

M/s. Goa Tamnar Transmission Project Limited (GTTPL) BIA and BMP for 400 kV Transmission Line Corridor Passing through Protected area of Goa State

Final Report

7 March 2019

Project No.: 0476969

www.erm.com

The business of sustainability

Document details	The details entered below are automatically shown on the cover and the main page footer. PLEASE NOTE: This table must NOT be removed from this document.
Document title	BIA and BMP for 400 kV Transmission Line Corridor Passing through Protected areas of Goa State
Document subtitle	Final Report
Project No.	0476969
Date	7 March 2019
Version	2.0
Author	Rahul Srivastava, Saumabha Bhattacharya, Omesh Bajpai, Suhas Fuladi
Client Name	M/s. Goa Tamnar Transmission Project Limited (GTTPL)

Document history

				ERM approva	l to issue	
Version	Revision	Author	Reviewed by	Name	Date	Comments
Draft	01	Rahul Srivastava, Saumabha Bhattacharya, Omesh Bajpai and Suhas Fuladi	Arun Venkataraman	Arun Venkataram an	11.01.2019	Text
Final	02	Rahul Srivastava, Saumabha Bhattacharya, Omesh Bajpai and Suhas Fuladi		Arun Venkataram an	11.03.2018	Text

Signature Page

08 March 2019

BIA and BMP for 400 kV Transmission Line Corridor Passing through Protected area of Goa State

Final Report

Author: Rahul Srivastava, Saumabha Bhattacharya, Omesh Bajpai and Suhas Fuladi

fill the

Name Rahul Srivastava Job title Senior Consulant

Name Arun Venkataraman Job title Technical Director

ERM India Private Limited

Building 10, 4th Floor, Tower A, DLF Cyber City, Gurgaon – 122002 India

© Copyright 2019 by ERM Worldwide Group Ltd and / or its affiliates ("ERM"). All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM

CONTENTS

1.	INTRO	DUCTION	۱	. 1
	1.1 1.2	-	ackground	
	1.2	-	Istification	
	1.4	-	iyout	
2.	PROJE	ECT DESC	CRIPTION	. 6
	2.1		sion Line Route in Goa State Protected Areas	
	2.2		tails	
	2.3	Conducto	r Details	10
	2.4	•	eria for Transmission Line	
	2.5	Construct	ion Activities and Methods	11
		2.5.1	Installation of 400 kV steel tower foundations	
		2.5.2	Erection of Tower Body	
		2.5.3	Stringing of Conductor	
	2.6		ion Period	
	2.7 2.8		ent and Maintenance	
	-			
3.	ECOLO	DGICAL E	BASELINE	18
	3.1	Physiogra	phic Unit	18
	3.2			
	3.3	-	y Area	
	3.4 3.5	5	ration	
	3.5 3.6	-	eam Work for Study	
	3.7		and Methodology	
		3.7.1	Approach	
		3.7.2	Methodology of Primary Data Collection	
	3.8	Floral Ass	sessment	25
		3.8.1	Vegetation Profile in Study Area	
		3.8.2	Taxonomic Status-Species Richness	
		3.8.3	Status of Growth Forms	31
		3.8.1	Status of Tree species	
		3.8.2	Status of Annuals (Herbs and Grasses species)	
		3.8.3	Status of Medicinal Plants	
		3.8.4 3.8.5	Status of Threatened Plants	
		3.8.6	Overall Species Richness	
		3.8.7	Species Diversity and Species Evenness	
		3.8.8	Overall Species list	
	3.9	Faunal As	ssessment	42
		3.9.1	Herpetofauna	42
		3.9.2	Avifauna	50
		3.9.3	Mammals	61
4.		T ASSES	SMENT	66
	4.1	Impacts o	n Biodiversity	66
	4.2		uring Construction Stage	
	4.3		uring operation Stage	
	4.4	•	sessment Criteria	
	4.5	•	sessment	
		4.5.1	Impacts during Construction Phase	
		4.5.2	Impacts during operation Phase	11

Page iv

5.	MITIC	GATION N	MEASURES	74
	5.1	INTRO	DUCTION	74
	5.2	Constru	uction Phase Mitigation Measures	74
	5.3	Mitigatio	on for Operational Phase	75
6.	BIOD	NVERSIT	Y MANAGEMENT PLAN	77
	6.1		ction	
	6.2	BIODIV	/ERSITY MANAGEMENT PLAN	77
		6.2.1	Ecological Sensitivity	77
	6.3	Cost of	f the Biodiversity Management Plan	

