------------------|------------------------------|-------|---------------|
|                        | STUB =              | H130X130X10L                 |       |               |
| то                     | WER SLOPE =         | 9.26                         | 2*TAN | a= 0.32620278 |
| B/B WIDTH              | AT C.J.,(mm) =      | 11588.3                      |       |               |
| CGO                    | F STUB(mm) =        | 35.9                         |       |               |
| CG TO CG WIDTH         | AT C.L.(mm) =       | 11517                        |       |               |
| TOWER TYPE             | F<br>B/B AT<br>C.L. | M<br>(CG TO CO<br>AT WORKING |       | N             |
| N = NORMAL TOWER       | 11588               | 12569                        |       | 17775         |
| 3M BE = ATTACHED TO NT | 12567               | 13548                        |       | 19160         |
| 6M BE = ATTACHED TO NT | 13546               | 14526                        |       | 20543         |
| 9M BE = ATTACHED TO NT | 14524               | 15505                        |       | 21928         |

### FOUNDATION DESIGN PARAMENTERS:

TYPE OF SOIL: DRY

UNIT WEIGHT (Kg/m³): [440]

LIMIT BEARING CAPACITY (Kg/m2): 25000

ANGLE OF REPOSE: 30

WATER TABLE (m): BELOW 3.5m FROM G.L.

FOUNDATION DEPTH (m): 3.5

| PIT 3       |             |                       |          | PIT 2 |
|-------------|-------------|-----------------------|----------|-------|
|             |             |                       |          | >     |
| i           |             |                       | <u> </u> |       |
|             |             |                       |          |       |
|             | /           | N                     | [7555    |       |
|             | 1           |                       |          |       |
| PIT 4       | \frac{1}{2} | :<br>:<br>:<br>:<br>: |          | PIT I |
| <del></del> |             |                       |          |       |

### NOTES:

1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3. CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm<sup>2</sup>)

5.STUB BELOW GROUND LEVEL = 3300

6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

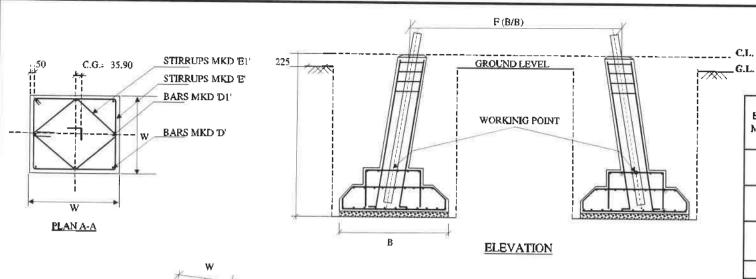
9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH

LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| QUANTITIES/ STRU              | CTURE |
|-------------------------------|-------|
| CONCRETE (M20) m <sup>3</sup> | 7.92  |
| CONCRETE (M10) m <sup>3</sup> | 0.88  |
| TOTAL CONCRETE m <sup>3</sup> | 8.8   |
| EXCAVATION m3                 | 80.64 |
| REINFORCEMENT Kg              | 647.7 |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CCPY
Approved Vide Ref. Letter No SPANL STTPL the above does no relieve the contractual obligations


| 1      |       |       |     |           |                         |            |        |      |
|--------|-------|-------|-----|-----------|-------------------------|------------|--------|------|
|        |       |       |     |           |                         |            |        |      |
| REV NO | DATE  |       |     |           | DESCRIPTION             | DRAWN      | CHKD   | APPD |
| PRO.   | JECT  | 400K  | V D | C XELDA   | M - NARENDRA TRANSMISS  |            | CIRD   | INID |
| CLII   | ENT   | STER  | LIT | E POWER ( | GRID VENTURES LIMITED   |            |        |      |
| DESIG  | SNER: | STER  | LIT | E POWER ( | GRID VENTURES LIMITED   |            |        |      |
| DRWN   | RT    | 03-08 | -18 |           | FOUNDATION DRAWING FOR  | TONER TURE |        |      |
| CHKD   | AM    | 03-08 | -18 |           | DA+0/+3/+6/+9M 400KV D  |            |        |      |
| APPD   | DL    | 03-08 | -18 |           | DRY SOIL (3.5M DEF      |            |        |      |
| DATE   | 03-0  | 8-18  | DR  | AWING NO. | KTL/400DC/WZ-1/DA/F-001 | SHEET NO.  | 1/1 RE | y o  |

copyright Status Urid Ltd. 2011. ALL RIGHTS RESERVED.

No part of this copyrighted materialcan be reproduced or transmitted in any form
by any basens for any purpose without prior written permission of the owner.

The Unauthyride used any. Will amount to intringenent and the infringer shall be held

Bable for heavy damages and punishment with unprisament?



| EXC  | В    | Н    | W   | Bi   | B2   | H1  | H2  | Hef | НЬ   |
|------|------|------|-----|------|------|-----|-----|-----|------|
| 3150 | 2850 | 3500 | 420 | 2550 | 1410 | 250 | 200 | 150 | 3000 |

| BAR<br>MKD | BAR BENDING SKETCH    | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTH   | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|-----------------------|--------------------------|---------------------|------------------------|----------|----------------|-------------------|---------------------|
|            |                       |                          | (min)               | (no)                   | (mm)     | (kg/m)         | (kg)              | (kg)                |
| A          | 2750                  | PAD REINFORCEMENT        | 12                  | 26                     | 2750     | 0.89           | 63.51             | 254.03              |
| В          | 2450<br>50 141 141 50 | PAD REINFORCEMENT        | 10                  | 20                     | 2833     | 0.62           | 34.96             | 139.85              |
| С          | 1310<br>326 50 50 326 | PAD REINFORCEMENT        | 10                  | 18                     | 2062     | 0.62           | 22.90             | 91.61               |
| D          | 3531                  | CHIMNEY BAR              | 20                  | 4                      | 3831     | 2.46           | 37.77             | 151.11              |
| D1         | 300                   | CHIMNEY BAR              | 20                  | 4                      | 3831     | 2.46           | 37.77             | 151.11              |
| E          | 320                   | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1472     | 0.39           | 7.55              | 30.21               |
| E1         | 226 226               | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1097     | 0.39           | 5.62              | 22.52               |
|            |                       |                          |                     |                        | TOTAL RE | INFORCEMEN     | NT/ TOWER=        | 840.4               |

### STUB H130X130X10L LATTICE LEVEL STIRRUPS MKD E & E1 EXCAVATION LINE HЪ BARS MKD 'DI' BARS MKD 'D' BARS MKD 'C' BARS MKD 'B' H2 licf ecentenaniana anti-BARS MKD 'A' **B**1 LEAN CONCRETE (M10) (50mm) EXC

FOUNDATION ELEVATION (CROSS SECTION)

### TYPE OF SOIL: WET

FOUNDATION DESIGN PARAMENTERS:

UNIT WEIGHT (Kg/m<sup>3</sup>): 1440 / 940

LIMIT BEARING CAPACITY (Kg/m2): 12500

ANGLE OF REPOSE: 30 / 15

WATER TABLE (m): 1.50 BELOW G.L.

FOUNDATION DEPTH (m): 3.5

NOTES: 1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

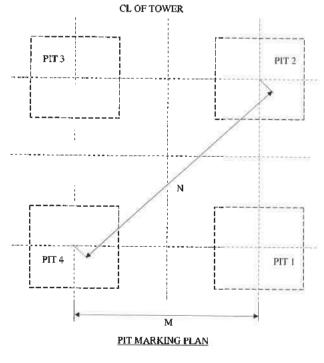
4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm<sup>2</sup>) 5.STUB BELOW GROUND LEVEL = 3300

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

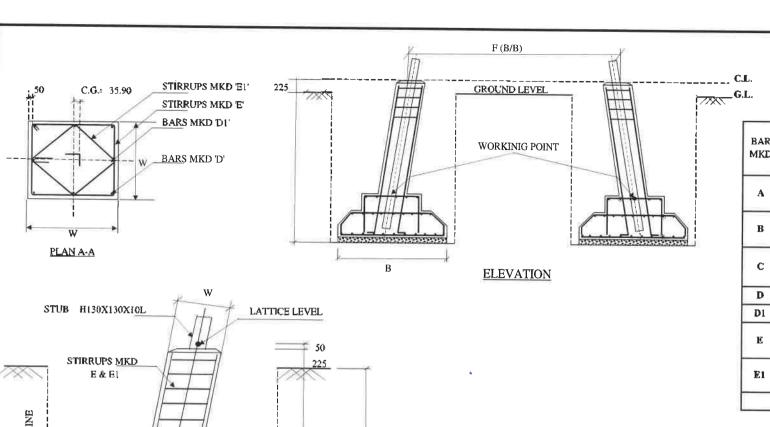
8.CLEAR COVER TO REINFORCEMENT IS 50MM


9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| QUANTITIES/ STRU              | CTURE  |
|-------------------------------|--------|
| CONCRETE (M20) m <sup>3</sup> | 11.49  |
| CONCRETE (M10) m <sup>3</sup> | 1.62   |
| TOTAL CONCRETE m <sup>3</sup> | 13.11  |
| EXCAVATION m3                 | 138.92 |
| REINFORCEMENT Kg              | 841.0  |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED COPY
Approved Vide Del Lama No. 2017 VIII. Approved Vide Ref. Letter No. S. P. GT. V.L. Engineering Deptty
the above does not rel contractual obligations


| E                      | XCAVATION F        | LAN DETAIL                   |         |                        |
|------------------------|--------------------|------------------------------|---------|------------------------|
|                        | STUB =             | H130X130X10L                 |         |                        |
| TO                     | WER SLOPE =        | 9.26                         | 2*TAN o | a= 0.3262 <b>027</b> 8 |
| B/B WIDTH              | AT C.L.(min) =     | 11588.3                      |         |                        |
| CG 0                   | F STUB(mm) =       | 35.9                         |         |                        |
| CG TO CG WIDTH         | AT C.L.(mm) =      | 11517                        |         |                        |
| TOWER TYPE             | F<br>B/B AT<br>C.L | M<br>(CG TO CO<br>AT WORKING |         | N                      |
| N = NORMAL TOWER       | 11588              | 12569                        |         | 17775                  |
| 3M BE = ATTACHED TO NT | 12567              | 13548                        |         | 19160                  |
| 6M BE = ATTACHED TO NT | 13546              | 14526                        |         | 20543                  |
| 9M BE = ATTACHED TO NT | 14524              | 15505                        |         | 21928                  |



pyright Sterlite Grid Ltd. 2011. ALL REGITTS RESERVED

to partial this crypticated materials as the crypticated or transmitted in any form by any finests for any purpose without print written permission of the owner. The Unautolocited user, I any, will amount to intringent and the infringer shall be held. IJablo for heavy tameges and punishment with imprisonment.

| DELLAN | D. I DE |       |      |           |                              |          |        |      |
|--------|---------|-------|------|-----------|------------------------------|----------|--------|------|
| REV NO | DATE    |       |      |           | DESCRIPTION                  | DRAWN    | CHKD   | APPD |
| PRO    | JECT    | 400K  | V D/ | C XELDAN  | M - NARENDRA TRANSMISSION L  | TD       |        |      |
| CLI    | ENT     | STER  | LIT  | E POWER ( | GRID VENTURES LIMITED        |          |        |      |
| DESIG  | GNER:   | STER  | LITI | E POWER ( | GRID VENTURES LIMITED        |          |        |      |
| DRWN   | RT      | 03-08 | -18  |           | FOUNDATION DRAWING FOR TOWE  | R TYPE   |        |      |
| CHKD   | AM      | 03-08 | -18  |           | DA+0/+3/+6/+9M 400KV D/C (WZ |          |        |      |
| APPD   | DL      | 03-08 | -18  |           | WET SOIL (3.5M DEPTH)        |          |        |      |
| DATE   | 03-0    | 8-18  | DR   | AWING NO. | KTL400DC/WZ-1/DA/F-002 S     | HEET NO. | 1/1 RE | v n  |



Hb

H2

H1

BARS MKD 'A'

(50 mm)

LEAN CONCRETE (M10)

BARS MKD 'B'

B1

EXC

FOUNDATION ELEVATION (CROSS SECTION)

BARS MKD 'D1'

BARS MKD 'D'

BARS MKD 'C'

Hcf

| BAR<br>MKD | BAR BENDING SKETCH                  | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTH | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|-------------------------------------|--------------------------|---------------------|------------------------|--------|----------------|-------------------|---------------------|
|            |                                     |                          | (mm)                | (no)                   | (mm)   | ('kg/m)        | (kg)              | (kg)                |
| A          | 2880                                | PAD REINFORCEMENT        | 12                  | 30                     | 2880   | 0.89           | 76.73             | 306.91              |
| В          | 2580<br>50 141 141 50               | PAD REINFORCEMENT        | 10                  | 20                     | 2963   | 0.62           | 36.57             | 146.26              |
| С          | 1310<br>326 <u>50</u> <u>50</u> 326 | PAD REINFORCEMENT        | 10                  | 18                     | 2062   | 0.62           | 22.90             | 91.61               |
| D          | 3531                                | CHIMNEY BAR              | 20                  | 4                      | 3831   | 2.46           | 37.77             | 151.11              |
| D1         | 300                                 | CHIMNEY BAR              | 20                  | 4                      | 3831   | 2.46           | 37.77             | 151.11              |
| E          | 320                                 | CHIMNEY SQUARE<br>SPACER | o                   | 12                     | 1472   | 0.39           | 7.55              | 30.21               |

Н

3500

W

420

B1

2680

13

13

B2

1410

1097

0.39

TOTAL REINFORCEMENT/ TOWER=

5.62

22.52

899.7

HI

250

H2

200

Hef

150

Hb

3000

### FOUNDATION DESIGN PARAMENTERS:

TYPE OF SOIL: PARTIALLY SUBMERGED

UNIT WEIGHT (Kg/m³): 1440 / 940

LIMIT BEARING CAPACITY (Kg/m2): 12500

ANGLE OF REPOSE: 30 / 15

WATER TABLE (m): 0.75 BELOW G.L.

FOUNDATION DEPTH (m): 3.5

NOTES:

1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

EXC

3280

2980

CHIMNEY SQUARE

SPACER

TO IS 1139/1786(Grade Fe - 500N/mm<sup>2</sup>)

226/

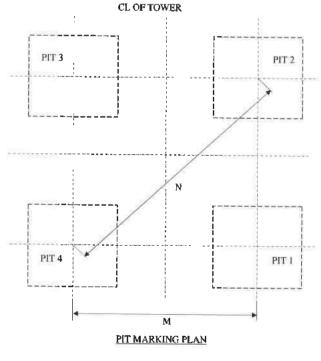
226

5.STUB BELOW GROUND LEVEL = 3300

6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

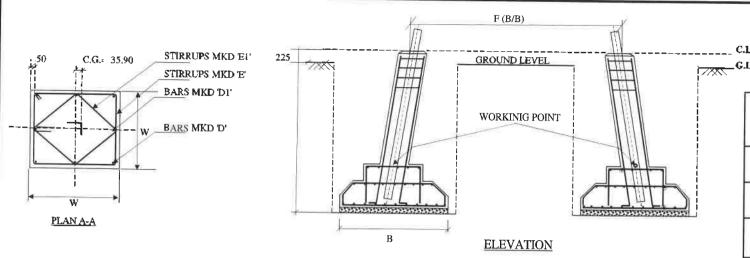

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

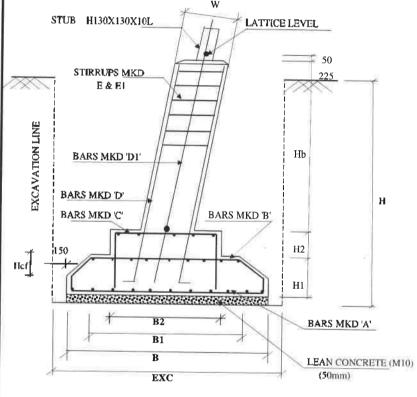
| QUANTITIES/ STRU              | CTURE  |
|-------------------------------|--------|
| CONCRETE (M20) m <sup>3</sup> | 12,23  |
| CONCRETE (M10) m <sup>3</sup> | 1.78   |
| TOTAL CONCRETE m <sup>3</sup> | 14.01  |
| EXCAVATION m3                 | 150.62 |
| REINFORCEMENT Kg              | 899.7  |

| I                      | EXCAVATION I       | LAN DETAIL                     |  |            |
|------------------------|--------------------|--------------------------------|--|------------|
|                        | STUB =             | H130X130X10L                   |  |            |
| TC                     | TOWER SLOPE =      |                                |  | 0.32620278 |
| B/B WIDTH              | AT C.L.(mm) =      | 11588.3                        |  |            |
| CG C                   | )F STUB(mm) =      | 35.9                           |  |            |
| CG TO CG WIDTH         | AT C.L.(mm) =      | 11517                          |  |            |
| TOWER TYPE             | F<br>B/B AT<br>C.L | M<br>(CG TO CG<br>AT WORKING J |  | N          |
| N = NORMAL TOWER       | 11588              | 12569                          |  | 17775      |
| 3M BE = ATTACHED TO NT | 12567              | 13548                          |  | 19160      |
| 6M BE = ATTACHED TO NT | 13546              | 14526                          |  | 20543      |
| 9M BE = ATTACHED TO NT | 14524              | 15505                          |  | 21928      |




yright Sterlite Grid Ltd. 2011. ALE REGITS RESERVED.

ble for heavy damages and punishment with imprisonment .?


No part of the copyrighted materialcumbe reproduced or transmitted in any form by any fixeas for any propose without prior written permission of the owner. The Unawhorised use, if any, will amount to infringement and the infringer shall be held.

|        |       |       |              |                                |           |     | Т   |      |
|--------|-------|-------|--------------|--------------------------------|-----------|-----|-----|------|
| REV NO | DATE  |       |              | DESCRIPTION                    | DRAWN     | СНК | D A | APPD |
| PRO    | JECT  | 400K  | V D/C XELDAI | M - NARENDRA TRANSMISSION      | LTD       |     |     |      |
| CLI    | ENT   | STER  | LITE POWER   | GRID VENTURES LIMITED          |           |     |     |      |
| DESIG  | GNER: | STER  | LITE POWER   | GRID VENTURES LIMITED          |           |     |     |      |
| DRWN   | RT    | 03-08 | -18          | FOUNDATION DRAWING FOR TOW     | /ER TYPE  |     |     |      |
| CHKD   | AM    | 03-08 | -18          | DA+0/+3/+6/+9M 400KV D/C (V    |           |     |     |      |
| APPD   | DI    | 03-08 | -18          | PARTIALLY SUBMERGED SOIL (3.5. | M DEPTH)  |     |     |      |
| DATE   | 03-0  | 8-18  | DRAWING NO.  | KTL/400DC/WZ-1/DA/F-003        | SHEET NO. | 1/1 | REV | 0    |



| EXC  | В    | Н    | W   | BI   | B2   | H1  | H2  | Hef | Hb   |
|------|------|------|-----|------|------|-----|-----|-----|------|
| 3650 | 3350 | 3500 | 420 | 3050 | 1410 | 250 | 200 | 150 | 3000 |

| BAR<br>MKD | BAR BENDING SKETCH            | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTH    | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|-------------------------------|--------------------------|---------------------|------------------------|-----------|----------------|-------------------|---------------------|
|            |                               |                          | (mm)                | (no)                   | (mm)      | ('kg/m)        | (kg)              | (kg)                |
| A          | 3250                          | PAD REINFORCEMENT        | 12                  | 32                     | 3250      | 0.89           | 92.35             | 369.38              |
| В          | 2950<br>50 141 141 50         | PAD REINFORCEMENT        | 10                  | 26                     | 3333      | 0.62           | 53.45             | 213.79              |
| с          | 1310<br>326 50 5 <u>0</u> 326 | PAD REINFORCEMENT        | 10                  | 18                     | 2062      | 0.62           | 22.90             | 91.61               |
| D          | 3531                          | CHIMNEY BAR              | 20                  | 4                      | 3831      | 2.46           | 37.77             | 151.11              |
| D1         | 300                           | CHIMNEY BAR              | 20                  | 4                      | 3831      | 2.46           | 37.77             | 151.11              |
| E          | 320                           | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1472      | 0.39           | 7.55              | 30.21               |
| E1         | 226 226                       | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1097      | 0.39           | 5.62              | 22.52               |
|            |                               |                          |                     |                        | TOTAL REI | NFORCEMEN      | T/TOWER=          | 1029.7              |



### FOUNDATION ELEVATION (CROSS SECTION)

| E                      | XCAVATION I        | LAN DETAIL                   |          |            |
|------------------------|--------------------|------------------------------|----------|------------|
|                        | STUB =             | H130X130X10L                 |          |            |
| то                     | WER SLOPE =        | 9.26                         | 2*TAN α= | 0.32620278 |
| B/B WIDTH              | AT C.L.(mm) =      | 11588.3                      |          |            |
| CG 0                   | F STUB(mm) =       | 35.9                         |          |            |
| CG TO CG WIDTH         | AT C.L.(mm) =      | 11517                        |          |            |
| TOWER TYPE             | F<br>B/B AT<br>C,L | M<br>(CG TO CC<br>AT WORKING | '        | N          |
| N = NORMAL TOWER       | 11588              | 12569                        |          | 17775      |
| 3M BE = ATTACHED TO NT | 12567              | 13548                        |          | 19160      |
| 6M BE = ATTACHED TO NT | 13546              | 14526                        |          | 20543      |
| 9M BE = ATTACHED TO NT | 14524              | 15505                        |          | 21928      |

### FOUNDATION DESIGN PARAMENTERS:

TYPE OF SOIL: FULLY SUBMERGED

LIMIT BEARING CAPACITY (Kg/m2): 12500

ANGLE OF REPOSE: 15

UNIT WEIGHT (Kg/m³): 940

WATER TABLE (m); 0m BELOW G.L.

FOUNDATION DEPTH (m): 3.5

|       | CLC          | F TOWER   |      |         | !             |
|-------|--------------|-----------|------|---------|---------------|
| PIT 3 |              |           |      | <u></u> | PIT 2         |
|       |              |           |      |         | •             |
|       |              |           | /    |         |               |
|       |              | N         |      |         |               |
|       |              |           |      |         |               |
| PIT 4 | *            |           |      |         | P <b>IT</b> 1 |
|       | <del>i</del> | М         | i.   |         |               |
|       | PIT M        | IARKING I | PLAN |         |               |

pyright Sterlite Grid Etd. 2011. ALL, REGIFTS RESERVED

respiring sterizale time Lett. 2011. ALT, RUSHIN RISSERVED

No part of this copyrighted underation be reproduced or transmitted in any from
by any means for any perpose without pener written permission of the comper.

The Unsutherized use, if any, will amount to mirring near and the infenger shall be held
liable for beavy damegos and punishment with imprisonment.

### NOTES:

LDRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm<sup>2</sup>)

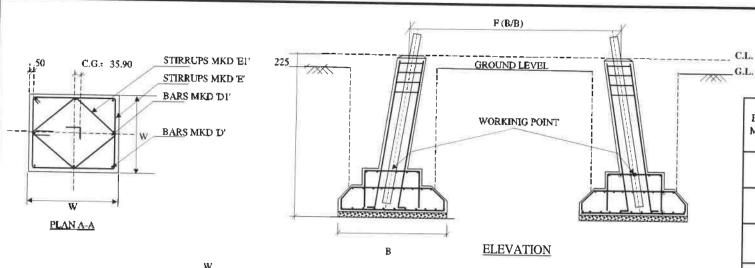
5.STUB BELOW GROUND LEVEL = 3300

6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM


9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| QUANTITIES/ STRU              | CTURE  |
|-------------------------------|--------|
| CONCRETE (M20) m <sup>3</sup> | 14.5   |
| CONCRETE (M10) m <sup>3</sup> | 2.24   |
| TOTAL CONCRETE m <sup>3</sup> | 16.74  |
| EXCAVATION m3                 | 186.52 |
| REINFORCEMENT Kg              | 1029.7 |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CCPY
Approved Vide Ref. Letter No. S. Chyllon TPL Engineering Deptt.
the above does not relieve the contractual obligations

|        |       |         |              |                             |           |     | П    |      |
|--------|-------|---------|--------------|-----------------------------|-----------|-----|------|------|
| REV NO | DATE  |         |              | DESCRIPTION                 | DRAWN     | СНК | D A  | APPD |
| PRO    | JECT  | 400KV   | D/C XELDAN   | M - NARENDRA TRANSMISSION   | LTD       |     | 2000 |      |
| CLI    | ENT   | STERI   | LITE POWER ( | GRID VENTURES LIMITED       |           |     |      |      |
| DESIG  | GNER: | STERI   | ITE POWER (  | GRID VENTURES LIMITED       |           |     |      |      |
| DRWN   | RT    | 03-08-1 | 18           | FOUNDATION DRAWING FOR TOW  | ER TYPE   |     |      |      |
| CHKD   | AM    | 03-08-1 | 18           | DA+0/+3/+6/+9M 400KV D/C (V |           |     |      |      |
| APPD   | DL    | 03-08-1 | 18           | FULLY SUBMERGED SOIL (3.5M  | DEPTH)    |     |      |      |
| DATE   | 03-0  | 8-18    | DRAWING NO.  | KTL/400DC/WZ-1/DA/F-004     | SHEET NO. | 1/1 | REV  | 0    |



| В    | Н    | W   | Bl   | B2   | H1  | H2  | Hcf | Hb   |
|------|------|-----|------|------|-----|-----|-----|------|
| 2000 | 3500 | 420 | 1700 | 1410 | 250 | 200 | 150 | 3000 |

| BAR<br>MKD | BAR BENDING SKETCH            | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTH   | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|-------------------------------|--------------------------|---------------------|------------------------|----------|----------------|-------------------|---------------------|
|            |                               |                          | (mm)                | (no)                   | (mm)     | ('kg/m)        | (kg)              | (kg)                |
| A          | 1900                          | PAD REINFORCEMENT        | 10                  | 26                     | 1900     | 0.62           | 30.50             | 122.01              |
| В          | 1600<br>50 141 141 50         | PAD REINFORCEMENT        | 10                  | 14                     | 1983     | 0.62           | 17.16             | 68.63               |
| с          | 1310<br>330 50 5 <u>0</u> 330 | PAD REINFORCEMENT        | 10                  | 18                     | 2070     | 0.62           | 22.99             | 91.96               |
| D          | 3535                          | CHIMNEY BAR              | 20                  | 4                      | 3835     | 2,46           | 37.81             | 151.27              |
| D1         | 300                           | CHIMNEY BAR              | 20                  | 4                      | 3835     | 2.46           | 37.81             | 151.27              |
| E          | 320 320                       | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1472     | 0.39           | 7.55              | 30.21               |
| EI         | 226 226                       | CHIMNEY SQUARE<br>SPACER | 8                   | 13                     | 1097     | 0.39           | 5.62              | 22.50               |
|            |                               |                          |                     | -                      | TOTAL RE | INFORCEMEN     | T/ TOWER=         | 637.8               |

### STUB H130X130X10L LATTICE LEVEL STIRRUPS MKD E & E1 BARS MKD 'D1' BARS MKD 'D' BARS MKD B' BARS MKD C H2 Hcf H! renerale en el entre en el entre en el entre en el entre en el entre en el entre en el entre en el entre en el BARS MKD 'A' B1 LEAN CONCRETE (M10) (50mm)

### FOUNDATION ELEVATION (CROSS SECTION)

| E                      | XCAVATION          | PLAN DETAIL                  |       |               |
|------------------------|--------------------|------------------------------|-------|---------------|
|                        | STUB =             | H130X130X10L                 |       |               |
| TO                     | WER SLOPE =        | 9.26                         | 2*TAN | x= 0.32620278 |
| B/B WIDTH              | AT C.L.(mm) =      | 11588.3                      |       |               |
| CG O                   | F STUB(mm) =       | 35.9                         |       |               |
| CG TO CG WIDTH         | AT C.L.(mm) =      | 11517                        |       |               |
| TOWER TYPE             | F<br>B/B AT<br>C.L | M<br>(CG TO CO<br>AT WORKING |       | N             |
| N = NORMAL TOWER       | 11588              | 12569                        |       | 17775         |
| 3M BE = ATTACHED TO NT | 12567              | 13548                        |       | 19160         |
| 6M BE = ATTACHED TO NT | 13546              | 14526                        |       | 20543         |
| 9M BE = ATTACHED TO NT | 14524              | 15505                        |       | 21928         |

### FOUNDATION DESIGN PARAMENTERS:

TYPE OF SOIL: DRY FISSURED ROCK

UNIT WEIGHT (Kg/m³): 1700

LIMIT BEARING CAPACITY (Kg/m2): 62500

ANGLE OF REPOSE: 20

WATER TABLE (m): BELOW 3.5m FROM G.L.

FOUNDATION DEPTH (m): 3.5

PIT 3

PIT 1

PIT 1

opyright Stortite Grid Ltd. 2011 ALL REGHTS RESERVED

copyright overnor type (An. 2011 - ALL, RESELECTION).

No part of this copyrighted materialcan be reproduced or transmitted in any form
by any means for any purpose without prior written permission of the owner.

The Unauthorised use, if any, will amount to infringment and the infringer shall be held
liable for heavy damegest and punishment with impressment. 7

### NOTES:

1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm²)

5.STUB BELOW GROUND LEVEL = 3300

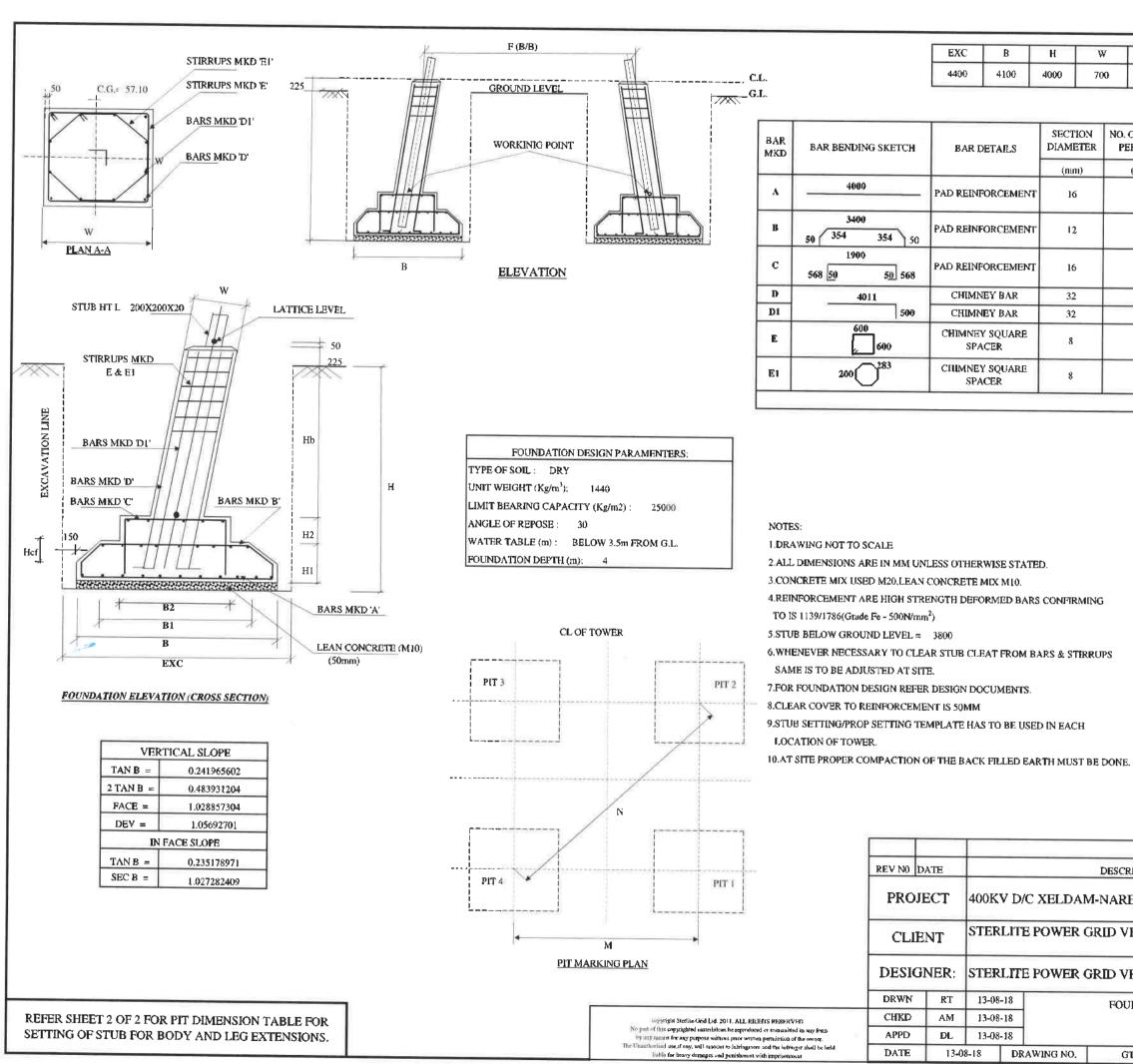
6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.


10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| QUANTITIES/STRU               | CTURE |
|-------------------------------|-------|
| CONCRETE (M20) m <sup>3</sup> | 7.52  |
| CONCRETE (M10) m <sup>3</sup> | 8.0   |
| TOTAL CONCRETE m <sup>3</sup> | 8.32  |
| EXCAVATION m3                 | 41.44 |
| REINFORCEMENT Kg              | 637.8 |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CC?Y
Approved Vide Ref. Letter No S (517). GTTP 2

Engineering Deptt.
The above does not relieve the above from their contractual obligations.

| 1                       |                                                                    |                                              |     |                                                                      |                       |       |     |     |      |  |  |
|-------------------------|--------------------------------------------------------------------|----------------------------------------------|-----|----------------------------------------------------------------------|-----------------------|-------|-----|-----|------|--|--|
| DEST ATO                | To 4 mm                                                            |                                              |     |                                                                      |                       | -     | _   | +   |      |  |  |
| REV NO DATE DESCRIPTION |                                                                    |                                              |     |                                                                      |                       | DRAWN | CHK | D A | APPD |  |  |
| PRO                     | 400K                                                               | 400KV D/C XELDAM - NARENDRA TRANSMISSION LTD |     |                                                                      |                       |       |     |     |      |  |  |
| CLIENT                  |                                                                    | STER                                         | LIT | TE POWER GRID VENTURES LIMITED                                       |                       |       |     |     |      |  |  |
| DESIGNER:               |                                                                    | STER                                         | LIT | E POWER (                                                            | GRID VENTURES LIMITED |       |     |     |      |  |  |
| DRWN                    | RT                                                                 | 03-08                                        | -18 | FOUNDATION DRAWING FOR TOWER TYPE<br>DA+0/+3/+6/+9M 400KV D/C (WZ-1) |                       |       |     |     |      |  |  |
| CHKD                    | AM                                                                 | 03-08                                        | -18 |                                                                      |                       |       |     |     |      |  |  |
| APPD                    | DL                                                                 | 03-08                                        | -18 | DRY FISSURED ROCK SOIL (3.5M DEPTH)                                  |                       |       |     |     |      |  |  |
| DATE                    | DATE 03-08-18 DRAWING NO. KTL/400DC/WZ-1/DA/F-005 SHEET NO. 1/1 RE |                                              |     |                                                                      |                       |       | REV | 0   |      |  |  |



| EXC  | В    | Н    | W   | B1   | B2   | HI  | Н2  | Hef | НЬ   |
|------|------|------|-----|------|------|-----|-----|-----|------|
| 4400 | 4100 | 4000 | 700 | 3500 | 2000 | 400 | 300 | 300 | 3250 |

| BAR<br>MKD | BAR BENDING SKETCH            | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTH   | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|-------------------------------|--------------------------|---------------------|------------------------|----------|----------------|-------------------|---------------------|
|            |                               |                          | (mm)                | (no)                   | (mm)     | ('kg/m)        | (kg)              | (kg)                |
| A          | 4000                          | PAD REINFORCEMENT        | 16                  | 50                     | 4000     | 1.58           | 315,57            | 1262.27             |
| В          | 3400<br>50 354 354 50         | PAD REINFORCEMENT        | 12                  | 36                     | 4207     | 0.89           | 134.45            | 537.79              |
| с          | 1900<br>568 50 5 <u>0</u> 568 | PAD REINFORCEMENT        | 16                  | 16                     | 3136     | 1.58           | 79.18             | 316.74              |
| D          | 4011                          | CHIMNEY BAR              | 32                  | 4                      | 4511     | 6.31           | 113.86            | 455.46              |
| D1         | 500                           | CHIMNEY BAR              | 32                  | 8                      | 4511     | 6.31           | 227.72            | 910.90              |
| E          | 600                           | CHIMNEY SQUARE<br>SPACER | 8                   | 14                     | 2592     | 0.39           | 14.31             | 57.27               |
| E1         | 200 283                       | CHIMNEY SQUARE<br>SPACER | 8                   | 14                     | 2123     | 0.39           | f 1.72            | 46.92               |
|            |                               |                          |                     |                        | TOTAL RE | INFORCEMEN     | √T/ TOWER=        | 3587.3              |

13-08-18

DRAWING NO.

| QUANTITIES/ STRUCTURE         |        |  |  |
|-------------------------------|--------|--|--|
| CONCRETE (M20) m <sup>3</sup> | 35.7   |  |  |
| CONCRETE (M10) m <sup>3</sup> | 3.36   |  |  |
| TOTAL CONCRETE m <sup>3</sup> | 39.06  |  |  |
| EXCAVATION m3                 | 309.76 |  |  |
| REINFORCEMENT Kg              | 3587.3 |  |  |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED COPY
Approved Vide Ref. Letter No.S. F. UT. Y.L. G. 777 L.J.

Engineering Deptt. the above does not relieve the contractual obligation

SHEET NO. 1/2 REV 0

| REV NO DATE |      |                                            | DESCRIPTION DRAWN CHKD APPE        |   |  |  |  |  |  |  |
|-------------|------|--------------------------------------------|------------------------------------|---|--|--|--|--|--|--|
| PRO         | JECT | 400KV D/                                   | C XELDAM-NARENDRA TRANSMISSION LTD | ) |  |  |  |  |  |  |
| CLIENT      |      | STERLIT                                    | ITE POWER GRID VENTURES LIMITED    |   |  |  |  |  |  |  |
| DESIGNER:   |      | STERLIT                                    | E POWER GRID VENTURES LIMITED      |   |  |  |  |  |  |  |
| DRWN        | RT   | 13-98-18 FOUNDATION DRAWING FOR TOWER TYPE |                                    |   |  |  |  |  |  |  |
| CHKD AM     |      | 13-08-18                                   | DD-3/+0/+3/+6M 400KV D/C (WZ-1)    |   |  |  |  |  |  |  |
| APPD DL     |      | 13-08-18                                   | DRY SOIL (4.0M DEPTH)              |   |  |  |  |  |  |  |

GTTPL/400DC/WZ-1/DD/F-001

| 400 KV D/C-X-M & X  Tower Detail  3MBE (+) -3M LE  3MBE (+) -1.5M LE  3MBE (+) +0M LE  3MBE (+) +1.5M LE | Extn from<br>-3MBE(+)-<br>3MLE (mm) | "F" B/B of To<br>3MBE(+)-3M<br>1271<br>eg-eg olim at<br>CL (TF) | VILE (TF)                  | * F * B/B of T<br>3MBE(+)-3<br>127 | MLE (LF) | Stub Sec        | ation (HT) | Lattice                                                    |        |          |                         | -                                 | OFT C   |
|----------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------|----------------------------|------------------------------------|----------|-----------------|------------|------------------------------------------------------------|--------|----------|-------------------------|-----------------------------------|---------|
| Tower Detail  9MBE (+) -3M LE  3MBE (+) -1.5M LE  3MBE (+) +0M LE                                        | Extn from<br>-3MBE(+)-<br>3MLE (mm) | 3MBE(+)-3M<br>1271<br>eg-cg dim at                              | VLE (TF)<br>3<br>cg-cg dim | 3MBE(+)-3                          | MLE (LF) | Stub Sec        | etion (HT) |                                                            |        |          | l                       |                                   | OFT C   |
| 3MBE (+) -3M LE<br>3MBE (+) -1.5M LE<br>3MBE (+) +0M LE                                                  | -3MBE(+)-<br>3MLE (mm)              | eg-eg dim at                                                    | cg-cg dim                  | 127                                |          |                 |            | CL CL                                                      | ¢g     | sec B1   | 2*Tan B1                | sec B2                            | 2°Tan B |
| 3MBE (+) -3M LE<br>3MBE (+) -1.5M LE<br>3MBE (+) +0M LE                                                  | -3MBE(+)-<br>3MLE (mm)              |                                                                 |                            |                                    | 13       | 200X2           | 00X20      | 50                                                         | 57.1   | 1.028857 | 0.483931204             | 1.028857                          | 0.48393 |
| 3MBE (+) -1.5M LE<br>3MBE (+) +0M LE                                                                     |                                     |                                                                 | (LF)                       | Foundation<br>Base Width           | work pl  | G.Ł. TO<br>C.L. | A1         | A2                                                         | В      | E        | F1                      | F2                                | н       |
| 3MBE (+) +OM LE                                                                                          |                                     | 12623                                                           | 12623                      | 4100                               | 3250     | 225             | 7152       | 7152                                                       | 10115  | 4400     | 9352                    | 9352                              | 4000    |
|                                                                                                          | 1500                                | 13349                                                           | 13349                      | 4100                               | 3250     | 225             | 7515       | 7515                                                       | 10628  | 4400     | 9715                    | 9715                              | 4000    |
| 3MBE (+) +1.5M LE                                                                                        | 3000                                | 14074                                                           | 14074                      | 4100                               | 3250     | 225             | 7878       | 7878                                                       | 11141  | 4400     | 10078                   | 10078                             | 4000    |
|                                                                                                          | 4500                                | 14800                                                           | 14800                      | 4100                               | 3250     | 225             | 8241       | 8241                                                       | 11655  | 4400     | 10441                   | 10441                             | 4000    |
| 3MBE (+) +3M LE                                                                                          | 6000                                | 15526                                                           | 15526                      | 4100                               | 3250     | 225             | 8604       | 8604                                                       | 12168  | 4400     | 10804                   | 10804                             | 4000    |
| OMBE (+) -3M LE                                                                                          | 3000                                | 14074                                                           | 14074                      | 4100                               | 3250     | 225             | 7878       | 7878                                                       | 11141  | 4400     | 10078                   | 10078                             | 4000    |
| -0M8E (+) -1,5M LE                                                                                       | 4500                                | 14800                                                           | 14800                      | 4100                               | 3250     | 225             | 8241       | 8241                                                       | 11655  | 4400     | 10441                   | 10441                             | 4000    |
| -OMBE (+) +OM LE                                                                                         | 6000                                | 15526                                                           | 15526                      | 4100                               | 3250     | 225             | 8604       | 8604                                                       | 12168  | 4400     | 10804                   | 10804                             | 4000    |
| OMBE (+) +1,5M LE                                                                                        | 7500                                | 16252                                                           | 16252                      | 4100                               | 3250     | 225             | 8967       | 8967                                                       | 12681  | 4400     | 11167                   | 11167                             | 4000    |
| OMBE (+) +3M LE                                                                                          | 9000                                | 16978                                                           | 16978                      | 4100                               | 3250     | 225             | 9330       | 9330                                                       | 13194  | 4400     | 11530                   | 11530                             |         |
| 3MBE (+) -3M LE                                                                                          | 6000                                | 15526                                                           | 15526                      | 4100                               | 3250     | 225             | 8604       | 8604                                                       | 12168  | 4400     | 10804                   | 10804                             | 4000    |
| 3MBE (+) -1.5M LE                                                                                        | 7500                                | 16252                                                           | 16252                      | 4100                               | 3250     | 225             | 8967       | 8967                                                       | 12681  |          |                         |                                   | 4000    |
| 3MBE (+) +0M LE                                                                                          | 9000                                | 16978                                                           | 16978                      | 4100                               | 3250     | 225             | 9330       | 9330                                                       |        | 4400     | 11167                   | 11167                             | 4000    |
| 3MBE (+) +1.5M LE                                                                                        | 10500                               | 17704                                                           | 17704                      | 4100                               | 3250     | 225             | 9693       |                                                            | 13194  | 4400     | 11530                   | 11530                             | 4000    |
| 3MBE (+) +3M LE                                                                                          | 12000                               | 18430                                                           | 18430                      | 4100                               | 3250     |                 |            | 9693                                                       | 13708  | 4400     | 11893                   | 11893                             | 4000    |
| 6MBE (+) -3M LE                                                                                          | 9000                                | 16978                                                           | 16978                      | 4100                               |          | 226             | 10056      | 10056                                                      | 14221  | 4400     | 12256                   | 12256                             | 4000    |
| 6MBE (+) -1.5M LE                                                                                        | 10500                               | 17704                                                           |                            |                                    | 3250     | 225             | 9330       | 9330                                                       | 13194  | 4400     | 11530                   | 11530                             | 4000    |
| 6MBE (+) +0M LE                                                                                          | 12000                               |                                                                 | 17704                      | 4100                               | 3250     | 225             | 9693       | 9693                                                       | 13708  | 4400     | 11893                   | 11893                             | 4000    |
| 6MBE (+) +1.5M LE                                                                                        | 13500                               | 18430                                                           | 18430                      | 4100                               | 3250     | 225             | 10056      | 10056                                                      | 14221  | 4400     | 12256                   | 12256                             | 4000    |
|                                                                                                          |                                     | 19156                                                           | 19156                      | 4100                               | 3250     | 225             | 10419      | 10419                                                      | 14734  | 4400     | 12619                   | 12619                             | 4000    |
| 6MBE (+) +3M LE                                                                                          | 15000                               | 19882                                                           | 19882                      | 4100                               | 3250     | 225             | 10782      | 10782                                                      | 15248  | 4400     | 12982                   | 12982                             | 4000    |
| MAL FACE                                                                                                 | pit C                               |                                                                 |                            | 6                                  |          | Working         | A2 F2      | CR of found                                                |        | 7        | GL.                     |                                   |         |
| TONGITUDINAL                                                                                             | pli D                               | A1 F1                                                           |                            | A1 F1                              | pit A    | Point A         | A2 F2      | Limit Bearin<br>Weight of s<br>Weight of s<br>Angle of Rep | EC X-X | ion)     | 1440 (<br>940 (<br>30 ( | Kg/Sqm<br>Kg/cum<br>Kg/cum<br>Deg |         |