List of Tables

Table 1.1	Comparative Statement of Three Alternative Routes	2
Table 2.1	Transmission Line Project Components	6
Table 2.2	Coordinate Statement of required area of Wildlife Division, North Goa	9
Table 2.3	Tower Details	10
Table 2.4	Conductor Details	10
Table 2.5	Proposed Construction Period	15
Table 2.6	Employment Generation	15
Table 3.1	Ecological Survey Team	19
Table 3.2	Details of Floral Survey Quadrates	21
Table 3.3	Details of the Quadrate Surveyed and its Distribution	28
Table 3.4	Taxonomic Status of Flora along the Proposed Transmission line route	31
Table 3.5	Status of Floral Growth forms along the Proposed Transmission Line Route	31
Table 3.6	Important Value Index (IVI) and Rank Order of Tree Species and lianas in Study Ar 32	ea
Table 3.7	Important Value Index (IVI) and Rank Order of Herbs and Grass Species	34
Table 3.8	Medicinal Plants recorded from Transmission Line Route	
Table 3.9	Threatened Species	
Table 3.10	Endemic Species	
Table 3.11	Overall Species Richness of Flora along the transmission line route	
Table 3.12	Species Diversity and Species Evenness	
Table 3.13	Overall List of Flora (Botanical name, Family, Local name, Locality, Local name,	
	Growth form, Vegetation/Forest type) along the Proposed Transmission line	40
Table 3.14	Transects for Faunal Survey	
Table 3.15	Amphibians reported & recorded from the Transmission Line Route	
Table 3.16	Reptiles recorded from the Study Area	
Table 3.17	Threatened Species	
Table 3.18	Details of Species Recorded from the Study Area	
Table 3.19	Potential Species List likely to be observed from the Study Area	
Table 3.20	Endemic Avian Species of the Study Area	
Table 3.21	Details of Sightings in Transmission Line Corridor	
Table 3.22	Taxonomic Status of Mammals	62
Table 3.23	Checklist of Mammals in Bhagwan Mahaveer Wildlife Sanctuary, Goa	63
Table 4.1	Habitat Impact Assessment Criteria	67
Table 4.2	Species impact assessment criteria	68
Table 4.3	Context of various impacts during construction phase	69
Table 4.4	Impact significance of Overall Construction Activities	71
Table 4.5	Context of various impacts during operation phase	71
Table 4.6	Impact significance of Operational Activities	73
Table 5.1	Impact Summary	74
Table 6.1	Threatened Species	77

Table 6.2	Biodiversity Management Plan	79
Table 6.3	Cost of Implementation of BMP	83

List of Figures

Figure 1.1	Alternate Routes for Xeldem Narendra Line within Goa State	4
Figure 2.1	Layout Map of Transmission Line rote in Protected Area of Goa State (Section 1)	7
Figure 2.2	Layout Map of Transmission Line rote in Protected Area of Goa State (Section 2)	8
Figure 2.3	Photograph setting template being prepared for final concreting	. 12
Figure 2.4	Model visual: Derrick pole at tower base	
Figure 2.5	Puller – Tensioner machine	. 14
Figure 3.1	Ecological Baseline Field Surveys	24
Figure 3.2	Vegetation Types in the Study Area	. 26
Figure 3.3	Floral and Faunal Survey locations (Section 1)	. 29
Figure 3.4	Floral and Faunal Survey locations (Section 2)	. 30
Figure 3.5	Medicinal Plants recorded from Transmission Line Route	. 35
Figure 3.6	Threatened Species	. 36
Figure 3.7	Endemic Species	. 37
Figure 3.8	Amphibians recoded from the Study Area	45
Figure 3.9	Reptiles recoded from the Study Area	
Figure 3.10	Avifauna Recorded During Survey	. 52
Figure 3.11	Mammal Species recorded in Transmission Line Corridor	
Figure 5.1	Mitigation Structures for Transmission Line	.76