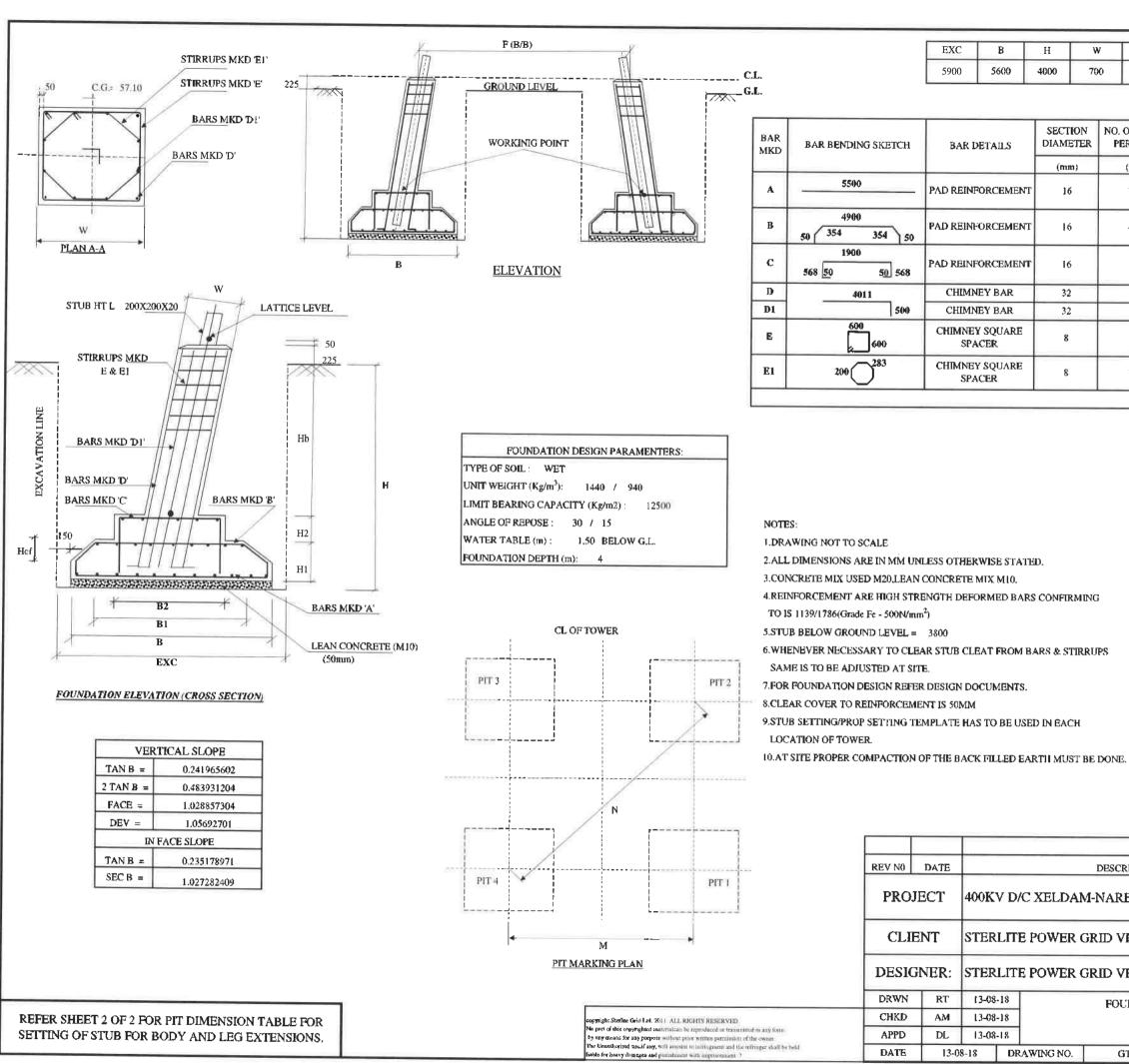
- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

|           | VĒRTIĆAL SLOPE |
|-----------|----------------|
| TAN B =   | 0.241985802    |
| 2 TAN B = | 0.483931204    |
| FACE -    | 1.028857304    |
| DEV =     | 1,05692701     |
|           | IN FACE SLOPE  |
| TAN B =   | 0,235178971    |
| SEC B =   | 1.027282409    |

# NOTES:

- 1 DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3 CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm<sup>2</sup>)
- 5.STUB BELOW GROUND LEVEL =

3800 mm


- 6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- 16.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

|        |          |              |                           | T          |     | _   |      |
|--------|----------|--------------|---------------------------|------------|-----|-----|------|
| REV NO | DATE     |              | DESCRIPTION               | DRAWN      | CF  |     | APPD |
| PRO    | JECT     | 400KV D/C XE | LDAM-NARENDRA TRANSMISS   | ION LTD    |     |     |      |
| CLI    | ENT      | STERLITE POV | VER GRID VENTURES LIMITED |            |     |     |      |
| DESI   | GNER:    | STERLITE POV | VER GRID VENTURES LIMITED |            |     |     |      |
| DRWN   | RT       | 13-08-18     | FOUNDATION DRAWING FO     | OR TOWER T | Vec | _   |      |
| снкр   | AM       | 13-08-18     | DD-3/+0/+3/+6M 400K\      |            | 112 |     |      |
| APPD   | DL       | 13-08-18     | DRY SOIL (4.0M I          | EPTH)      |     |     |      |
| DATE   | 13-08-18 | DRAWING NO.  | GTTPL/400DQ7W2-1/DD/F-001 | SHEET NO.  | 2/2 | REV | 0    |

emptigali Sterfan Grist LM 2011. ALL BEGITTS RESERVED.

No part of the corporation industria to constitute of a standardist in any form
for any measure of the approprise distribute pairs within presentation of the others.

The Observations of the constitute of the constitution of the address shall be held
helds to the overy discognit and questioner with a participation.



| EXC  | В    | Н    | W   | Bl   | B2   | H1  | H2  | Hef | Hb   |
|------|------|------|-----|------|------|-----|-----|-----|------|
| 5900 | 5600 | 4000 | 700 | 5000 | 2000 | 400 | 300 | 300 | 3250 |

| BAR<br>MKD | BAR BENDING SKETCH    | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTH   | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PEI<br>TOWER |
|------------|-----------------------|--------------------------|---------------------|------------------------|----------|----------------|-------------------|---------------------|
|            |                       |                          | (mm)                | (no)                   | (mm)     | ('kg/m)        | (kg)              | (kg)                |
| A          | 5500                  | PAD REINFORCEMENT        | 16                  | 72                     | 5500     | 1.58           | 624.76            | 2499.06             |
| В          | 4900<br>50 354 354 50 | PAD REINFORCEMENT        | 16                  | 44                     | 5707     | 1.58           | 396.19            | 1584.76             |
| С          | 1900<br>568 50 50 568 | PAD REINFORCEMENT        | 16                  | 16                     | 3136     | 1.58           | 79.18             | 316.74              |
| D          | 4011                  | CHIMNEY BAR              | 32                  | 4                      | 4511     | 6.31           | 113.86            | 455.46              |
| D1         | 500                   | CHIMNEY BAR              | 32                  | 8                      | 4511     | 6.31           | 227.72            | 910.90              |
| E          | 600                   | CHIMNEY SQUARE<br>SPACER | 8                   | 14                     | 2592     | 0.39           | 14.31             | 57.27               |
| E1         | 200 283               | CHIMNEY SQUARE<br>SPACER | 8                   | 14                     | 2123     | 0.39           | 11.72             | 46.92               |
| - (+-      |                       |                          |                     |                        | TOTAL RE | INFORCEMEN     | NT/ TOWER=        | 5871.1              |

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH

| QUANTITIES/ STRU              | CTURE  |
|-------------------------------|--------|
| CONCRETE (M20) m <sup>3</sup> | 57.9   |
| CONCRETE (M10) m <sup>3</sup> | 6.27   |
| FOTAL CONCRETE m <sup>3</sup> | 64.17  |
| EXCAVATION m3                 | 556.96 |
| REINFORCEMENT Kg              | 5872.0 |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CCPY

| REV NO                                      | DATE  |       |                                                             |           | DESCRIPTION                | DRAWN   | СНХ | D A | APPD |  |
|---------------------------------------------|-------|-------|-------------------------------------------------------------|-----------|----------------------------|---------|-----|-----|------|--|
| PRO.                                        | JECT  | 400K  | V D/                                                        | 'C XELDAN | M-NARENDRA TRANSMISSION L  | ΓD      |     |     |      |  |
| CLIENT STERLITE POWER GRID VENTURES LIMITED |       |       |                                                             |           |                            |         |     |     |      |  |
| DESIG                                       | GNER: | STER  | LITI                                                        | E POWER ( | GRID VENTURES LIMITED      |         |     |     |      |  |
| DRWN                                        | RT    | 13-08 | -18                                                         |           | FOUNDATION DRAWING FOR TOW | ER TYPE |     |     |      |  |
| CHKD                                        | AM    | 13-08 | 3-08-18 DD-3/+0/+3/+6M 400KV D/C (WZ-1)                     |           |                            |         |     |     |      |  |
| APPD                                        | DL    | 13-08 | -18                                                         |           | WET SOIL (4.0M DEPTH)      |         |     |     |      |  |
| DATE                                        | 13-0  | 8-18  | 8 DRAWING NO. GTTPL/400DC/WZ-1/DD/F-002 SHEET NO. 1/2 REV 0 |           |                            |         |     |     |      |  |

| Project<br>GOA     |                                     | 400 K                         | / D/C -X                   |                            | (WZ-1) -<br>PIT DIME |                 |            |                           | WET (4.        | OM DEPTH)       |             | Client:  |          |
|--------------------|-------------------------------------|-------------------------------|----------------------------|----------------------------|----------------------|-----------------|------------|---------------------------|----------------|-----------------|-------------|----------|----------|
| GOA                |                                     |                               | _                          |                            | -II DIME             | INSION          | IABLE      |                           |                |                 |             | SPGVL    |          |
| 400 KV D/C-X-M & X | -N- TT *DD*                         | " F " B/B of To<br>3MBE(+)-3f | VILE (TF)                  | " F * B/B of 7<br>3MBE(+)< |                      | Stub Se         | otion (HT) | Lattice<br>Level to<br>GL | cg             | sec B1          | 2°Tan B1    | sec B2   | 2*Tan Ba |
|                    |                                     | 1271                          | 13                         | 127                        | 713                  | 200X            | 200X20     | 50                        | 57.1           | 1.028857        | 0.483931204 | 1.028857 | 0.483931 |
| Tower Detail       | Exin from<br>-3MBE(+)-<br>3MLE (mm) | cg-cg dim at<br>CL (TF)       | eg-eg dim<br>at CL<br>(LF) | Foundation<br>Base Width   | work pl              | G.L. TO<br>C.L. | A1         | A2                        | В              | E               | F1          | F2       | н        |
| -3MBE (+) -3M LE   | 0                                   | 12623                         | 12623                      | 5600                       | 3250                 | 225             | 7152       | 7152                      | 10115          | 5900            | 10102       | 10102    | 4000     |
| -3MBE (+) -1,5M LE | 1500                                | 13349                         | 13349                      | 5600                       | 3250                 | 225             | 7515       | 7515                      | 10628          | 5900            | 10465       | 10465    | 4000     |
| -3MBE (+) +0M LE   | 3000                                | 14074                         | 14074                      | 5600                       | 3250                 | 225             | 7878       | 7678                      | 11141          | 5900            | 10828       | 10828    | 4000     |
| -3MBE (+) +1,5M LE | 4500                                | 14800                         | 14800                      | 5600                       | 3250                 | 225             | 8241       | 8241                      | 11655          | 5900            | 11191       | 11191    | 4000     |
| -3MBE (+) +3M LE   | 6000                                | 15526                         | 15526                      | 5600                       | 3250                 | 225             | 8604       | 8604                      | 72168          | 5900            | 11554       | 11554    | 4000     |
| +0MBE (+) -3M LE   | 3000                                | 14074                         | 14074                      | 5600                       | 3250                 | 225             | 7878       | 7878                      | 11141          | 5900            | 10828       | 10828    | 4000     |
| +0MBE (+) -1.5M LE | 4500                                | 14800                         | 14800                      | 5600                       | 3250                 | 225             | 8241       | 8241                      | 11655          | 5900            | 11191       | 11191    | 4000     |
| +0MBE (+) +0M LE   | 6000                                | 15526                         | 15526                      | 5600                       | 3250                 | 225             | 8604       | 8604                      | 12168          | 5900            | 11554       | 11554    | 400Q     |
| +0MBE (+) +1.5M LE | 7500                                | 16252                         | 16252                      | 5600                       | 3250                 | 225             | 8967       | 8967                      | 12681          | 5900            | 11917       | 11917    | 4000     |
| +0MBE (+) +9M LE   | 9000                                | 16978                         | 16978                      | 5600                       | 3250                 | 225             | 9330       | 9330                      | 13194          | 5900            | 12280       | 12280    | 4000     |
| +3MBE (+) -3M LE   | 6000                                | 16526                         | 15526                      | 5600                       | 3250                 | 225             | 8604       | 8604                      | 12168          | 5900            | 11554       | 11554    | 4000     |
| +3MBE (+) -1.5M LE | 7500                                | 16252                         | 16252                      | 5600                       | 3250                 | 225             | 8967       | 8967                      | 12681          | 5900            | 11917       | 11917    | 4000     |
| +3MBE (+) +0M LE   | 9000                                | 16978                         | 16978                      | 5600                       | 3250                 | 225             | 9330       | 9330                      | 13194          | 5900            | 12280       | 12280    | 4000     |
| -3MBE (+) +1.5M LE | 10500                               | 17704                         | 17704                      | 5600                       | 3250                 | 225             | 9693       | 9693                      | 13708          | 5900            | 12643       | 12643    | 4000     |
| +3MBE (+) +3M LE   | 12000                               | 18430                         | 18430                      | 5600                       | 3250                 | 225             | 10056      | 10056                     | 14221          | 5900            | 13006       | 13006    | 4000     |
| +6MBE (+) -3M LE   | 9000                                | 16978                         | 16978                      | 5600                       | 3250                 | 225             | 9330       | 9330                      | 13194          | 5900            | 12280       | 12250    | 4000     |
| +6MBE (+) -1.5M LE | 10500                               | 17704                         | 17704                      | 5600                       | 3250                 | 225             | 9693       | 9693                      | 13708          | 5900            | 12643       | 12643    | 4000     |
| +6MBE (+) +0M LE   | 12000                               | 18430                         | 18430                      | 5600                       | 3250                 | 225             | 10056      | 10056                     | 14221          | 5900            | 13006       | 13006    | 4000     |
| +6MBE (+) +1.5M LE | 13500                               | 19156                         | 19156                      | 5600                       | 3250                 | 225             | 10419      | 10419                     | 14734          | 5900            | 13369       | 13369    | 4000     |
| +6MBE (+) +3M LE   | 15000                               | 19882                         | 19882                      | 5600                       | 3250                 | 225             | 10782      | 10782                     | 15248          | 5900            | 13732       | 13732    | 4000     |
|                    |                                     |                               |                            |                            |                      |                 |            | CL of found               | dation! /      |                 |             |          | 1,444    |
|                    |                                     |                               |                            |                            |                      | /<br>-          |            |                           |                | 7               | G.L.        |          |          |
| WI                 | pht C                               |                               |                            | 18                         | plt B                |                 | A2 F2      |                           | 11             | _     "         |             |          |          |
| - FA               |                                     |                               |                            |                            |                      | Working         | -          | 1                         |                |                 |             |          |          |
| ND NA              |                                     | 8 /                           |                            |                            |                      | Point A         | A2 F2      | 1                         | 'ie \          | 1               |             |          |          |
| ТОМВІТ             |                                     | /                             |                            | ſ                          | $\prec$              | +               |            | <u>s</u>                  | SEC X-X        | Working Point A |             |          |          |
| <b>-</b>           | K                                   | <b>_</b>                      |                            |                            |                      |                 |            | Limit Bearin              | g Capacity     |                 | 12500       | (g/Sqm   |          |
|                    | plt D                               | ,                             |                            |                            | pit A                | 0.000           |            | Weight of s               | oil (Dry parti | on)             | 1440 +      | (g/cum   |          |
|                    | 1                                   |                               | Y                          |                            |                      |                 |            | Weight of s               | oil (Wet port  | ion)            | 940 F       | (gr/cum  |          |
| 20                 | /                                   | <b>A</b> 1                    | 1                          | A1                         |                      | 8               |            | Angle of Flep             | ose (Dry port  | ion)            | 30 [        | )eg      |          |
| 7                  |                                     | F1                            | 1                          | F1                         | 1                    |                 |            |                           | ose (Wet por   | tion)           | 15 (        | )eg      |          |
|                    |                                     |                               |                            |                            |                      |                 |            | Water Table               |                |                 | 1.5M E      | Below GL |          |

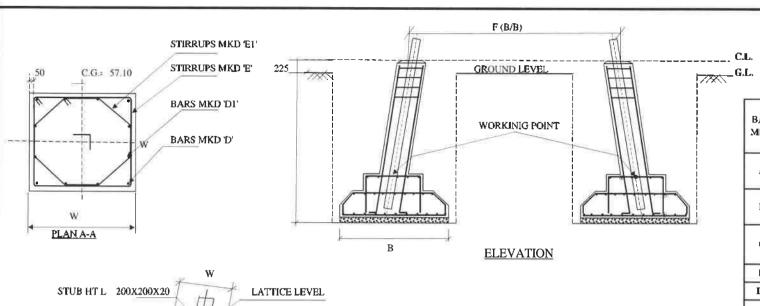
- BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION
   PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ
   AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE
   INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY,
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

| ,                   | PERTICAL SLOPE |  |  |  |  |  |  |
|---------------------|----------------|--|--|--|--|--|--|
| TAN B =             | 0.241965602    |  |  |  |  |  |  |
| 2 TAN B -           | 0.483931204    |  |  |  |  |  |  |
| FACE -              | 1.028857304    |  |  |  |  |  |  |
| DEV =               | 1,05692701     |  |  |  |  |  |  |
|                     | IN FACE SLOPE  |  |  |  |  |  |  |
| TAN B ≃             | 0.235178971    |  |  |  |  |  |  |
| SCC B = 1.027282409 |                |  |  |  |  |  |  |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CC?Y
Approved Vide Ref. Letter No.S. 6171.6777 L
ENGITLE T2 Date: (3.0.8.4.18)
Engineering Deptt.
the above does not relevance conference from their contractual obligation

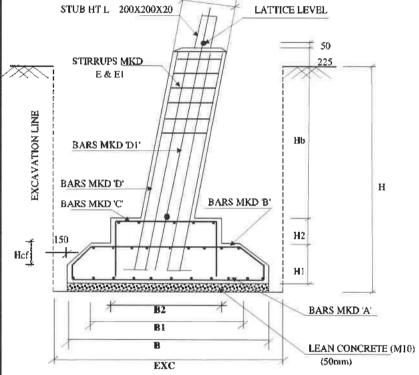
# NOTES:

- LDRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Pe 500N/mm<sup>2</sup>)
- 5.STUB BELOW GROUND LEVEL =
- 3800 mm
- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE,
- 7.FOR FOUNDATION DESIGN REPER DESIGN DOCUMENTS.
- $8. \\ CLEAR$  COVER TO REINPORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.


Organize Sterite: Cayri Lia. 2011; A.L., ROUTS RESERVED.

No year of this conjungitudin insecricient procedure-based or increasants in any form
by any means for any prospose supplies prior works a position and the current.

The Uninferroid steel' any, and answer to admissioned right to definitely that to held
be for the twenty discopes and probabilisms with participational.


16.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

|        |          |              |                                 |                 | T   |     |      |  |  |
|--------|----------|--------------|---------------------------------|-----------------|-----|-----|------|--|--|
| REV NO | DATE     |              | DESCRIPTION                     | DRAWN           | CI  | HKD | APPD |  |  |
| PŘC    | DJECT    | 400KV D/C XE | LDAM-NARENDRA TRANSMI           | ISSION LTD      |     |     |      |  |  |
| CL     | IENT     | STERLITE POV | VER GRID VENTURES LIMITE        | ED .            |     |     |      |  |  |
| DES    | IGNER:   | STERLITE POV | VER GRID VENTURES LIMITE        | ED .            |     |     |      |  |  |
| PRWN   | RT       | 13-08-18     | FOUNDATION DRAWING              | S ECOD TYMUED T | VDC |     |      |  |  |
| HKD    | AM       | 13-08-18     | DD-3/+(/+3/+6M 400KV D/C (WZ-1) |                 |     |     |      |  |  |
| LPPD   | DL       | 13-08-18     | WET SOIL (4.0)                  | M DEPTH)        |     |     |      |  |  |
| ATE    | 13-08-18 | DRAWING NO.  | GTTPL/400DC/WZ-1/DD/F-002       | SHEET NO.       | 2/2 | REV | 0    |  |  |



| EXC  | В    | Н    | W   | BI   | B2   | H1  | H2  | Hcf | Hb   |
|------|------|------|-----|------|------|-----|-----|-----|------|
| 6400 | 6100 | 4000 | 700 | 5500 | 2000 | 400 | 300 | 300 | 3250 |

| BAR<br>MKD | BAR BENDING SKETCH                 | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTH | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|------------------------------------|--------------------------|---------------------|------------------------|--------|----------------|-------------------|---------------------|
| MKD        |                                    |                          | (mm)                | (no)                   | (mm)   | (kg/m)         | (kg)              | (kg)                |
| A          | 6000                               | PAD REINFORCEMENT        | 16                  | 80                     | 6000   | 1.58           | 757.28            | 3029.11             |
| В          | 5400<br>50 354 354 50              | PAD REINFORCEMENT        | 16                  | 52                     | 6207   | 1.58           | 509.23            | 2036.92             |
| С          | 1900<br>568 50 5 <u>0</u> 568      | PAD REINFORCEMENT        | 16                  | 18                     | 3136   | 1.58           | 89.08             | 356.32              |
| D          | 4011                               | CHIMNEY BAR              | 32                  | 4                      | 4511   | 6.31           | 113.86            | 455.46              |
| D1         | 500                                | CHIMNEY BAR              | 32                  | 8                      | 4511   | 6.31           | 227.72            | 910.90              |
| E          | 600                                | CHIMNEY SQUARE<br>SPACER | 8                   | 14                     | 2592   | 0.39           | 14.31             | 57.27               |
| Et         | 200 283                            | CHIMNEY SQUARE<br>SPACER | 8                   | 14                     | 2123   | 0.39           | 11.72             | 46.92               |
|            | TOTAL REINFORCEMENT/ TOWER = 6892. |                          |                     |                        |        |                |                   |                     |



# FOUNDATION DESIGN PARAMENTERS:

TYPE OF SOIL: PARTIALLY SUBMERGED UNIT WEIGHT (Kg/m³): 1440 / 940

LIMIT BEARING CAPACITY (Kg/m2): 12500

ANGLE OF REPOSE: 30 / 15

WATER TABLE (m): 0.75 BELOW G.L.