Acronyms and Abbreviations

Name	Description
ATV	All-Terrain Vehicle
BIA	Biodiversity Impact Assessment
BMP	Biodiversity Management Plan
BMWS	Bhagwan Mahaveer Wildlife Sanctuary
CITES	Convention on International Trade in Endangered Species of Wild Fauna and Flora
CR	Critically Endangered
DD	Data Deficient
EHV	Extra High Voltage
EN	Endangered
EPMs	Environmental Protection Measures
EPS	Electric Power Survey
ERM	ERM India Private Limited
Gol	Government of India
GTTPL	Goa Tamnar Transmission Projects Limited
IUCN	International Union for Conservation of Nature
IVI	Importance value Index
KPTCL	Karnataka Power Transmission Corporation Limited
LC	Least Concern
LILO	Line In Line Out
NA	Not assessed
NGO	Non-Governmental Organisation
NT	Near Threatened
PCCF (WL)	Principal Chief Conservator of Forests (Wieldlife)
PGCIL	Power Grid Corporation of India Limited
ROW	Right of Way
SPV	Special Purpose Vehicle
VU	Vulnerable
WLS	Wildlife sanctuary

CONTENTS

1. INTRODUCTION

Sterlite Powergrid Ventures Limited by its subsidiary company Goa Tamnar Transmission Projects Limited (GTTPL) is developing the project, "Additional 400 kV feed to Goa and Additional System for Power Evacuation from Generation Projects pooled at Raigarh (Tamnar) Pool" which is awarded to them through tariff based competitive bidding process.

The transmission line proposed route is passing through the Bhagwan Mahaveer Wildlife Sanctuary which requires wildlife clearance from the State Wildlife Board of Goa and National Wildlife Board at Ministry of Environment, Forest and Climate Change, Government of India.

GTTPL has entrusted ERM India Private Limited (ERM) to undertake a Biodiversity Impact Assessment study and prepare a biodiversity management plan for the project. The current study assess the biological impacts (BIA) of the transmission line project of the flora and fauna of the wildlife sanctuary and presents the biodiversity management plans (BMP) to be implemented during the construction and operation phase of the project.

1.1 Project Background

The peak demand met by Goa during the year 2014-15 was 489 MW and as per the 18th EPS, the peak demand of 815 MW was expected by the end of 12th Plan (2016-17) and 1192 MW by the end of 13th plan (2021-22).

At present demand of Goa is mainly catered through Mapusa 3x315 MVA, 400/220 kV substation, which gets feed from Kolhapur 400 kV substation through a 400 kV D/c line. The Goa system is also connected with Maharashtra and Karnataka through 220 kV lines.

To supply the projected power requirement of Goa with reliability, an additional 400 kV in feed to Goa was required. The matter was discussed in the 38th meeting of Standing Committee on Power System Planning in Western Region, held on 17th July 2015 at New Delhi wherein the provision for a new 400kV S/s in Goa at Xeldem along with its interconnections with the Inter State Transmission System was agreed. Accordingly, following transmission system was discussed and approved in the 39th & 40th SCM of WR held on 30th November 2015 & 01st June 2016 respectively and 39th & 40th SCM of SR held on 28th and 29th December 2015 and 19th November 2016 respectively.

1.2 Project Brief

The project is a part of "Additional 400 kV feed to Goa and Additional system for Power Evacuation from Generation Projects Pooled at Rajgarh (Tamnar) Pool". PFC Consulting Limited (A Wholly owned subsidiary of Power Finance Corporation Limited) on behalf of Ministry of Power (Gol) entrusted Goa Tamnar Transmission Project Ltd. to construct the transmission projects in Goa, Karnataka & Chhattisgarh state for "Additional Feed of 400 kV to Goa State".

1.3 **Project Justification**

The construction of 400 kV D/C Xeldem-Mapusa is an additional feed to Goa State to meet arising power deficit through present network system. During survey of this transmission line we came to know that the line passes through several forest patches of North Goa Forest Division.

Although, this is despite trying to ensure that the transgressed forest area should be minimum & unavoidable to the extent possible. To confirm the forest area is minimum & unavoidable, three (03) possible alternate routes from generating to terminating end of the transmission line was determined and the least impacting route was selected. The route comparison of the 3 routes are given below:

The Project shall be implemented through the Special Purpose Vehicle (SPV) named Goa-Tamnar Transmission Project Limited which shall be the complete owner and operator of the project. This project is part of National Grid