FOUNDATION DEPTH (m): 4

CL OF TOWER

NOTES:

1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm<sup>2</sup>)

5.STUB BELOW GROUND LEVEL = 3800

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

13-08-18

DRAWING NO.

QUANTITIES/ STRUCTURE CONCRETE (M20) m<sup>3</sup> CONCRETE (M10) m<sup>3</sup> 7.44 TOTAL CONCRETE m3 74.34 EXCAVATION m3 655.36 REINFORCEMENT Kg 6892.9

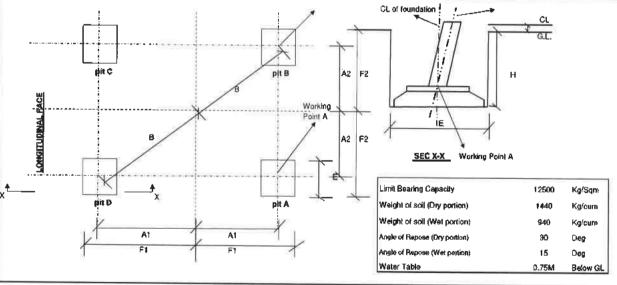
STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION Engineering Deptt.
the above does not relieve

SHEET NO. 1/1 REV 0

| VER       | RTICAL SLOPE |
|-----------|--------------|
| TANB =    | 0.241965602  |
| 2 TAN B = | 0.483931204  |
| FACE =    | 1.028857304  |
| DEV =     | 1.05692701   |
| IN        | FACE SLOPE   |
| TANB =    | 0.235178971  |
| SEC B =   | 1.027282409  |

FOUNDATION ELEVATION (CROSS SECTION)

| PIT 3 |   |   |          | PIT 2 |
|-------|---|---|----------|-------|
|       |   |   |          | •     |
| L     | } |   |          |       |
|       |   | N | <i>f</i> |       |
|       |   |   |          |       |
| PIT 4 |   |   |          | PIT I |
|       | Ĵ |   | Ĺ        |       |
|       | • | M |          |       |


| REV NO | DATE  |          | DESCRIPTION                       | DRAWN  | CHKD | APPD |
|--------|-------|----------|-----------------------------------|--------|------|------|
| PRO    | JECT  | 400KV D/ | C XELDAM-NARENDRA TRANSMISSION LT | D      |      |      |
| CLI    | ENT   | STERLIT  | E POWER GRID VENTURES LIMITED     |        |      |      |
| DESIG  | GNER: | STERLIT  | E POWER GRID VENTURES LIMITED     |        |      |      |
| DRWN   | RT    | 13-08-18 | FOUNDATION DRAWING FOR TOWE       | R TYPE |      |      |
| CHKD   | AM    | 13-08-18 | DD-3/+0/+3/+6M 400KV D/C (WZ      | -1)    |      |      |
| APPD   | DL    | 13-08-18 | PARTIALLY SUBMERGED SOIL (4.0M    | DEPTH) |      |      |

GTTPL/400DC/WZ-1/DD/F-003

REFER SHEET 2 OF 2 FOR PIT DIMENSION TABLE FOR SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

ight Sterline Grid Ltd. 2011. ALL RIGHTS RESERVED yyingin obtain tha Loryyinglant miterialian be reproduced in transmitted in any form y any means for any purpose without prior written permission of the owner. Unauthorized use, if any, will amount to infringment and the infringer shall be held to for heavy damages and prinishment with impressimment?

| Project<br>GOA      |                                     | 400 K                         | V D/C -                    |                           | I (WZ-1)<br>PIT DIME |                 |            |                           | PS (4.0 | M DEPTH) |             | Client:<br>SPGVL |           |
|---------------------|-------------------------------------|-------------------------------|----------------------------|---------------------------|----------------------|-----------------|------------|---------------------------|---------|----------|-------------|------------------|-----------|
| 400 KV D/C-X-M & X- | N- TT "DD"                          | * F * B/B of To<br>3MBE(+)-3M |                            | F * B/8 of T<br>3MBE(+)-3 |                      | Stub Sec        | etion (HT) | Lattice<br>Level to<br>CL | cg      | sec B1   | 2°Tan B1    | sec B2           | 2"Tan B2  |
|                     |                                     | 1271                          | 3                          | 127                       | 13                   | 200X2           | 00X20      | 50                        | 57.1    | 1.028857 | 0.483931204 | 1.028857         | 0.4839312 |
| Tower Detail        | EXIA from<br>-3MBE(+)-<br>3MLE (mm) | cg-cg dim at<br>CL (TF)       | eg-eg dim<br>at CL<br>(LF) | Foundation<br>Base Width  | work pt              | G.L. TO<br>C.L. | A1         | A2                        | В       | E        | F1          | F2               | н         |
| -3M8E (+) -3M LE    | 0                                   | 12623                         | 12623                      | 6100                      | 3250                 | 225             | 7152       | 7152                      | 10115   | 6400     | 10352       | 10352            | 4000      |
| -3MBE (+) -1.5M LE  | 1500                                | 13349                         | 13349                      | 6100                      | 3250                 | 225             | 7515       | 7515                      | 10628   | 6400     | 10715       | 10715            | 4000      |
| -3MBE (+) +0M LE    | 3000                                | 14074                         | 14074                      | 6100                      | 3250                 | 225             | 7878       | 7878                      | 11141   | 6400     | 11078       | 11078            | 4000      |
| -3MBE (+) +1.5M LE  | 4500                                | 14800                         | 14800                      | 6100                      | 3250                 | 225             | 8241       | 8241                      | 11655   | 6400     | 11441       | 11441            | 4000      |
| 3MBE (+) +3M LE     | 6000                                | 15526                         | 15526                      | 6100                      | 3250                 | 225             | 8604       | 8604                      | 12168   | 6400     | 11804       | 11804            | 4000      |
| +0MBE (+) -3M LE    | 3000                                | 14074                         | 14074                      | 6100                      | 3250                 | 225             | 7878       | 7878                      | 11141   | 6400     | 11078       | 11078            | 4000      |
| +0MBE (+) -1,5M LE  | 4500                                | 14800                         | 14800                      | 6100                      | 3250                 | 225             | 8241       | 8241                      | 11655   | 6400     | 11441       | 11441            | 4000      |
| +0MBE (+) +0M LE    | 6000                                | 15526                         | 15526                      | 6100                      | 3250                 | 225             | 8604       | 8604                      | 12168   | 6400     | 11804       | 11804            | 4000      |
| +0MBE (+) +1.5M LE  | 7500                                | 16252                         | 16252                      | 6100                      | 3250                 | 225             | 8967       | 8967                      | 12681   | 6400     | 12167       | 12167            | 4000      |
| +0MBE (+) +3M LE    | 9000                                | 16978                         | 16978                      | 6100                      | 3250                 | 225             | 9330       | 9330                      | 13194   | 6400     | 12530       | 12530            | 4000      |
| +3MBE (+) -3M LE    | 6000                                | 15526                         | 15526                      | 6100                      | 3250                 | 225             | 8604       | 8604                      | 12168   | 6400     | 11804       | 11804            | 4000      |
| +3MBE (+) -1.5M LE  | 7500                                | 16252                         | 18252                      | 6100                      | 3250                 | 225             | 8967       | 8967                      | 12681   | 8400     | 12167       | 12167            | 4000      |
| +3MBE (+) +0M LE    | 9000                                | 16978                         | 16978                      | 6100                      | 3250                 | 225             | 9330       | 9330                      | 13194   | 6400     | 12530       | 12530            | 4000      |
| +3MBE (+) +1.5M LE  | 10500                               | 17704                         | 17704                      | 6100                      | 3250                 | 225             | 9693       | 9693                      | 13708   | 6400     | 12893       | 12893            | 4000      |
| +3MBE (+) +3M LE    | 12000                               | 18430                         | 18430                      | 6100                      | 3250                 | 225             | 10056      | 10056                     | 14221   | 6400     | 13256       | 13256            | 4000      |
| -6MBE (+) -3M LE    | 9000                                | 16978                         | 16978                      | 6100                      | 3250                 | 225             | 9330       | 9330                      | 13194   | 6400     | 12530       | 12530            | 4000      |
| -6MBE (+) -1.5M LE  | 10500                               | 17704                         | 17704                      | 6100                      | 3250                 | 225             | 9693       | 9693                      | 13708   | 6400     | 12893       | 12893            | 4000      |
| 6MBE (+) +0M LE     | 12000                               | 18430                         | 18430                      | 6100                      | 3250                 | 225             | 10056      | 10056                     | 14221   | 6400     | 13256       | 13256            | 4000      |
| +6MBE (+) +1.5M LE  | 13500                               | 19156                         | 19156                      | 6100                      | 3250                 | 225             | 10419      | 10419                     | 14734   | 6400     | 13619       | 13619            | 4000      |
| +6MBE (+) +3M LE    | 15000                               | 19882                         | 19882                      | 6100                      | 3250                 | 225             | 10782      | 10782                     | 15248   | 6400     | 13962       | 13982            | 4000      |



- BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION

  PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ

  AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE

  INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

| RTECAL SLOPE |
|--------------|
| 0.241965602  |
| 0.483931204  |
| 1.028857304  |
| 1.05692701   |
| FACE SLOPE   |
| 0.235178971  |
| 1,027282409  |
|              |

#### NOTES:

- LORAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

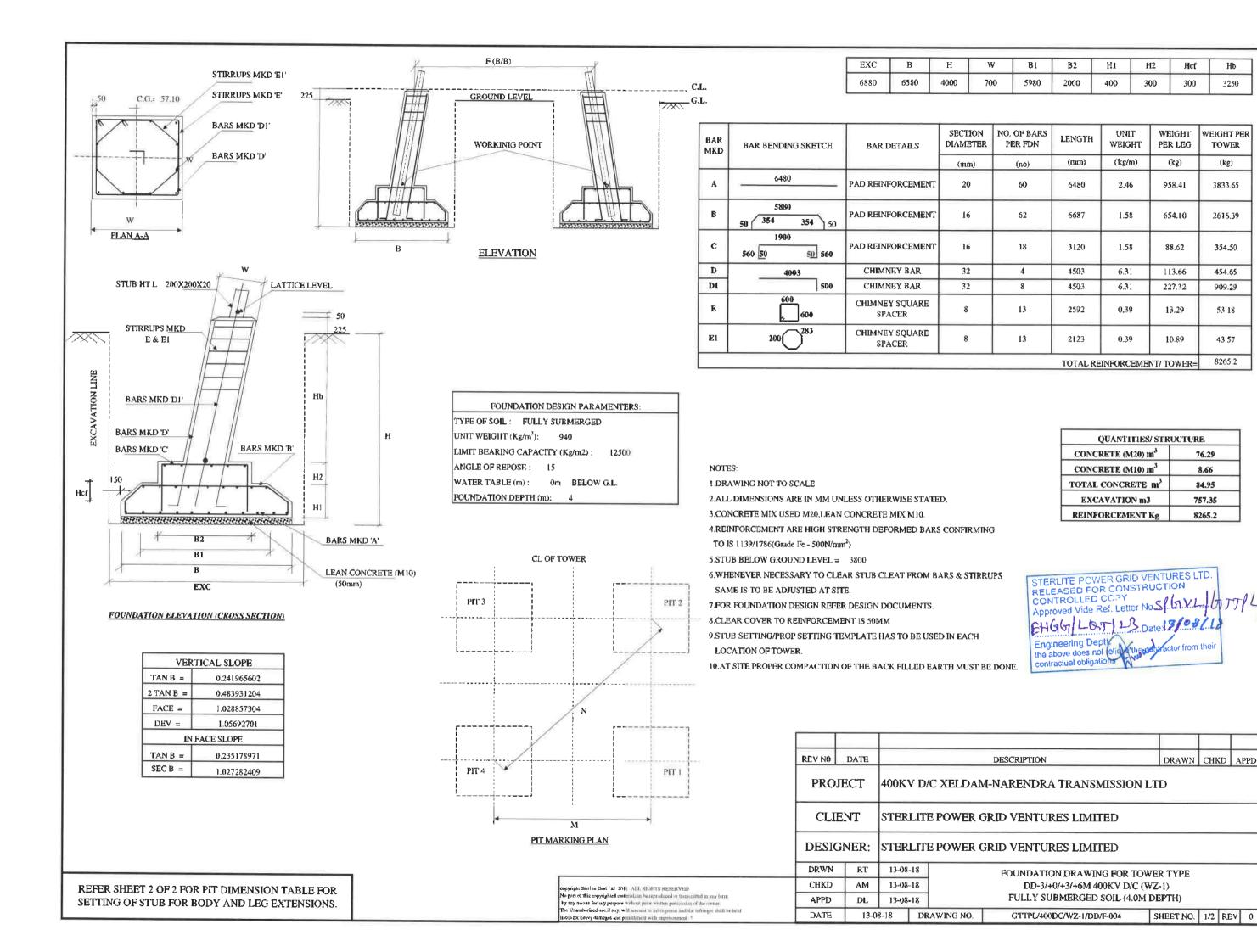
TO IS 1139/1786(Grade Pe - 500N/mm<sup>2</sup>)

5.8TUB BELOW GROUND LEVEL =

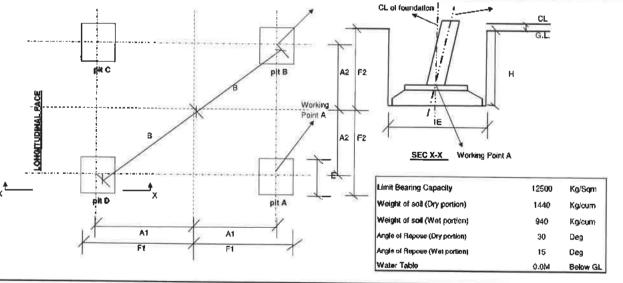
3800 mm

- 6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH

LOCATION OF TOWER.


crystight Stepho Brid Lan 2011. ALL BAGUTS RENERVED.

No part of the copyrighted instantion to copyride of unstantional in uny facinity by expressed of many pages, which pair relation partnerson in due owner.


The Unstantiated set all may 400 medical in plittings only only proposed to be body backet for known places, and plaintings with all proprocessed.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

|        |          |              |                           |              |      | -   |      |
|--------|----------|--------------|---------------------------|--------------|------|-----|------|
| REV NO | DATE     |              | DESCRIPTION               | DRAWN        | СН   | IKD | APPD |
| PRO    | JECT     | 400KV D/C XE | LDAM-NARENDRA TRANSMISS   | ION LTD      |      |     |      |
| CLI    | ENT      | STERLITE POV | WER GRID VENTURES LIMITED |              |      |     |      |
| DESIG  | GNER:    | STERLITE POV | VER GRID VENTURES LIMITED |              |      |     |      |
| DRWN   | RT       | 13-08-18     | FOUNDATION DRAWING FO     | TOWER T      | VPE  |     |      |
| CHKD   | AM       | 13-08-18     | DD-3/+0/+3/+6M 400KV      | D/C (WZ-1)   |      |     |      |
| APPD   | DL       | 13-08-18     | PARTIALLY SUBMERGED SO    | OIL (4,0M DE | PTH) |     |      |
| DATE   | 13-08-18 | DRAWING NO.  | GTTPL/400DC/WZ-1/DD/F-003 | SHEET NO.    | 2/2  | REV | 0    |



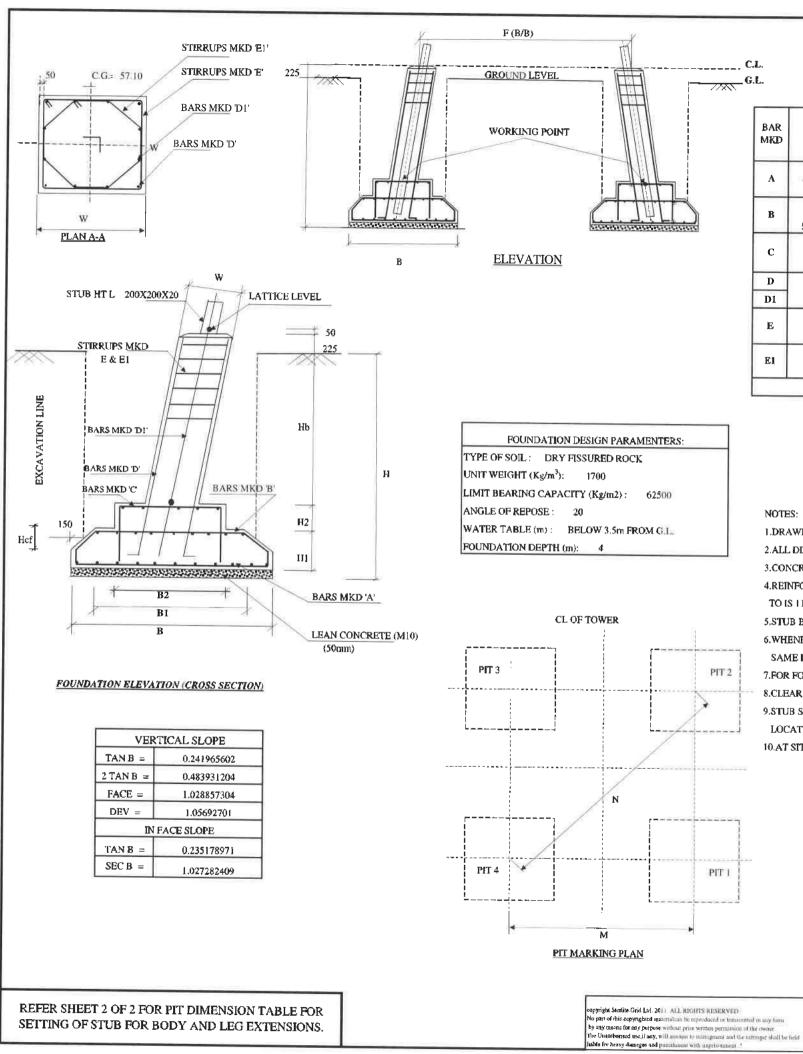
| Project            |                                     | 400 K                       | V D/C -                    |                             |          |                 |            |                           | - FS (4.0) | M DEPTH) |             | Client:  |         |
|--------------------|-------------------------------------|-----------------------------|----------------------------|-----------------------------|----------|-----------------|------------|---------------------------|------------|----------|-------------|----------|---------|
| GOA                |                                     |                             |                            |                             | PIT DIME |                 |            |                           |            |          |             | SPGVL    |         |
| 400 KV D/C-X-M & X | -N- TT <b>"D</b> D"                 | *F *B/B of To<br>3MBE(+)-3M |                            | * F * B/B of T<br>3MBE(+)-3 |          | Stub Sec        | otlon (HT) | Lattice<br>Level to<br>CL | cg         | sec B1   | 2*Tan B1    | sec B2   | 2°Tan B |
|                    |                                     | 1271                        | 3                          | 127                         | 13       | 20000           | 200X20     | 50                        | 57.1       | 1.028857 | 0.483931204 | 1.028857 | 0.48393 |
| Tower Detail       | Extn from<br>-3MBE(+)-<br>3MLE (mm) | og-og dim at<br>CL (TF)     | cg-cg dim<br>at CL<br>(LF) | Foundation<br>Base Width    | work pt  | G.L. TO<br>C.L. | A1         | A2                        | В          | E        | F1          | F2       | н       |
| -3MBE (+) -3M LE   | 0                                   | 12623                       | 12623                      | 6580                        | 3250     | 225             | 7152       | 7152                      | 10115      | 6880     | 10592       | 10592    | 4000    |
| -3MBE (+) -1.5M LE | 1500                                | 13349                       | 13349                      | 6580                        | 3250     | 225             | 7515       | 7515                      | 10628      | 6880     | 10955       | 10955    | 4000    |
| -3MBE (+) +0M LE   | 3000                                | 14074                       | 14074                      | 6580                        | 3250     | 225             | 7878       | 7878                      | 11141      | 6980     | 11318       | 11318    | 4000    |
| -3MBE (+) +1.5M LE | 4500                                | 14800                       | 14800                      | 6580                        | 3250     | 225             | 8241       | 8241                      | 11655      | 6880     | 11681       | 11681    | 4000    |
| -3MBE (+) +3M LE   | 6000                                | 15526                       | 15526                      | 6580                        | 3250     | 225             | 8604       | 8604                      | 12168      | 6880     | 12044       | 12044    | 4000    |
| +0MBE (+) -3M LE   | 3000                                | 14074                       | 14074                      | 6580                        | 3250     | 225             | 7878       | 7878                      | 11141      | 6880     | 11318       | 11318    | 4000    |
| +0MBE (+) -1.5M LE | 4500                                | 14800                       | 14800                      | 6580                        | 3250     | 225             | 8241       | 8241                      | 11655      | 6880     | 11681       | 11681    | 4000    |
| +0MBE (+) +0M LE   | 6000                                | 15526                       | 15526                      | 6580                        | 3250     | 225             | 8604       | 8604                      | 12168      | 6880     | 12044       | 12044    | 4000    |
| +OMBE (+) +1.5M LE | 7500                                | 16252                       | 16252                      | 6580                        | 3250     | 225             | 8967       | 8967                      | 12681      | 6880     | 12407       | 12407    | 4000    |
| +OMBE (+) +3M LE   | 9000                                | 16978                       | 16978                      | 6580                        | 3250     | 225             | 9330       | 9330                      | 13194      | 6880     | 12770       | 12770    | 4000    |
| +3MBE (+) -3M LE   | 6000                                | 15526                       | 15526                      | 6580                        | 3250     | 225             | 8604       | 8604                      | 12168      | 6880     | 12044       | 12044    | 4000    |
| +3MBE (+) -1.5M LE | 7500                                | 16252                       | 16252                      | 6580                        | 3250     | 225             | 8967       | 8967                      | 12681      | 6880     | 12407       | 12407    | 4000    |
| +3MBE (+) +0M LE   | 9000                                | 16978                       | 16978                      | 6580                        | 3250     | 225             | 9330       | 9330                      | 13194      | 6880     | 12770       | 12770    | 4000    |
| +3MBE (+) +1.5M LE | 10500                               | 17704                       | 17704                      | 6580                        | 3250     | 225             | 9693       | 9693                      | 13708      | 6880     | 13133       | 13133    | 4000    |
| +3MBE (+) +3M LE   | 12000                               | 18430                       | 18430                      | 6580                        | 3250     | 226             | 10056      | 10056                     | 14221      | 6890     | 13496       | 13496    | 4000    |
| +6MBE (+) -3M LE   | 9000                                | 16978                       | 16978                      | 6580                        | 3250     | 225             | 9330       | 9330                      | 13194      | 6880     | 12770       | 12770    | 4000    |
| +6MBE (+) -1.5M LE | 10500                               | 17704                       | 17704                      | 6580                        | 3250     | 225             | 9693       | 9693                      | 13708      | 6880     | 13133       | 13133    | 4000    |
| +6MBE (+) +0M LE   | 12000                               | 18430                       | 18430                      | 6580                        | 3250     | 225             | 10056      | 10056                     | 14221      | 6880     | 13496       | 13496    | 4000    |
| +6MBE (+) +1.5M LE | 13500                               | 19156                       | 19156                      | 6580                        | 3250     | 225             | 10419      | 10419                     | 14734      | 6880     | 13859       | 13859    | 4000    |
| 6MBE (+) +3M LE    | 15000                               | 19882                       | 19882                      | 6580                        | 3250     | 225             | 10782      | 10782                     | 15248      | 6880     | 14222       | 14222    | 4000    |
| •••                |                                     |                             |                            |                             | 1        | ,               |            | CL of found               | lation     | 7        | CL<br>G,L.  |          |         |



- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTEMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

|           | VERTICAL SLOPE |
|-----------|----------------|
| TAN B =   | 0.241965802    |
| 2 TAN B - | 0.463931204    |
| FACE =    | 1.028957304    |
| DEV =     | 1.05692701     |
|           | IN FACE SLOPE  |
| TAN B =   | 0.235178971    |
| SEC B =   | 1.027282409    |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED COPY
Approved Vide Ref. Letter No. S. L. V.L. (7) 77 PL
CHON LOT 23 Date: (3.6.6.4)
Engineering Deptt.
the above does not relieve the contractual obligations


# NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm<sup>2</sup>)
- 5.STUB BELOW GROUND LEVEL =
- 3800 mm
- 6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- 16.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| REV NO | DATE     |              | DESCRIPTION                 | DRAWN          |      | łKD | APPD  |
|--------|----------|--------------|-----------------------------|----------------|------|-----|-------|
| PRO    | DECT     | 400KV D/C XI | ELDAM-NARENDRA TRANSMI      |                | T CI | IKD | JARED |
| CLI    | ENT      | STERLITE PO  | WER GRID VENTURES LIMITE    | D              |      |     |       |
| DESIG  | SNER:    | STERLITE PO  | WER GRID VENTURES LIMITE    | D              |      |     |       |
| RWN    | RT       | 13-08-18     | FOUNDATION DRAWING          | FOR TOWER T    | VDE  |     |       |
| НКД    | AM       | 13-08-18     | DD-3/+0/+3/+6M 400          |                | 1115 |     |       |
| PPD    | DL       | 13-08-18     | FULLY SUBMERGED S           | OIL (4.0M DEPT | H)   |     |       |
| ATE    | 13-08-18 | DRAWING NO.  | GTTPL/400DC/IVZ-L/DD/I7-004 | SHEET NO.      | 2/2  | REV | 0     |

emplojo Secijo Chili 44 (1011 A.I. RIGHTS AREGRAVE).

Na previ dilati uspirijalno insertikota te oprotelorod et vasimilatio in ang form by any mouse for eng proprior valoring previ misina gamilation il anga form by any mouse for eng proprior valoring previ misina gamilation of the subsequent and the angalempe that he leaft to be for the proprior of the subsequent and the angalempe that he leaft to be for the previous formation of the proprior of the leaft to be for the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the proprior of the prop



SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

| В    | Н    | W   | ВI   | B2   | H1  | H2  | Hef | Hb   |
|------|------|-----|------|------|-----|-----|-----|------|
| 4300 | 4000 | 700 | 3700 | 2000 | 400 | 300 | 300 | 3250 |

| BAR<br>MKD | BAR BENDING SKETCH    | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTH    | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|-----------------------|--------------------------|---------------------|------------------------|-----------|----------------|-------------------|---------------------|
|            |                       |                          | (mm)                | (no)                   | (mm)      | ('kg/m)        | (kg)              | (kg)                |
| Λ          | 4200                  | PAD REINFORCEMENT        | 16                  | 54                     | 4200      | 1.58           | 357.85            | 1431.38             |
| В          | 3600<br>50 354 354 50 | PAD REINFORCEMENT        | 12                  | 40                     | 4407      | 0.89           | 156.48            | 625.91              |
| С          | 1900<br>568 50 50 568 | PAD REINFORCEMENT        | 16                  | 16                     | 3136      | 1.58           | 79.18             | 316,74              |
| D          | 4011                  | CHIMNEY BAR              | 32                  | 4                      | 4511      | 6.31           | 113.86            | 455.46              |
| D1         | 500                   | CHIMNEY BAR              | 32                  | 8                      | 4511      | 6.31           | 227.72            | 910.90              |
| E          | 600                   | CHIMNEY SQUARE<br>SPACER | 8                   | 14                     | 2592      | 0.39           | 14.31             | 57.27               |
| EI         | 200 283               | CHIMNEY SQUARE<br>SPACER | 8                   | 14                     | 2123      | 0.39           | 11.72             | 46.90               |
|            |                       |                          |                     |                        | TOTAL REI | INFORCEMEN     | VT/ TOWER=        | 3844.6              |

NOTES:

LDRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm<sup>2</sup>)

5.STUB BELOW GROUND LEVEL = 3800

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| QUANTITIES/ STRU              | CTURE  |
|-------------------------------|--------|
| CONCRETE (M20) m <sup>3</sup> | 38.24  |
| CONCRETE (M10) m <sup>3</sup> | 3.7    |
| TOTAL CONCRETE m <sup>3</sup> | 41.94  |
| EXCAVATION m3                 | 258.24 |
| REINFORCEMENT Kg              | 3844,6 |

STERLITE POWER GRID VENTURES LTD.

RELEASED FOR CONSTRUCTION
CONTROLLED CC.?Y
Approved Vide Ref. Letter No. S.f. (51).

CH GLY LAT 22 Date 2.6.8 / 1.8

Engineering Deptt.
The above does not refer the confactor from their the above does not refer the confactor from their

|                                                    |       | _     |     |                                                           |                              |          |     |            |      |  |
|----------------------------------------------------|-------|-------|-----|-----------------------------------------------------------|------------------------------|----------|-----|------------|------|--|
| REV NO                                             | DATE  |       |     |                                                           | DESCRIPTION                  | DD 4 VVD |     | $\perp$    |      |  |
| ALD THO                                            | Ditte | _     |     |                                                           | DESCRIPTION                  | DRAWN    | CHI | $\Omega I$ | APPD |  |
| PROJECT 400KV D/C XELDAM-NARENDRA TRANSMISSION LTD |       |       |     |                                                           |                              |          |     |            |      |  |
| CLIENT STERLITE POWER GRID VENTURES LIMITED        |       |       |     |                                                           |                              |          |     |            |      |  |
| DESIG                                              | GNER: | STER  | LIŢ | E POWER (                                                 | GRID VENTURES LIMITED        |          |     |            |      |  |
| DRWN                                               | RT    | 13-08 | -18 |                                                           | FOUNDATION DRAWING FOR TOW   | /ER TYPE |     |            |      |  |
| CHKD                                               | AM    | 13-08 | -18 | DD-3/+0/+3/+6M 400KV D/C (WZ-1)                           |                              |          |     |            |      |  |
| APPD                                               | DL    | 13-08 | -18 |                                                           | DRY FISSURED ROCK SOIL (4.0M | DEPTH)   |     |            |      |  |
| DATE                                               | 13-0  | 8-18  | DR  | DRAWING NO. GTTPL/400DC/WZ-1/DD/F-005 SHEET NO. 1/2 REV 0 |                              |          |     |            |      |  |

| Project<br>GOA                          |                                     | 400 K                         | V D/C ->                   |                             | (WZ-1)<br>PIT DIMI |                 |            |                           | DFR (4.         | OM DEPTH)       |             | Client:<br>SPGVL |         |
|-----------------------------------------|-------------------------------------|-------------------------------|----------------------------|-----------------------------|--------------------|-----------------|------------|---------------------------|-----------------|-----------------|-------------|------------------|---------|
| 400 KV D/C-X-M & X                      | -N- TT 'DD'                         | * F * B/B of To<br>3MBE(+)-3M |                            | " F " B/8 of T<br>3MBE(+)-3 |                    | Stub Se         | ction (HT) | Lattice<br>Level to<br>CL | ¢g              | sec B1          | 2"Tan B1    | sec B2           | 2*Tan i |
|                                         |                                     | 1271                          | 3                          | 127                         | 713                | 20000           | 200X20     | 50                        | 57.1            | 1.028857        | 0.483931204 | 1.028857         | 0.48393 |
| Tower Detail                            | Extn from<br>-3MBE(+)-<br>3MLE (mm) | cg-cg dim at<br>CL (TF)       | cg-cg dim<br>at CL<br>(LF) | Foundation<br>Base Width    | work pl            | G.L. TO<br>C.L. | Aı         | A2                        | В               | E               | F1          | F2               | н       |
| -3MBE (+) -3M LE                        | 0                                   | 12623                         | 12623                      | 4300                        | 3250               | 225             | 7152       | 7152                      | 10115           | 4300            | 9302        | 9302             | 4000    |
| 3MBE (+) -1.5M LE                       | 1500                                | 13349                         | 13349                      | 4300                        | 3250               | 225             | 7515       | 7515                      | 10628           | 4300            | 9665        | 9865             | 4000    |
| -3MBE (+) +0M LE                        | 3000                                | 14074                         | 14074                      | 4300                        | 3250               | 225             | 7878       | 7878                      | 11141           | 4300            |             |                  | 4000    |
| 3MBE (+) +1.5M LE                       | 4500                                | 14800                         | 14800                      | 4300                        | 3250               | 225             | 8241       | 8241                      | 11655           | 4300            | 10028       | 10028            | 4000    |
| -3MBE (+) +3M LE                        | 6000                                | 15526                         | 15526                      | 4300                        | 3250               | 225             | 8604       | 8604                      |                 |                 | 10391       | 10391            | 4000    |
| +0MBE (+) -3M LE                        | 3000                                | 14074                         | 14074                      | 4300                        | 3250               | 225             | 7878       | 7878                      | 12168           | 4300            | 10754       | 10754            | 4000    |
| +0MBE (+) -1.5M LE                      | 4500                                | 14800                         | 14800                      | 4300                        | 3250               | 225             | 8241       | 8241                      | 11141           | 4300            | 10028       | 10028            | 4000    |
| +0MBE (+) +0M LE                        | 5000                                | 15526                         | 15526                      | 4300                        | 3250               | 225             |            |                           | 11655           | 4300            | 10391       | 10391            | 4000    |
| OMBE (+) +1.5M LE                       | 7500                                | 16252                         | 16252                      | 4300                        | 3250               |                 | 8604       | 8604                      | 12168           | 4300            | 10754       | 10754            | 4000    |
| +0MBE (+) +3M LE                        | 9000                                | 16978                         | 16978                      |                             |                    | 225             | 8967       | 8967                      | 12681           | 4300            | 11117       | 11117            | 4000    |
| +3MBE (+) -3M LE                        | 6000                                |                               |                            | 4300                        | 3250               | 225             | 9330       | 9330                      | 13194           | 4300            | 11480       | 11480            | 4000    |
| 3MBE (+) -1.5M LE                       | 7500                                | 15526                         | 15526                      | 4300                        | 3250               | 225             | 8604       | 8604                      | 12168           | 4300            | 10754       | 10754            | 4000    |
| 3M8E (+) +0M LE                         |                                     | 16252                         | 16252                      | 4300                        | 3250               | 225             | 8967       | 8967                      | 12681           | 4300            | ,11117      | 11117            | 4000    |
|                                         | 9000                                | 16978                         | 16978                      | 4300                        | 3250               | 225             | 9330       | 9330                      | 13194           | 4300            | 11480       | 11480            | 4000    |
| +3MBE (+) +1.5M LE                      | 10500                               | 17704                         | 17704                      | 4300                        | 3250               | 225             | 9693       | 9693                      | 13708           | 4300            | 11843       | 11843            | 4000    |
| +3MBE (+) +3M LE                        | 12000                               | 18430                         | 18430                      | 4300                        | 3250               | 225             | 10056      | 10056                     | 14221           | 4300            | 12206       | 12206            | 4000    |
| -6MBE (+) -3M LE                        | 9000                                | 16978                         | 16978                      | 4300                        | 3250               | 225             | 9330       | 9330                      | 13194           | 4300            | 11480       | 11480            | 4000    |
| 6MBE (+) -1.5M LE                       | 10500                               | 17704                         | 17704                      | 4300                        | 3250               | 225             | 9693       | 9693                      | 13708           | 4300            | 11843       | 11843            | 4000    |
| -6MBE (+) +0M LE                        | 12000                               | 18430                         | 18430                      | 4300                        | 3250               | 225             | 10056      | 10056                     | 14221           | 4300            | 12206       | 12206            | 4000    |
| -6MBE (+) +1.5M LE                      | 13500                               | 19156                         | 19156                      | 4300                        | 3250               | 225             | 10419      | 10419                     | 14734           | 4300            | 12569       | 12569            | 4000    |
| GMBE (+) +3M LE                         | 15000                               | 19882                         | 19882                      | 4300                        | 3250               | 225             | 10782      | 10782                     | 15248           | 4300            | 12932       | 12932            | 4000    |
|                                         |                                     |                               | i                          |                             |                    | 1               | _          | CL ol found               | lation          | 7               | CL          |                  |         |
| *************************************** |                                     |                               | -                          |                             |                    | - 1             |            |                           | 11              |                 | G.L.        |                  |         |
|                                         | pit C                               |                               |                            |                             | pļt B              | 1               | A2 F2      |                           | 1.1             | _   н           |             |                  |         |
| -87<br>                                 |                                     |                               | /                          | /°                          |                    | Working .       |            |                           | 1               | $\vec{z}$       |             |                  |         |
| LONGITUDINAL                            |                                     | В                             |                            |                             | /                  | 1               | A2 F2      | +                         | ie              | +               |             |                  |         |
| PION                                    |                                     | /                             |                            |                             | $\forall$          | <del></del>     |            | <u>s</u>                  | EC X-X          | Working Point A |             |                  |         |
| <u> </u>                                | K                                   |                               |                            |                             |                    | ] -             |            | Limit Bearin              | g Capacity      |                 | 62500       | Kg/Sqm           |         |
|                                         | pit D                               | X                             |                            | -                           | plt A              | -               | -          | Weight of se              | oil (Ory portic | on)             |             | Kg/cum           |         |
|                                         | V                                   |                               | V                          |                             | /                  |                 |            | Weight of so              | oil (Wet porti  | on)             |             | Kg/cum           |         |
|                                         | 1.1                                 | At                            | 1                          | At .                        | 1                  |                 |            | toda of Con               | ose (Dry porti  |                 |             | Deg              |         |

Angle of Repose (Wet portion)

10

3.5M

Deg

Below GL

#### NOTE:

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO BNGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PTI DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

| VER       | RTICAL SLOPE |
|-----------|--------------|
| TANB =    | 0.241965602  |
| 2 TAN B = | 0.483931204  |
| FACE =    | 1.028857304  |
| DEV =     | 1,05692701   |
| IN        | FACE SLOPE   |
| TANB =    | 0.235178971  |
| SEC B =   | 1.027282409  |

STERLITE POWER GRID VENTURES LTD.

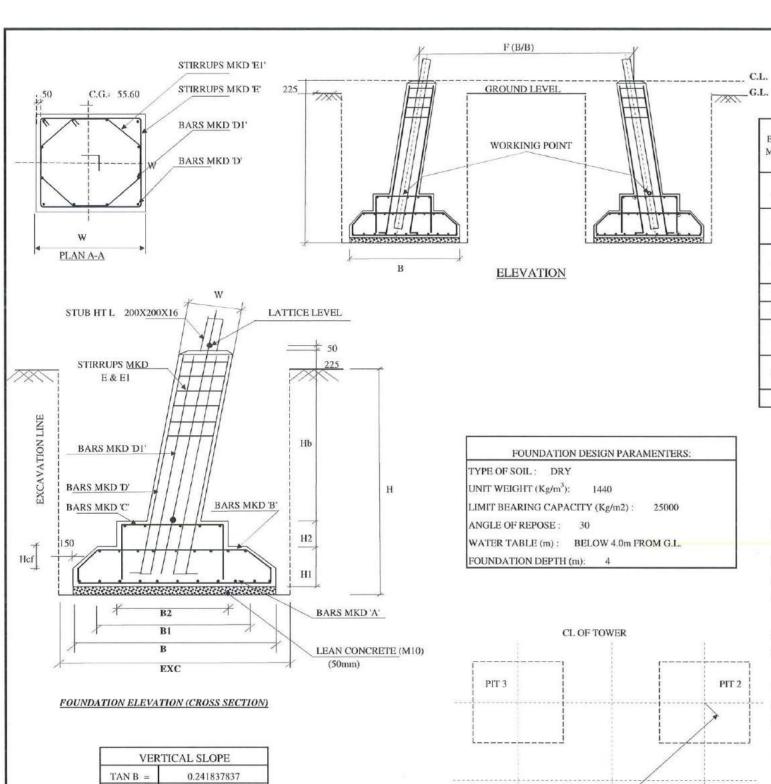
RELEASED FOR CONSTRUCTION
CONTROLLED COPY
Approved Vide Ref. Letter No. S. G.Y.L.G.TTP 4

Approved Vide Ref. Letter No. S. Date: 131.0.0 f. Letter No. S. Date: 131.0.0 f. Letter No. S. Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled Controlled

# NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm<sup>2</sup>)
- 5.STUB BELOW GROUND LEVEL =

3800 mm


- 6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH

LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| REV NO   | DATE     |              | DESCRIPTION               |                |      |     |      |
|----------|----------|--------------|---------------------------|----------------|------|-----|------|
| 1007 110 | DAIL     |              | DESCRIPTION               | DRAWN          | CF   | IKD | APPD |
| PRO      | JECT     | 400KV D/C XE | LDAM-NARENDRA TRANSMIS    | SSION LTD      |      |     |      |
| CL       | ENT      | STERLITE POV | VER GRID VENTURES LIMITEI | )              |      |     |      |
| DESI     | GNER:    | STERLITE POV | VER GRID VENTURES LIMITEI | )              |      |     |      |
| DRWN     | RT       | 13-08-18     | FOUNDATION DRAWING        | EAP TAWED T    | VINE |     | -    |
| СНКО     | AM       | 13-08-18     | DD-3/+0/+3/+6M 400B       |                | 115  |     |      |
| APPD     | DL       | 13-08-18     | DRY FISSURED ROCK SO      | OIL (4.0M DEPT | H)   |     |      |
| DATE     | 13-08-18 | DRAWING NO.  | GTTPL/400DCAV2-1/DD/F-005 | SHBET NO.      | 2/2  | REV | 0    |

erpyright Socies - Ocid L.M., 2011. ALL, EXCIDEN RESNERVED
The part of this experience in contraction be reproduced at mentantial range for its year person with the stay between these polys setting remainment of the object The University of the other persons of the object when the object is also be in the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the object of the obj



| EXC  | В    | Н    | W   | B1   | B2   | H1  | H2  | Hef | Hb   |
|------|------|------|-----|------|------|-----|-----|-----|------|
| 4200 | 3900 | 4000 | 700 | 3300 | 2000 | 400 | 300 | 300 | 3250 |

| BAR<br>MKD | BAR BENDING SKETCH            | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTH   | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|-------------------------------|--------------------------|---------------------|------------------------|----------|----------------|-------------------|---------------------|
|            |                               |                          | (mm)                | (no)                   | (mm)     | ('kg/m)        | (kg)              | (kg)                |
| Α          | 3800                          | PAD REINFORCEMENT        | 16                  | 42                     | 3800     | 1.58           | 251.83            | 1007.34             |
| В          | 3200<br>50 354 354 50         | PAD REINFORCEMENT        | 12                  | 28                     | 4007     | 0.89           | 99.61             | 398.45              |
| c          | 1900<br>568 50 5 <u>0</u> 568 | PAD REINFORCEMENT        | 12                  | 28                     | 3136     | 0.89           | 77.95             | 311.79              |
| D          | 4011                          | CHIMNEY BAR              | 32                  | 4                      | 4511     | 6.31           | 113.86            | 455.46              |
| D1         | 500                           | CHIMNEY BAR              | 32                  | 8                      | 4511     | 6.31           | 227.72            | 910.90              |
| Е          | 600                           | CHIMNEY SQUARE<br>SPACER | 8                   | 14                     | 2592     | 0.39           | 14.31             | 57.27               |
| E1         | 200 283                       | CHIMNEY SQUARE<br>SPACER | 8                   | 14                     | 2123     | 0.39           | 11.72             | 46.92               |
|            |                               | •                        |                     |                        | TOTAL RE | INFORCEME      | NT/ TOWER=        | 3188.1              |

- I.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING TO IS 1139/1786(Grade Fe - 500N/mm²)
- 5.STUB BELOW GROUND LEVEL = 3800
- 6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| QUANTITIES/STRU               | CTURE  |
|-------------------------------|--------|
| CONCRETE (M20) m <sup>3</sup> | 33.28  |
| CONCRETE (M10) m <sup>3</sup> | 3.04   |
| TOTAL CONCRETE m <sup>3</sup> | 36.32  |
| EXCAVATION m3                 | 282.24 |
| REINFORCEMENT Kg              | 3188.1 |

STERLITE POWER GRID VENTURES LTD.

RELEASED FOR CONSTRUCTION
CONTROLLED CC.?Y
Approved Vide Ref. Letter No. SP4VL/GTTPL
ENGLAT 2 Date: 20.09.18
Engineering Deptt.
the above does not releve the source from their
contractual obligations

|        |       | _     |                            |                                          |                |      |     |     |  |
|--------|-------|-------|----------------------------|------------------------------------------|----------------|------|-----|-----|--|
| REV NO | DATE  |       |                            | DESCRIPTION                              | DRAWN          | СНК  | ) A | PPI |  |
| PRO    | JECT  | 400K  | V D/C XELD                 | AM-NARENDRA TRANSMIS                     | SSION LTD      |      |     |     |  |
| CLI    | ENT   | STER  | LITE POWER                 | R GRID VENTURES LIMITEI                  | )              |      |     |     |  |
| DESI   | GNER: | STER  | LITE POWEF                 | R GRID VENTURES LIMITEI                  | )              |      |     |     |  |
| DRWN   | RT    | 20-09 | -18                        | FOUNDATION DRAWING F                     | FOR TOWER TYPE |      |     |     |  |
| CHKD   | AM    | 20-09 | -18 DI                     | DN-3/+0/+3/+6M (30-45 DEG. DEV.          |                | (WZ- | ()  |     |  |
| APPD   | DL    | 20-09 | -18                        | DRY SOIL (4.0M                           | DEPTH)         |      |     |     |  |
| DATE   | 141.0 |       | . GTTPL/400DC/WZ-1/DDN/F-0 | GTTPL/400DC/WZ-1/DDN/F-001 SHEET NO. 1/2 |                |      |     |     |  |

| Ĺ     |   | L-/   |
|-------|---|-------|
|       | N |       |
| PIT 4 |   | PIT I |
| L     | M |       |

REFER SHEET 2 OF 2 FOR PIT DIMENSION TABLE FOR SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

0.483675674

1.028827264

1.056868525

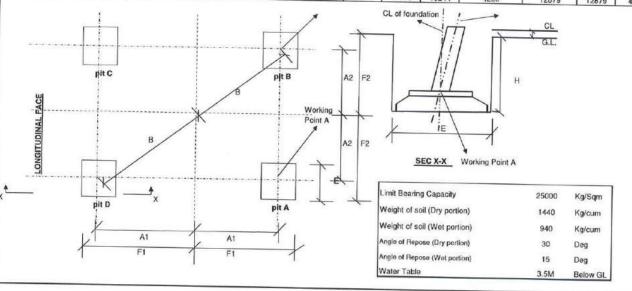
0.241837837

1.027254576

IN FACE SLOPE

2 TAN B =

FACE =


DEV =

TAN B = SEC B =

copyright Sterlite Unid Ltd. 2011. ALL RIGHTS RESERVED.

No poin of this copyrighted inaterialson be reproduced or transmitted in any Jonin, by any means for any purpose without price written permission of the owner. The Gnautheriscol use, if any, will amount to infinigement and the infringer shall be held liable for beasy damages and punishment with imprisonment.

| Project<br>GOA            |                                     | 400 KV D                                        | /C X-N                     | (WZ-1) TT                | "DDN"<br>PIT DIME               | (30-45 I        | DEG. DE             | V.) SOI | L - DRY ( | 4.0M DEPT | H)          | Client:<br>SPGVL |          |  |
|---------------------------|-------------------------------------|-------------------------------------------------|----------------------------|--------------------------|---------------------------------|-----------------|---------------------|---------|-----------|-----------|-------------|------------------|----------|--|
| 400 KV D/C -X-N- TT "DDN" |                                     | "F"B/B of Tower at 3MBE(+)-3MLE (TF) 3MBE(+)-3N |                            |                          | (+)-3MLE (LF) Stub Section (HT) |                 | Lattice<br>Level to | cg      | sec B1    | 2*Tan B1  | sec B2      | 2*Tan B          |          |  |
|                           |                                     | 12710                                           |                            | 12710                    |                                 | 200X200X16      |                     | 50      | 55.6      | 1.028827  | 0.483675674 | 1.028827         | 0.483675 |  |
| Tower Detail              | Extn from<br>-3MBE(+)-<br>3MLE (mm) | cg-cg dim at<br>CL (TF)                         | cg-cg dim<br>at CL<br>(LF) | Foundation<br>Base Width | work pt                         | G.L. TO<br>C.L. | A1                  | A2      | В         | E         | F1          | F2               | H        |  |
| -3MBE (+) -3M LE          | 0                                   | 12623                                           | 12623                      | 3900                     | 3250                            | 225             | 7152                | 7152    | 10114     | 4200      | 9252        | 0050             | ****     |  |
| -3MBE (+) -1.5M LE        | 1500                                | 13348                                           | 13348                      | 3900                     | 3250                            | 225             | 7515                | 7515    | 10627     | 4200      | 9615        | 9252             | 4000     |  |
| -3MBE (+) +0M LE          | 3000                                | 14074                                           | 14074                      | 3900                     | 3250                            | 225             | 7877                | 7877    | 11140     | 4200      |             | 9615             | 4000     |  |
| -3MBE (+) +1.5M LE        | 4500                                | 14800                                           | 14800                      | 3900                     | 3250                            | 225             | 8240                | 8240    | 11653     | 4200      | 9977        | 9977             | 4000     |  |
| -3MBE (+) +3M LE          | 6000                                | 15525                                           | 15525                      | 3900                     | 3250                            | 225             | 8603                | 8603    | 12166     | 1000      | 10340       | 10340            | 4000     |  |
| +0MBE (+) -3M LE          | 3000                                | 14074                                           | 14074                      | 3900                     | 3250                            | 225             | 7877                | 7877    | 11140     | 4200      | 10703       | 10703            | 4000     |  |
| +0MBE (+) -1.5M LE        | 4500                                | 14800                                           | 14800                      | 3900                     | 3250                            | 225             | 8240                | 8240    |           | 4200      | 9977        | 9977             | 4000     |  |
| +0MBE (+) +0M LE          | 6000                                | 15525                                           | 15525                      | 3900                     | 3250                            | 225             | 8603                | 8603    | 11653     | 4200      | 10340       | 10340            | 4000     |  |
| +0MBE (+) +1.5M LE        | 7500                                | 16251                                           | 16251                      | 3900                     | 3250                            | 225             | 8966                | 8500    | 12166     | 4200      | 10703       | 10703            | 4000     |  |
| +0MBE (+) +3M LE          | 9000                                | 16976                                           | 16976                      | 3900                     | 3250                            | 225             |                     | 8966    | 12679     | 4200      | 11066       | 11066            | 4000     |  |
| +3MBE (+) -3M LE          | 6000                                | 15525                                           | 15525                      | 3900                     | 3250                            | Jenury Ti       | 9328                | 9328    | 13192     | 4200      | 11428       | 11428            | 4000     |  |
| +3MBE (+) -1.5M LE        | 7500                                | 16251                                           | 16251                      | 3900                     | 200000                          | 225             | 8603                | 8603    | 12166     | 4200      | 10703       | 10703            | 4000     |  |
| +3MBE (+) +0M LE          | 9000                                | 16976                                           | 16976                      | 2000000                  | 3250                            | 225             | 8966                | 8966    | 12679     | 4200      | 11066       | 11066            | 4000     |  |
| +3MBE (+) +1.5M LE        | 10500                               | 17702                                           |                            | 3900                     | 3250                            | 225             | 9328                | 9328    | 13192     | 4200      | 11428       | 11428            | 4000     |  |
| 3MBE (+) +3M LE           | 12000                               | 18427                                           | 17702                      | 3900                     | 3250                            | 225             | 9691                | 9691    | 13705     | 4200      | 11791       | 11791            | 4000     |  |
| 6MBE (+) -3M LE           | 9000                                | 2500203                                         | 18427                      | 3900                     | 3250                            | 225             | 10054               | 10054   | 14218     | 4200      | 12154       | 12154            | 4000     |  |
| 6MBE (+) -1.5M LE         |                                     | 16976                                           | 16976                      | 3900                     | 3250                            | 225             | 9328                | 9328    | 13192     | 4200      | 11428       | 11428            | 4000     |  |
|                           | 10500                               | 17702                                           | 17702                      | 3900                     | 3250                            | 225             | 9691                | 9691    | 13705     | 4200      | 11791       | 11791            | 4000     |  |
| 6MBE (+) +0M LE           | 12000                               | 18427                                           | 18427                      | 3900                     | 3250                            | 225             | 10054               | 10054   | 14218     | 4200      | 12154       | 12154            | 4000     |  |
| 6MBE (+) +1.5M LE         | 13500                               | 19153                                           | 19153                      | 3900                     | 3250                            | 225             | 10417               | 10417   | 14731     | 4200      | 12517       | 12517            | 4000     |  |
| 6MBE (+) +3M LE           | 15000                               | 19878                                           | 19878                      | 3900                     | 3250                            | 225             | 10779               | 10779   | 15244     | 4200      | 12879       | 12879            | 4000     |  |



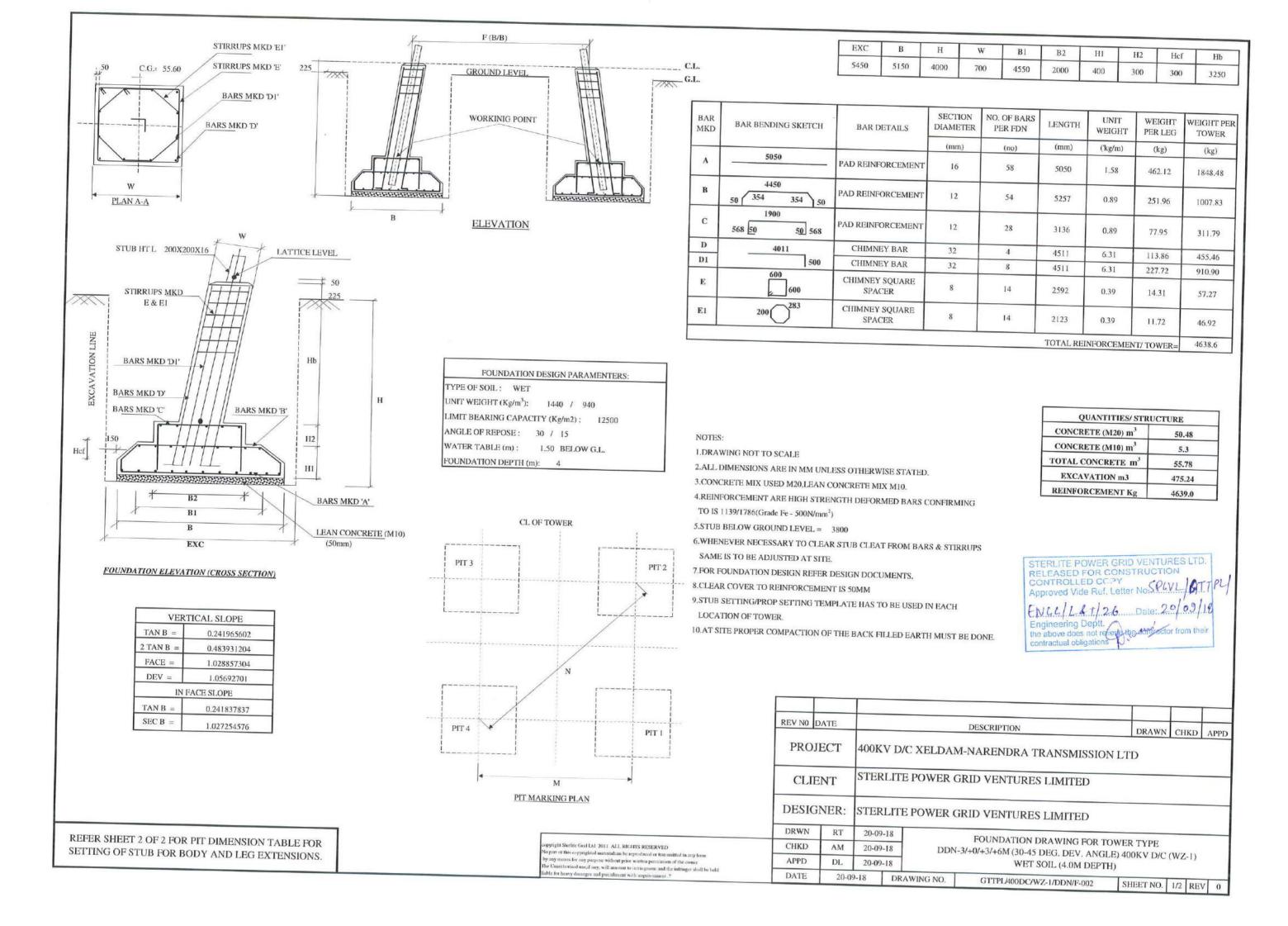
- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

| VEI       | RTICAL SLOPE |
|-----------|--------------|
| TAN B =   | 0.241837837  |
| 2 TAN B = | 0.483675674  |
| FACE =    | 1.028827264  |
| DEV =     | 1.056868525  |
| IN        | FACE SLOPE   |
| TAN B =   | 0.241837837  |
| SEC B =   | 1.027254576  |
| TAN B =   | 0.241837837  |

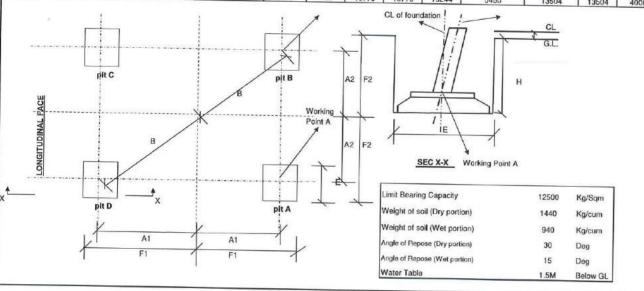
STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CC.PY
Approved Vide Ref. Letter No. SPGV1 LAT TPL

ENGLE AT 26... Date: 2009/18
Engineering Deptt.
the above does not relieve the good team from their

#### NOTES:


- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm<sup>2</sup>) 5.STUB BELOW GROUND LEVEL =

2000


- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- $10.\mathrm{AT}$  SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

|                                    |          |             |                                                      |               | 1     |      | _    |
|------------------------------------|----------|-------------|------------------------------------------------------|---------------|-------|------|------|
| REV NO                             | DATE     |             | DESCRIPTION                                          | DRAWN         | CH    | IKD  | APPD |
| PRO                                | DJECT    | 400KV D/C X | ELDAM-NARENDRA TRANSM                                | IISSION LTD   |       |      |      |
| CLI                                | IENT     | STERLITE PO | WER GRID VENTURES LIMITI                             | ED            |       |      |      |
| DESI                               | GNER:    | STERLITE PO | WER GRID VENTURES LIMITE                             | ED            |       |      |      |
| DRWN                               | RT       | 20-09-18    | POUND ATTOM DE ANTON                                 |               | 1000  |      |      |
| CHKD AM 20-09-18  APPD DL 20-09-18 |          | 20-09-18    | FOUNDATION DRAWING<br>DDN-3/+0/+3/+6M (30-45 DEG. DE | G FOR TOWER T | YPE   | avz  | 13   |
|                                    |          | 20-09-18    | DRY SOIL (4.0                                        | M DEPTH)      | V DIC | (WZ- | 1)   |
| DATE                               | 20-09-18 | DRAWING NO. | GTTPL/400DC/WZ-1/DDN/f-001                           | SHEET NO.     | 2/2   | REV  | 0    |

Opputal Steller Crist 1, 201 AU. (MOTIN RESERVED)
Negrate data copyrighted uncertaint be expended or transmission may form
by say means for easy purpose without perceiveness and the wines
The Unserved one of may will amount to afringent and their ling or did be held
block the transplacement of promisions will apprehensed.



| Project<br>GOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     | 400 KV D                      | C X-N                      | (WZ-1)   T<br>F             | "NDD"<br>IMID TIP | (30-45 [<br>ENSION | DEG. DE    | V.) SOI                   | L - WET ( | 4.0M DEPT | H)          | Client:  |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------|----------------------------|-----------------------------|-------------------|--------------------|------------|---------------------------|-----------|-----------|-------------|----------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                               |                            |                             |                   | I                  |            |                           |           |           |             | SPGVL    |          |
| 400 KV D/C -X-N-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TT "DDN"                            | " F " B/B of To<br>3MBE(+)-3M |                            | * F * B/B of T<br>3MBE(+)-3 |                   | Stub Se            | ction (HT) | Lattice<br>Level to<br>CL | cg        | sec B1    | 2*Tan B1    | sec B2   | 2*Tan B2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 1271                          | 0                          | 127                         | 10                | 200X               | 200X16     | 50                        | 55.6      | 1.028827  | 0.483675674 | 1.028827 | 0.483675 |
| Tower Detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Extn from<br>-3MBE(+)-<br>3MLE (mm) | cg-cg dim at<br>CL (TF)       | cg-cg dim<br>at CL<br>(LF) | Foundation<br>Base Width    | work pt           | G.L. TO<br>C.L.    | A1         | A2                        | В         | E         | F1          | F2       | Н        |
| -3MBE (+) -3M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                   | 12623                         | 12623                      | 5150                        | 3250              | 225                | 7152       | 7152                      | 10114     | 5450      | 9877        | 9877     | 4000     |
| -3MBE (+) -1.5M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1500                                | 13348                         | 13348                      | 5150                        | 3250              | 225                | 7515       | 7515                      | 10627     | 5450      | 10240       |          | 4000     |
| -3MBE (+) +0M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3000                                | 14074                         | 14074                      | 5150                        | 3250              | 225                | 7877       | 7877                      | 11140     | 5450      | 10602       | 10240    | 4000     |
| -3MBE (+) +1.5M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4500                                | 14800                         | 14800                      | 5150                        | 3250              | 225                | 8240       | 8240                      | 11653     | 5450      | 10965       | 10602    | 4000     |
| -3MBE (+) +3M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6000                                | 15525                         | 15525                      | 5150                        | 3250              | 225                | 8603       | 8603                      | 12166     | 5450      |             | 10965    | 4000     |
| +0MBE (+) -3M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3000                                | 14074                         | 14074                      | 5150                        | 3250              | 225                | 7877       | 7877                      | 11140     | 5450      | 11328       | 11328    | 4000     |
| +0MBE (+) -1.5M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4500                                | 14800                         | 14800                      | 5150                        | 3250              | 225                | 8240       | 8240                      | 11653     | 5450      | 10602       | 10602    | 4000     |
| +0MBE (+) +0M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6000                                | 15525                         | 15525                      | 5150                        | 3250              | 225                | 8603       | 8603                      | 12166     |           | 10965       | 10965    | 4000     |
| +0MBE (+) +1.5M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7500                                | 16251                         | 16251                      | 5150                        | 3250              | 225                | 8966       | 8966                      | 12679     | 5450      | 11328       | 11328    | 4000     |
| +0MBE (+) +3M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9000                                | 16976                         | 16976                      | 5150                        | 3250              | 225                | 9328       | 9328                      |           | 5450      | 11691       | 11691    | 4000     |
| +3MBE (+) -3M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6000                                | 15525                         | 15525                      | 5150                        | 3250              | 225                | 8603       |                           | 13192     | 5450      | 12053       | 12053    | 4000     |
| +3MBE (+) -1.5M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7500                                | 16251                         | 16251                      | 5150                        | 3250              | 225                |            | 8603                      | 12166     | 5450      | 11328       | 11328    | 4000     |
| +3MBE (+) +0M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9000                                | 16976                         | 16976                      | 5150                        |                   |                    | 8966       | 8966                      | 12679     | 5450      | 11691       | 11691    | 4000     |
| +3MBE (+) +1.5M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10500                               | 17702                         | 17702                      |                             | 3250              | 225                | 9328       | 9328                      | 13192     | 5450      | 12053       | 12053    | 4000     |
| +3MBE (+) +3M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12000                               | 18427                         |                            | 5150                        | 3250              | 225                | 9691       | 9691                      | 13705     | 5450      | 12416       | 12416    | 4000     |
| 6MBE (+) -3M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9000                                | 100000                        | 18427                      | 5150                        | 3250              | 225                | 10054      | 10054                     | 14218     | 5450      | 12779       | 12779    | 4000     |
| 6MBE (+) -1.5M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | 16976                         | 16976                      | 5150                        | 3250              | 225                | 9328       | 9328                      | 13192     | 5450      | 12053       | 12053    | 4000     |
| Administration of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the | 10500                               | 17702                         | 17702                      | 5150                        | 3250              | 225                | 9691       | 9691                      | 13705     | 5450      | 12416       | 12416    | 4000     |
| 6MBE (+) +0M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12000                               | 18427                         | 18427                      | 5150                        | 3250              | 225                | 10054      | 10054                     | 14218     | 5450      | 12779       | 12779    | 4000     |
| 6MBE (+) +1.5M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13500                               | 19153                         | 19153                      | 5150                        | 3250              | 225                | 10417      | 10417                     | 14731     | 5450      | 13142       | 13142    | 4000     |
| 6MBE (+) +3M LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15000                               | 19878                         | 19878                      | 5150                        | 3250              | 225                | 10779      | 10779                     | 15244     | 5450      | 13504       | 13504    | 4000     |



- BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

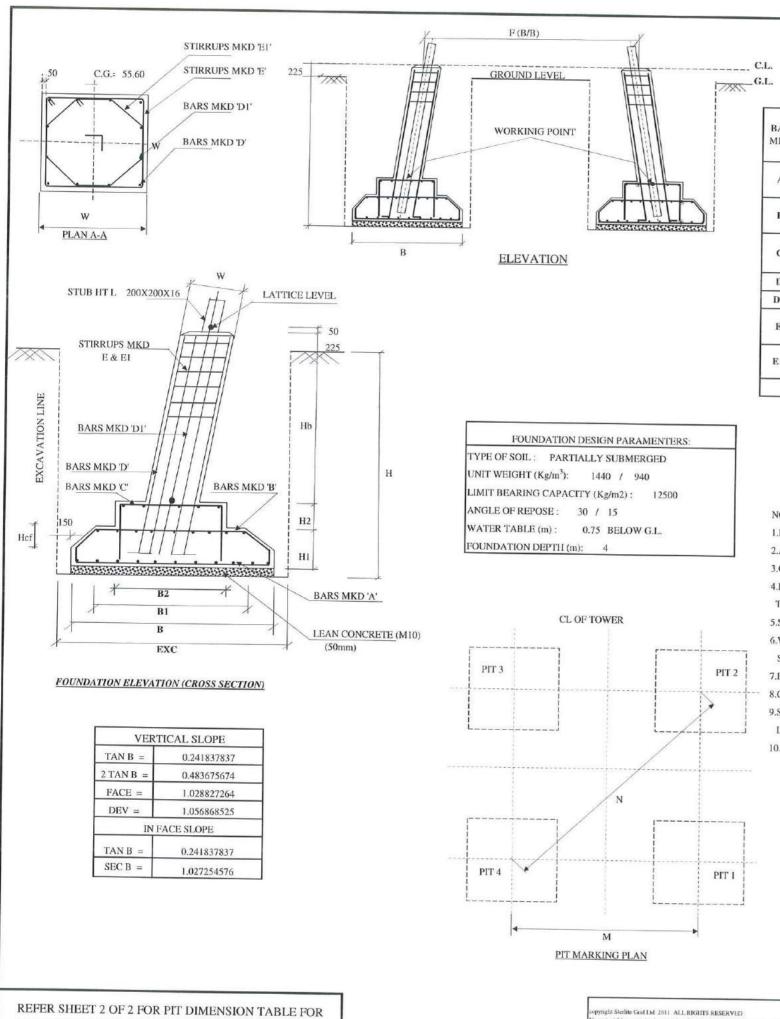
| VE        | RTICAL SLOPE |
|-----------|--------------|
| TAN B =   | 0.241965602  |
| 2 TAN B = | 0.483931204  |
| FACE =    | 1.028857304  |
| DEV =     | 1.05692701   |
| IN        | FACE SLOPE   |
| TAN B =   | 0.241837837  |
| SEC B =   | 1.027254576  |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CC.2Y
Approved Vide Ref. Letter No. P.W.L. L. T. T.PL./
Engineering Deptt.
the above does not rejectely contracted obligations

### NOTES:

- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm<sup>2</sup>)
- 5.STUB BELOW GROUND LEVEL =

3800 mm


- 6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| REV NO | DATE     |             | DESCRIPTION                                          | DRAWN        | СНК             | API   |
|--------|----------|-------------|------------------------------------------------------|--------------|-----------------|-------|
| PRO    | JECT     | 400KV D/C X | ELDAM-NARENDRA TRANSM                                | ISSION LTD   |                 |       |
| CLI    | ENT      | STERLITE PO | WER GRID VENTURES LIMITE                             | ED           |                 |       |
| DESI   | GNER:    | STERLITE PO | WER GRID VENTURES LIMITE                             | ED .         |                 |       |
| DRWN   | RT       | 20-09-18    | EOUND ATION DE ANIMA                                 |              |                 |       |
| HKD    | AM       | 20-09-18    | FOUNDATION DRAWING<br>DDN-3/+0/+3/+6M (30-45 DEG. DE | V ANGLE A00K | YPE<br>V D/C /V | 77.15 |
| PPD    | DL.      | 20-09-18    | WET SOIL (4.0                                        | M DEPTH)     | THE (           | 271)  |
| ATE    | 20-09-18 | DRAWING NO. | GTTPL/400DC/WZ-1/DDN/F-002                           | SHEET NO.    | 2/2 R           | ev    |

repyright Series Cipit Lis. 2011. Alf. RECHIS RESCRIVED.

No print of the coppright intereds in the reportable of or the intered in my form
by any center for my purpose whoshes price vertice pressuration of the strends.

The Uniform and itself are, well increase to interprete and the scheme death of the form of the company and the held laster for the my family and by a pursuitance with a purpose many.



SETTING OF STUB FOR BODY AND LEG EXTENSIONS.

| EXC  | В    | Н    | W   | В1   | B2   | H1  | H2  | Hef | Hb   |
|------|------|------|-----|------|------|-----|-----|-----|------|
| 5930 | 5630 | 4000 | 700 | 5030 | 2000 | 400 | 300 | 300 | 3250 |

| BAR<br>MKD | BAR BENDING SKETCH            | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTH | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|------------|-------------------------------|--------------------------|---------------------|------------------------|--------|----------------|-------------------|---------------------|
| -          |                               |                          | (mm)                | (no)                   | (mm)   | ('kg/m)        | (kg)              | (kg)                |
| A          | 5530                          | PAD REINFORCEMENT        | 16                  | 62                     | 5530   | 1.58           | 540,93            | 2163.74             |
| В          | 4930<br>50 354 354 50         | PAD REINFORCEMENT        | 12                  | 68                     | 5737   | 0.89           | 346.23            | 1384.93             |
| С          | 1900<br>568 50 5 <u>0</u> 568 | PAD REINFORCEMENT        | 12                  | 28                     | 3136   | 0.89           | 77.95             | 311.79              |
| D          | 4011                          | CHIMNEY BAR              | 32                  | 4                      | 4511   | 6.31           | 113.86            | 455.46              |
| D1         | 500                           | CHIMNEY BAR              | 32                  | 8                      | 4511   | 6.31           | 227.72            | 910.90              |
| Е          | 600                           | CHIMNEY SQUARE<br>SPACER | 8                   | 14                     | 2592   | 0.39           | 14.31             | 57.27               |
| E1         | 200 283                       | CHIMNEY SQUARE<br>SPACER | 8                   | 14                     | 2123   | 0.39           | 11.72             | 46.92               |

NOTES:

1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm<sup>2</sup>)

5.STUB BELOW GROUND LEVEL = 3800

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

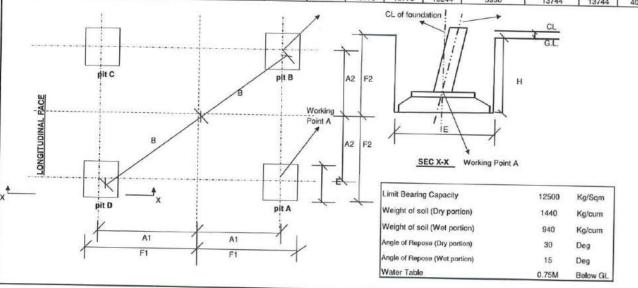
8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH

LOCATION OF TOWER.

gright Sterlite Grid Ltd. 2011 ALL RIGHTS RESERVED.

No part of this copyrighted materials and be reproduced or transmitted in any form by any means for any purpose without prior written permission of the owner. The Unauthorised use, if any, will amount to infringment and the infringer shall be held hable for heavy dameges and punishment with imprisonment.?


10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

| QUANTITIES/ STRU              | CTURE  |
|-------------------------------|--------|
| CONCRETE (M20) m <sup>3</sup> | 58.42  |
| CONCRETE (M10) m <sup>3</sup> | 6.34   |
| TOTAL CONCRETE m <sup>3</sup> | 64.76  |
| EXCAVATION m3                 | 562.64 |
| REINFORCEMENT Kg              | 5331.0 |

STERLITE POWER GRID VENTURES LTD. RELEASED FOR CONSTRUCTION CONTROLLED CC.PY Approved Vide Ref. Letter No SP4V L/G7

| REV NO | DATE  |         |              | DESCRIPTION                          | DRAWN        | CHKD    | APPI |
|--------|-------|---------|--------------|--------------------------------------|--------------|---------|------|
| PRO    | JECT  | 400KV   | D/C XELDAN   | M-NARENDRA TRANSMISSION              | LTD          |         |      |
| CLI    | ENT   | STERI   | LITE POWER ( | GRID VENTURES LIMITED                |              |         |      |
| DESI   | GNER: | STERI   | LITE POWER ( | GRID VENTURES LIMITED                |              |         |      |
| DRWN   | RT    | 20-09-  | 18           | FOUNDATION DRAWING FOR TOV           | VED WYDE     |         |      |
| CHKD   | AM    | 20-09-1 | 18 DDN       | 1-3/+0/+3/+6M (30-45 DEG. DEV. ANGLE |              | (W7-1)  |      |
| APPD   | DL    | 20-09-1 |              | PS SOIL (4.0M DEPTH)                 | , rook v Dic | (112-1) |      |
| DATE   | 20-0  | 09-18   | DRAWING NO.  | GTTPL/400DC/WZ-1/DDN/F-003           | SHEET NO.    | 1/2 017 | vI o |

| GOA                      |                                     |                               |                            | F                           | PIT DIME | ENSION          | TABLE      |                           |       | .0M DEPTH | ,           | Client:<br>SPGVL |          |
|--------------------------|-------------------------------------|-------------------------------|----------------------------|-----------------------------|----------|-----------------|------------|---------------------------|-------|-----------|-------------|------------------|----------|
| 400 KV D/C -X-N-         | TT "DDN"                            | " F " B/B of To<br>3MBE(+)-3M |                            | " F " B/B of T<br>3MBE(+)-3 |          | Stub See        | ction (HT) | Lattice<br>Level to<br>CL | cg    | sec B1    | 2*Tan B1    | sec B2           | 2*Tan B2 |
|                          | _                                   | 1271                          | 0                          | 127                         | 10       | 200X2           | 200X16     | 50                        | 55.6  | 1.028827  | 0.483675674 | 1.028827         | 0.483675 |
| Tower Detail             | Extn from<br>-3MBE(+)-<br>3MLE (mm) | cg-cg dim at<br>CL (TF)       | cg-cg dim<br>at CL<br>(LF) | Foundation<br>Base Width    | work pt  | G.L. TO<br>C.L. | A1         | A2                        | В     | E         | F1          | F2               | Н        |
| -3MBE (+) -3M LE         | 0                                   | 12623                         | 12623                      | 5630                        | 3250     | 225             | 7152       | 7152                      | 10114 | 5930      | 10117       | 10117            | 1000     |
| -3MBE (+) -1.5M LE       | 1500                                | 13348                         | 13348                      | 5630                        | 3250     | 225             | 7515       | 7515                      | 10627 | 5930      | 10480       | 747000000000     | 4000     |
| -3MBE (+) +0M LE         | 3000                                | 14074                         | 14074                      | 5630                        | 3250     | 225             | 7877       | 7877                      | 11140 | 5930      |             | 10480            | 4000     |
| -3MBE (+) +1.5M LE       | 4500                                | 14800                         | 14800                      | 5630                        | 3250     | 225             | 8240       | 8240                      | 11653 | 5930      | 10842       | 10842            | 4000     |
| -3MBE (+) +3M LE         | 6000                                | 15525                         | 15525                      | 5630                        | 3250     | 225             | 8603       | 8603                      | 12166 |           | 11205       | 11205            | 4000     |
| +0MBE (+) -3M LE         | 3000                                | 14074                         | 14074                      | 5630                        | 3250     | 225             | 7877       | 7877                      | 11140 | 5930      | 11568       | 11568            | 4000     |
| +0MBE (+) -1.5M LE       | 4500                                | 14800                         | 14800                      | 5630                        | 3250     | 225             | 8240       | 8240                      | 11653 | 5930      | 10842       | 10842            | 4000     |
| +0MBE (+) +0M LE         | 6000                                | 15525                         | 15525                      | 5630                        | 3250     | 225             | 8603       | 8603                      |       | 5930      | 11205       | 11205            | 4000     |
| +0MBE (+) +1.5M LE       | 7500                                | 16251                         | 16251                      | 5630                        | 3250     | 225             | 8966       | 8966                      | 12166 | 5930      | 11568       | 11568            | 4000     |
| +0MBE (+) +3M LE         | 9000                                | 16976                         | 16976                      | 5630                        | 3250     | 225             | 9328       |                           | 12679 | 5930      | 11931       | 11931            | 4000     |
| +3MBE (+) -3M LE         | 6000                                | 15525                         | 15525                      | 5630                        | 3250     |                 |            | 9328                      | 13192 | 5930      | 12293       | 12293            | 4000     |
| +3MBE (+) -1.5M LE       | 7500                                | 16251                         | 16251                      | 5630                        | 3250     | 225             | 8603       | 8603                      | 12166 | 5930      | 11568       | 11568            | 4000     |
| +3MBE (+) +0M LE         | 9000                                | 16976                         | 16976                      | 5630                        |          | 225             | 8966       | 8966                      | 12679 | 5930      | 11931       | 11931            | 4000     |
| -3MBE (+) +1.5M LE       | 10500                               | 17702                         | 17702                      |                             | 3250     | 225             | 9328       | 9328                      | 13192 | 5930      | 12293       | 12293            | 4000     |
| 3MBE (+) +3M LE          | 12000                               | 18427                         |                            | 5630                        | 3250     | 225             | 9691       | 9691                      | 13705 | 5930      | 12656       | 12656            | 4000     |
| 6MBE (+) -3M LE          | 9000                                |                               | 18427                      | 5630                        | 3250     | 225             | 10054      | 10054                     | 14218 | 5930      | 13019       | 13019            | 4000     |
| 6MBE (+) -1.5M LE        | 10500                               | 16976                         | 16976                      | 5630                        | 3250     | 225             | 9328       | 9328                      | 13192 | 5930      | 12293       | 12293            | 4000     |
| 6MBE (+) +0M LE          | - Table 1                           | 17702                         | 17702                      | 5630                        | 3250     | 225             | 9691       | 9691                      | 13705 | 5930      | 12656       | 12656            | 4000     |
| DESCRIPTION OF STANSSORS | 12000                               | 18427                         | 18427                      | 5630                        | 3250     | 225             | 10054      | 10054                     | 14218 | 5930      | 13019       | 13019            | 4000     |
| 6MBE (+) +1.5M LE        | 13500                               | 19153                         | 19153                      | 5630                        | 3250     | 225             | 10417      | 10417                     | 14731 | 5930      | 13382       | 13382            | 4000     |
| 6MBE (+) +3M LE          | 15000                               | 19878                         | 19878                      | 5630                        | 3250     | 225             | 10779      | 10779                     | 15244 | 5930      | 13744       | 13744            | 4000     |



- BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2, FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

| VE        | R'ITCAL SLOPE |
|-----------|---------------|
| TAN B =   | 0.241837837   |
| 2 TAN B = | 0.483675674   |
| FACE =    | 1.028827264   |
| DEV =     | 1.056868525   |
| IN        | FACE SLOPE    |
| TAN B =   | 0.241837837   |
| SEC B =   | 1.027254576   |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CC.?Y
Approved Vide Ref. Letter No. S.P.S.VL G.T. TPL
E.N. G.C. L.A. T. 2.6... Date: 20/09/16
Engineering Deptt.
the above does not relieve the contractor from their contractual obligations.

# NOTES:

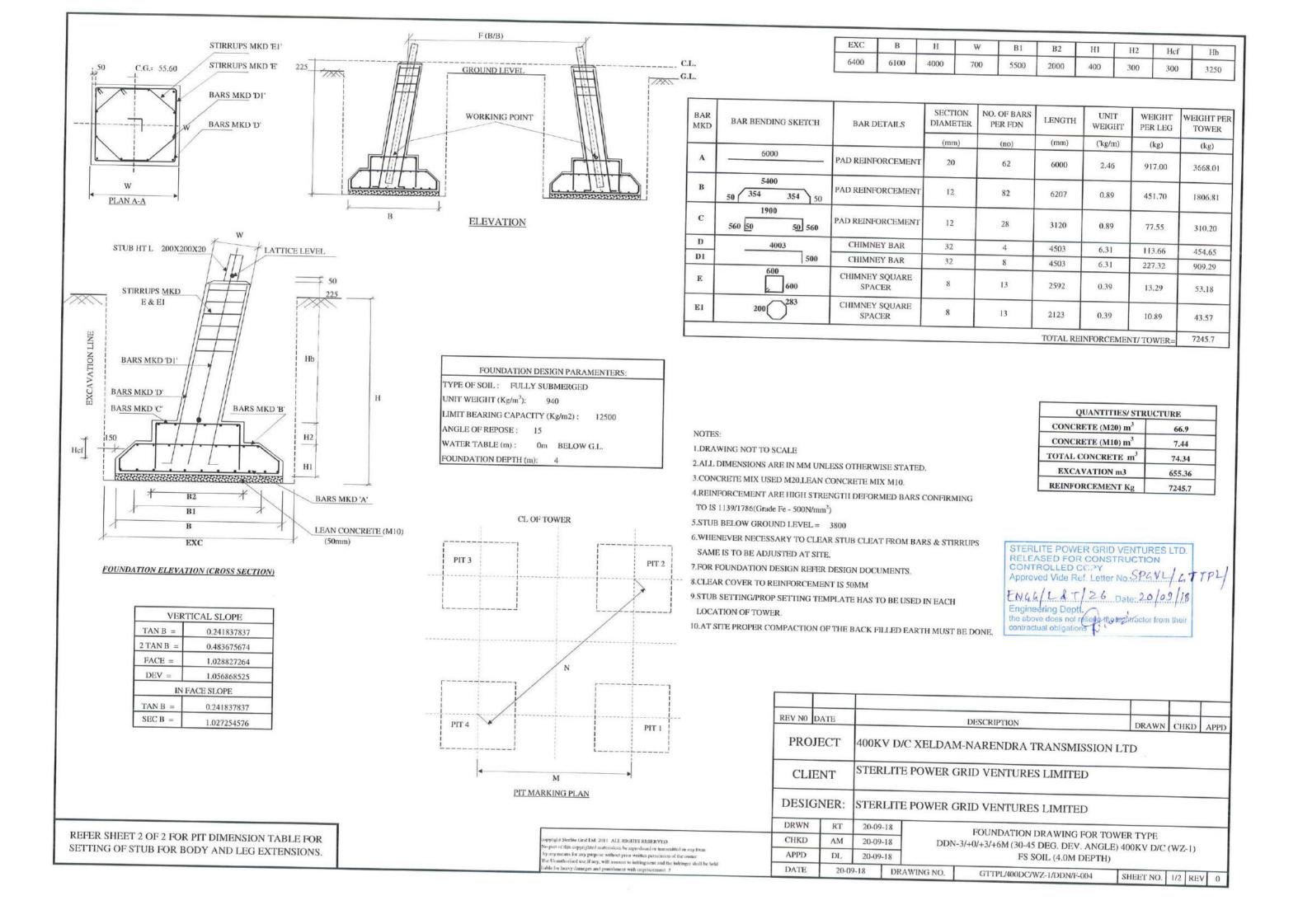
- 1.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3. CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm<sup>2</sup>)

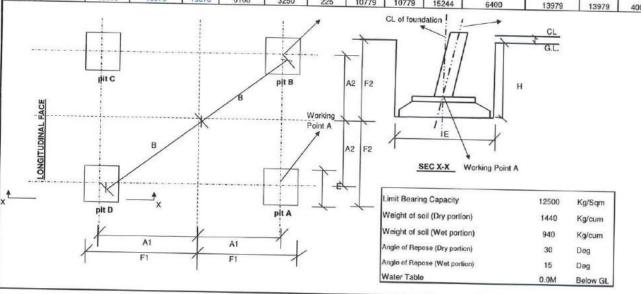
5.STUB BELOW GROUND LEVEL =

3800 mm

 $6. \mathrm{WHENEVER}$  NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS


SAME IS TO BE ADJUSTED AT SITE.

- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH


LOCATION OF TOWER.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

|        |          |             |                                                      |               | T               | _     |    |
|--------|----------|-------------|------------------------------------------------------|---------------|-----------------|-------|----|
| REV No | DATE     |             | DESCRIPTION                                          | DRAWN         | СНКІ            | ) AP  | PD |
| PRO    | JECT     | 400KV D/C X | ELDAM-NARENDRA TRANSM                                | ISSION LTD    |                 |       |    |
| CLI    | ENT      | STERLITE PO | WER GRID VENTURES LIMITE                             | ED            |                 |       |    |
| DESIG  | GNER:    | STERLITE PO | WER GRID VENTURES LIMITE                             | ED            |                 |       |    |
| DRWN   | RT       | 20-09-18    | EOUND ATTION OF A SHOW                               |               |                 |       | _  |
| CHKD   | AM       | 20-09-18    | FOUNDATION DRAWING<br>DDN-3/+0/+3/+6M (30-45 DEG, DE | G FOR TOWER T | YPE<br>V D/C (V | 77.11 |    |
| APPD   | DL.      | 20-09-18    | PS SOIL (4.0M                                        | 1 DEPTH)      | , DIC (V        | 271)  |    |
| DATE   | 20-09-18 | DRAWING NO. | GTTPL/400DC/WZ-1/DDN/F-003                           | SHEET NO.     | 2/2 R           | ev    | 0  |



| Project<br>GOA     |                                     | 100 1(7)                      | DIO A-N                    | (VVZ-1) I                   | PIT DIME  | (3U-45<br>ENSION | TARI E       | EV.) SO                   | IL - FS (4   | .0M DEPTH | 1)          | Client:  |          |
|--------------------|-------------------------------------|-------------------------------|----------------------------|-----------------------------|-----------|------------------|--------------|---------------------------|--------------|-----------|-------------|----------|----------|
|                    |                                     |                               |                            |                             | 5         | I                | IADLE        |                           |              |           |             | SPGVL    | 6        |
| 400 KV D/C -X-N-   | TT "DDN"                            | " F * B/B of To<br>3MBE(+)-3M |                            | " F " B/B of T<br>3MBE(+)-3 |           | Stub Se          | ection (HT)  | Lattice<br>Level to<br>CL | cg           | sec B1    | 2*Tan B1    | sec B2   | 2*Tan B  |
|                    |                                     | 1271                          | 0                          | 127                         | 10        | 200X             | 200X16       | 50                        | 55.6         | 1.028827  | 0.483675674 | 1.028827 | 0.483675 |
| Tower Detail       | Extn from<br>-3MBE(+)-<br>3MLE (mm) | cg-cg dim at<br>CL (TF)       | cg-cg dim<br>at CL<br>(LF) | Foundation<br>Base Width    | work pt   | G.L. TO<br>C.L.  | A1           | A2                        | В            | E         | F1          | F2       | H        |
| -3MBE (+) -3M LE   | 0                                   | 12623                         | 12623                      | 6100                        | 3250      | 225              | 7152         | 7152                      | 10114        | 6400      | 10352       | 10050    |          |
| -3MBE (+) -1.5M LE | 1500                                | 13348                         | 13348                      | 6100                        | 3250      | 225              | 7515         | 7515                      | 10627        | 6400      | 0.000       | 10352    | 4000     |
| -3MBE (+) +0M LE   | 3000                                | 14074                         | 14074                      | 6100                        | 3250      | 225              | 7877         | 7877                      | 11140        | ENV-310   | 10715       | 10715    | 4000     |
| -3MBE (+) +1.5M LE | 4500                                | 14800                         | 14800                      | 6100                        | 3250      | 225              | 8240         | 8240                      | 11653        | 6400      | 11077       | 11077    | 4000     |
| -3MBE (+) +3M LE   | 6000                                | 15525                         | 15525                      | 6100                        | 3250      | 225              | 8603         | 8603                      | 120.30.00.00 |           | 11440       | 11440    | 4000     |
| +0MBE (+) -3M LE   | 3000                                | 14074                         | 14074                      | 6100                        | 3250      | 225              | 7877         | 7877                      | 12166        | 6400      | 11803       | 11803    | 4000     |
| +0MBE (+) -1.5M LE | 4500                                | 14800                         | 14800                      | 6100                        | 3250      | 225              | 8240         | 8240                      |              | 6400      | 11077       | 11077    | 4000     |
| +0MBE (+) +0M LE   | 6000                                | 15525                         | 15525                      | 6100                        | 3250      | 225              | 8603         | 8603                      | 11653        | 6400      | 11440       | 11440    | 4000     |
| +0MBE (+) +1.5M LE | 7500                                | 16251                         | 16251                      | 6100                        | 3250      | 225              | Sign and the | 20000000                  | 12166        | 6400      | 11803       | 11803    | 4000     |
| +0MBE (+) +3M LE   | 9000                                | 16976                         | 16976                      | 6100                        | 3250      | 1000000          | 8966         | 8966                      | 12679        | 6400      | 12166       | 12166    | 4000     |
| -3MBE (+) -3M LE   | 6000                                | 15525                         | 15525                      | 6100                        | Service - | 225              | 9328         | 9328                      | 13192        | 6400      | 12528       | 12528    | 4000     |
| -3MBE (+) -1.5M LE | 7500                                | 16251                         | 16251                      | 6100                        | 3250      | 225              | 8603         | 8603                      | 12166        | 6400      | 11803       | 11803    | 4000     |
| 3MBE (+) +0M LE    | 9000                                | 16976                         |                            |                             | 3250      | 225              | 8966         | 8966                      | 12679        | 6400      | 12166       | 12166    | 4000     |
| -3MBE (+) +1.5M LE | 10500                               | 17702                         | 16976                      | 6100                        | 3250      | 225              | 9328         | 9328                      | 13192        | 6400      | 12528       | 12528    | 4000     |
| 3MBE (+) +3M LE    | 12000                               |                               | 17702                      | 6100                        | 3250      | 225              | 9691         | 9691                      | 13705        | 6400      | 12891       | 12891    | 4000     |
| 6MBE (+) -3M LE    |                                     | 18427                         | 18427                      | 6100                        | 3250      | 225              | 10054        | 10054                     | 14218        | 6400      | 13254       | 13254    | 4000     |
| 6MBE (+) -1.5M LE  | 9000                                | 16976                         | 16976                      | 6100                        | 3250      | 225              | 9328         | 9328                      | 13192        | 6400      | 12528       | 12528    | 4000     |
|                    | 10500                               | 17702                         | 17702                      | 6100                        | 3250      | 225              | 9691         | 9691                      | 13705        | 6400      | 12891       | 12891    | 4000     |
| 6MBE (+) +0M LE    | 12000                               | 18427                         | 18427                      | 6100                        | 3250      | 225              | 10054        | 10054                     | 14218        | 6400      | 13254       | 13254    | 4000     |
| 6MBE (+) +1.5M LE  | 13500                               | 19153                         | 19153                      | 6100                        | 3250      | 225              | 10417        | 10417                     | 14731        | 6400      | 13617       | 13617    | 4000     |
| 6MBE (+) +3M LE    | 15000                               | 19878                         | 19878                      | 6100                        | 3250      | 225              | 10779        | 10779                     | 15244        | 6400      | 13979       | 13979    | 4000     |



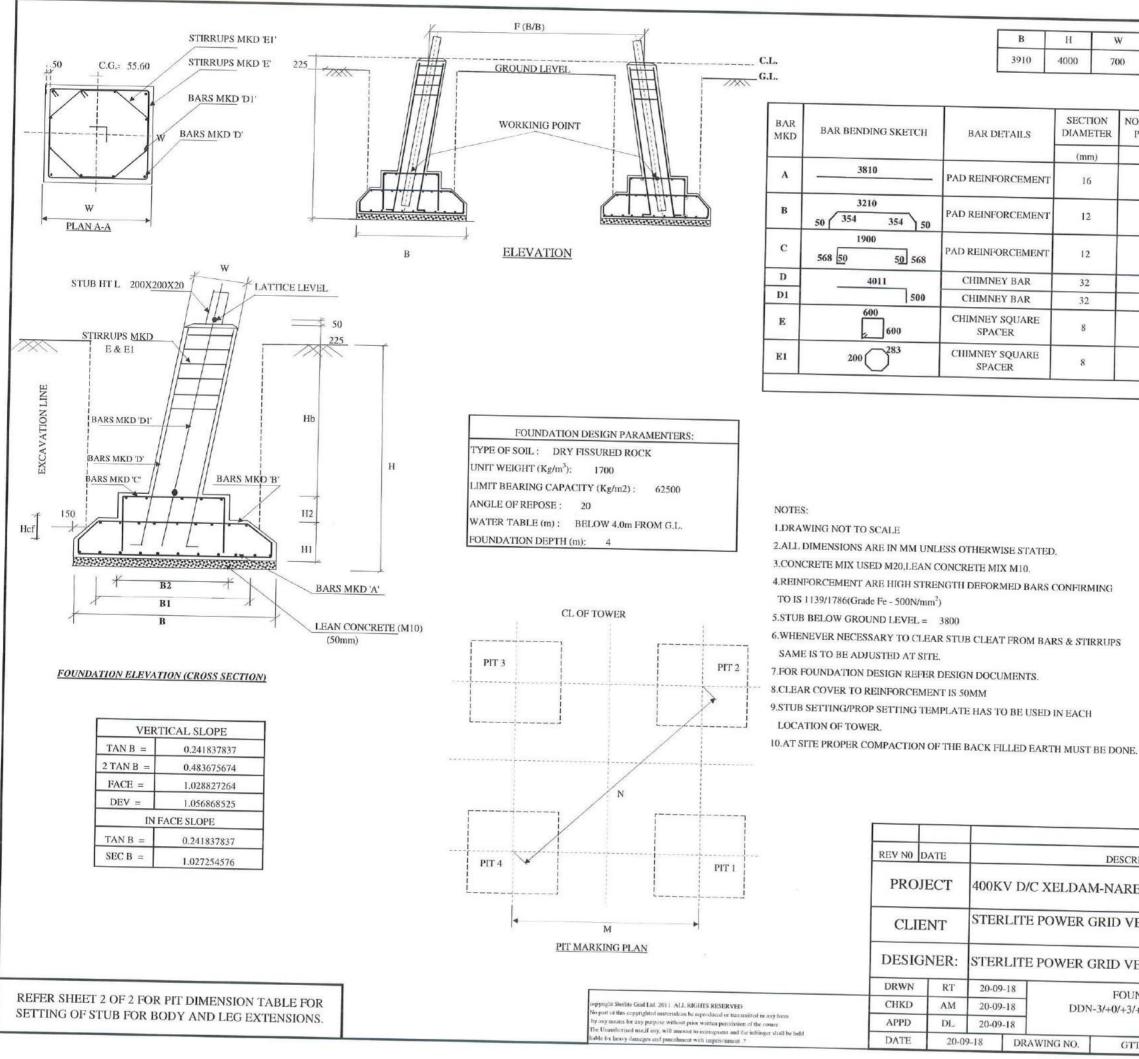
- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

| VEN       | TICAL SLOPE |
|-----------|-------------|
| TAN B =   | 0.241837837 |
| 2 TAN B = | 0.483675674 |
| FACE =    | 1.028827264 |
| DEV =     | 1.056868525 |
| IN        | FACE SLOPE  |
| TAN B =   | 0.241837837 |
| SEC B =   | 1.027254576 |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CC.PY
Approved Vide Ref. Letter No. SPGVL/GT/PL/
ENGLED CD.PY
Approved Vide Ref. Letter No. SPGVL/GT/PL/
ENGLED CO. Date: 20/09/18
Engineering Deptt.
The above does not refleve the confractor from their contractual obligations

#### NOTES:

- I.DRAWING NOT TO SCALE
- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.
- 4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm2)
- 5.STUB BELOW GROUND LEVEL =


3800 mm

- 6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH
- LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

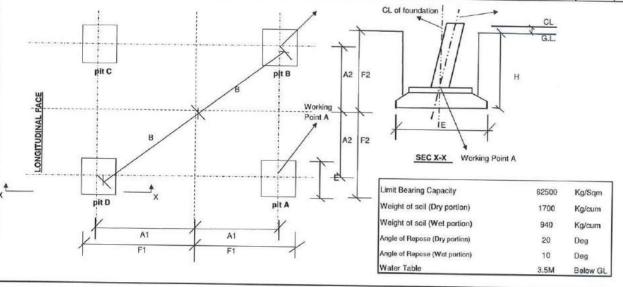
|                           |       |             |                                                                                               |            | T     |      | Т    |  |  |
|---------------------------|-------|-------------|-----------------------------------------------------------------------------------------------|------------|-------|------|------|--|--|
| REV NO                    | DATE  |             | DESCRIPTION                                                                                   | DRAWN      | C     | HKD  | APPE |  |  |
| PRO                       | JECT  | 400KV D/C X | ELDAM-NARENDRA TRANSM                                                                         | ISSION LTD |       |      |      |  |  |
| CLI                       | ENT   | STERLITE PO | WER GRID VENTURES LIMITE                                                                      | ED         |       |      |      |  |  |
| DESIG                     | GNER: | STERLITE PO | WER GRID VENTURES LIMITE                                                                      | ED         |       |      |      |  |  |
| DRWN                      | RT    | 20-09-18    | EQUADATION DO AND                                                                             |            |       |      |      |  |  |
| HKD AM 20-09-18           |       | 20-09-18    | FOUNDATION DRAWING FOR TOWER TYPE<br>DDN-3/+(9+3/+6M (30-45 DEG, DEV, ANGLE) 400KV D/C (WZ-1) |            |       |      |      |  |  |
| PPD                       | DL    | 20-09-18    | FS SOIL (4.0M                                                                                 | DEPTH)     | V D/C | (WZ- | 1)   |  |  |
| DATE 20-09-18 DRAWING NO. |       | DRAWING NO  | GTTPL/400DC/WZ-1/DDN/F-004                                                                    | SHEET NO.  | 2/2   |      |      |  |  |

responds Section Cont. Let. 2011. ALL REGILES RESIZEVED.

No parts data captroplied states than be expectated out transment in any forms
by my mains for any propose without prove versus questions of the remois
That Constitueed cost along with mounts to infragment and the infrage while behalf
below to be very distingue, not promisents with approximation of the propose content.



| В    | Н    | W   | B1   | B2   | HI  | H2  | Hef | Hb   |
|------|------|-----|------|------|-----|-----|-----|------|
| 3910 | 4000 | 700 | 3310 | 2000 | 400 | 300 | 300 | 3250 |


| BAR<br>MKD    | BAR BENDING SKETCH            | BAR DETAILS              | SECTION<br>DIAMETER | NO. OF BARS<br>PER FDN | LENGTH    | UNIT<br>WEIGHT | WEIGHT<br>PER LEG | WEIGHT PER<br>TOWER |
|---------------|-------------------------------|--------------------------|---------------------|------------------------|-----------|----------------|-------------------|---------------------|
| $\rightarrow$ | 1000 C                        |                          | (mm)                | (no)                   | (mm)      | ('kg/m)        | (kg)              | (kg)                |
| A             | 3810                          | PAD REINFORCEMENT        | 16                  | 42                     | 3810      | 1.58           | 252.50            | 1009.99             |
| В             | 3210<br>50 354 354 50         | PAD REINFORCEMENT        | 12                  | 28                     | 4017      | 0.89           | 99.86             | 399,44              |
| С             | 1900<br>568 50 5 <u>0</u> 568 | PAD REINFORCEMENT        | 12                  | 28                     | 3136      | 0.89           | 77.95             | 311.79              |
| D             | 4011                          | CHIMNEY BAR              | 32                  | 4                      | 4511      | 6.31           | 112.06            | 155.15              |
| D1            | 500                           | CHIMNEY BAR              | 32                  | 8                      | 4511      |                | 113.86            | 455.46              |
| E             | 600                           | CHIMNEY SQUARE<br>SPACER | 8                   | 14                     | 2592      | 0.39           | 227.72<br>14.31   | 910.90<br>57.27     |
| EI            | 200 283                       | CHIMNEY SQUARE<br>SPACER | 8                   | 14                     | 2123      | 0.39           | 11.72             | 46.90               |
|               |                               |                          |                     |                        | TOTAL REI | NFORCEMEN      | T/ TOWER=         | 3191.7              |

| QUANTITIES/STRU               | CTURE  |
|-------------------------------|--------|
| CONCRETE (M20) m <sup>3</sup> | 33.4   |
| CONCRETE (M10) m <sup>3</sup> | 3.06   |
| TOTAL CONCRETE m <sup>3</sup> | 36.46  |
| EXCAVATION m3                 | 210.52 |
| REINFORCEMENT Kg              | 3191.7 |

STERLITE POWER GRID VENTURES LTD. RELEASED FOR CONSTRUCTION CONTROLLED CCPY Approved Vide Ref. Letter No SPGVL/GTTPL Engineering Deptt. the above does not relieve the contractor from their contractual obligations

| REV NO | DATE  |        |              | DESCRIPTION                                                    | DRAWN     | CHKD      | API |
|--------|-------|--------|--------------|----------------------------------------------------------------|-----------|-----------|-----|
| PRO    | JECT  | 400KV  | V D/C XELDAI | M-NARENDRA TRANSMISSIO                                         | N LTD     |           |     |
| CLI    | ENT   | STER   | LITE POWER   | GRID VENTURES LIMITED                                          |           |           |     |
| DESIG  | GNER: | STERI  | LITE POWER ( | GRID VENTURES LIMITED                                          |           |           |     |
| DRWN   | RT    | 20-09- | 18           | EQUAD ATION DD I WILLS                                         |           |           | _   |
| CHKD   | AM    | 20-09- | 18 DDN       | FOUNDATION DRAWING FOR T<br>N-3/+0/+3/+6M (30-45 DEG. DEV. ANG | OWER TYPE | (11/27 1) |     |
| APPD   | DL    | 20-09- | 18           | DFR SOIL (4.0M DEPT)                                           | H)        | (WZ-1)    |     |
| DATE   | 20-0  | 9-18   | DRAWING NO.  | GTTPL/400DC/WZ-1/DDN/F-005                                     | SHEET NO. | 10 2      |     |

| Project<br>GOA     |                                     | 400 KV D                      | /C X-N                     | (WZ-1) TT<br>F              | "DDN"   | (30-45 DEG. DEV.) SOIL - DFR (4.0M DEPTH)<br>ENSION TABLE |            |                           |       |              | H)            | Client:<br>SPGVL |          |  |
|--------------------|-------------------------------------|-------------------------------|----------------------------|-----------------------------|---------|-----------------------------------------------------------|------------|---------------------------|-------|--------------|---------------|------------------|----------|--|
| 400 KV D/C -X-N-   | TT "DDN"                            | " F " B/B of To<br>3MBE(+)-3M |                            | * F * B/B of T<br>3MBE(+)-3 |         | Stub Se                                                   | ction (HT) | Lattice<br>Level to<br>CL | cg    | sec B1       | 2*Tan B1      | sec B2           | 2*Tan B2 |  |
|                    |                                     | 1271                          | 0                          | 127                         | 10      | 200X2                                                     | 200X16     | 50                        | 55.6  | 1.028827     | 0.483675674   | 1,028827         | 0.483675 |  |
| Tower Detail       | Extn from<br>-3MBE(+)-<br>3MLE (mm) | cg-cg dim at<br>CL (TF)       | cg-cg dim<br>at CL<br>(LF) | Foundation<br>Base Width    | work pt | G.L. TO<br>C.L.                                           | A1         | A2                        | В     | E            | F1            | F2               | Н        |  |
| -3MBE (+) -3M LE   | 0                                   | 12623                         | 12623                      | 3910                        | 3250    | 225                                                       | 7152       | 7152                      | 10114 | 3910         | 9107          | 9107             | 4000     |  |
| -3MBE (+) -1.5M LE | 1500                                | 13348                         | 13348                      | 3910                        | 3250    | 225                                                       | 7515       | 7515                      | 10627 | 3910         | 9470          | 9470             | 4000     |  |
| -3MBE (+) +0M LE   | 3000                                | 14074                         | 14074                      | 3910                        | 3250    | 225                                                       | 7877       | 7877                      | 11140 | 3910         | 9832          | 9832             | 4000     |  |
| -3MBE (+) +1.5M LE | 4500                                | 14800                         | 14800                      | 3910                        | 3250    | 225                                                       | 8240       | 8240                      | 11653 | 3910         | 10195         | 10195            | 4000     |  |
| -3MBE (+) +3M LE   | 6000                                | 15525                         | 15525                      | 3910                        | 3250    | 225                                                       | 8603       | 8603                      | 12166 | 3910         | 10558         | 10558            | 4000     |  |
| +0MBE (+) -3M LE   | 3000                                | 14074                         | 14074                      | 3910                        | 3250    | 225                                                       | 7877       | 7877                      | 11140 | 3910         | 9832          | 9832             | 4000     |  |
| +0MBE (+) -1.5M LE | 4500                                | 14800                         | 14800                      | 3910                        | 3250    | 225                                                       | 8240       | 8240                      | 11653 | 3910         | 10195         | 10195            | 4000     |  |
| +0MBE (+) +0M LE   | 6000                                | 15525                         | 15525                      | 3910                        | 3250    | 225                                                       | 8603       | 8603                      | 12166 | 3910         | 10558         | 10558            | 4000     |  |
| +0MBE (+) +1.5M LE | 7500                                | 16251                         | 16251                      | 3910                        | 3250    | 225                                                       | 8966       | 8966                      | 12679 | 3910         | 10921         | 10921            | 4000     |  |
| +0MBE (+) +3M LE   | 9000                                | 16976                         | 16976                      | 3910                        | 3250    | 225                                                       | 9328       | 9328                      | 13192 | 3910         | 11283         | 11283            |          |  |
| +3MBE (+) -3M LE   | 6000                                | 15525                         | 15525                      | 3910                        | 3250    | 225                                                       | 8603       | 8603                      | 12166 | 3910         | 10558         | 10558            | 4000     |  |
| +3MBE (+) -1.5M LE | 7500                                | 16251                         | 16251                      | 3910                        | 3250    | 225                                                       | 8966       | 8966                      | 12679 | 3910         | 10921         | 10921            | 4000     |  |
| +3MBE (+) +0M LE   | 9000                                | 16976                         | 16976                      | 3910                        | 3250    | 225                                                       | 9328       | 9328                      | 13192 | 3910         | 11283         |                  | 4000     |  |
| 3MBE (+) +1.5M LE  | 10500                               | 17702                         | 17702                      | 3910                        | 3250    | 225                                                       | 9691       | 9691                      | 13705 | 3910         | 11646         | 11283            | 4000     |  |
| 3MBE (+) +3M LE    | 12000                               | 18427                         | 18427                      | 3910                        | 3250    | 225                                                       | 10054      | 10054                     | 14218 | 3910         | 12009         | 11646            | 4000     |  |
| 6MBE (+) -3M LE    | 9000                                | 16976                         | 16976                      | 3910                        | 3250    | 225                                                       | 9328       | 9328                      | 13192 | 3910         | 11283         | 200000000        | 4000     |  |
| 6MBE (+) -1.5M LE  | 10500                               | 17702                         | 17702                      | 3910                        | 3250    | 225                                                       | 9691       | 9691                      | 13705 | 3910         |               | 11283            | 4000     |  |
| 6MBE (+) +0M LE    | 12000                               | 18427                         | 18427                      | 3910                        | 3250    | 225                                                       | 10054      | 10054                     | 14218 | 3910         | 11646         | 11646            | 4000     |  |
| 6MBE (+) +1.5M LE  | 13500                               | 19153                         | 19153                      | 3910                        | 3250    | 225                                                       | 10417      | 10417                     | 14731 | 3910         | 000000000     | 12009            | 4000     |  |
| 6MBE (+) +3M LE    | 15000                               | 19878                         | 19878                      | 3910                        | 3250    |                                                           |            |                           |       | V Jetscheren | 12372         | 12372            | 4000     |  |
| 6MBE (+) +3M LE    | 15000                               | 19878                         | 19878                      | 3910                        |         | 225                                                       | 10779      | 10779<br>CL of found      | 15244 | 3910         | 12734<br>. CL | 127              | -        |  |



- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY.
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

| VER       | CTICAL SLOPE |
|-----------|--------------|
| TAN B =   | 0.241837837  |
| 2 TAN B = | 0.483675674  |
| FACE =    | 1.028827264  |
| DEV =     | 1.056868525  |
| IN        | FACE SLOPE   |
| TAN B =   | 0.241837837  |
| SEC B =   | 1.027254576  |

STERLITE POWER GRID VENTURES LTD.
RELEASED FOR CONSTRUCTION
CONTROLLED CC.PY
Approved Vide Ref. Letter No.S.P.G.V.L.G.T.T.P.L./
ENGALLET 26. Date: 20/09/18
Engineering Deptt.
the above does not relevating contractor from their contractual obligations.

#### NOTES:

1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm<sup>2</sup>)

5.STUB BELOW GROUND LEVEL =

3800 mm

6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH

LOCATION OF TOWER.

coppings Stodies Craffin 2011 ALI AUGITS RESCRYED

No pair of this copyrighted currants robe representation to transmissible in any forces
by any assess for any purpose surpose processing regions on the notione
The Universities and only well assess to infragence and the afringer shall be held

Like for the very distances and prominance with approximation.

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

|        |          |             |                                                        | T   |
|--------|----------|-------------|--------------------------------------------------------|-----|
| REV NO | DATE     |             | DESCRIPTION DRAWN CHKD                                 | APP |
| PRO    | JECT     | 400KV D/C X | ELDAM-NARENDRA TRANSMISSION LTD                        |     |
| CLIENT |          | STERLITE PO | OWER GRID VENTURES LIMITED                             |     |
| DESIG  | GNER:    | STERLITE PO | OWER GRID VENTURES LIMITED                             |     |
| DRWN   | RT       | 20-09-18    | FOUNDATION DRAWING FOR TOWER TYPE                      |     |
| CHKD   | AM       | 20-09-18    | DDN-3/+0/+3/+6M (30-45 DEG. DEV. ANGLE) 400KV D/C (WZ- | 1)  |
| APPD   | DL       | 20-09-18    | DFR SOIL (4.0M DEPTH)                                  | 1,  |
| DATE   | 20-09-18 | DRAWING NO. | GTTPL/400DC/WZ-1/DDN/F-005 SHEET NO 2/2 PEV            |     |

# ERM has over 160 offices across the following countries and territories worldwide

New Zealand Argentina Australia Panama Belgium Peru Brazil Poland Canada Portugal China Puerto Rico Colombia Romania France Russia Germany Singapore South Africa Hong Kong South Korea Hungary India Spain Indonesia Sweden Taiwan Ireland Italy Thailand Japan UAE Kazakhstan UK Kenya US Malaysia Vietnam

Mexico

The Netherlands

# **ERM India Private Limited**

3rd Floor, Building.10B,

**DLF Cyber City** 

Gurgaon, NCR - 122002

www.erm.com

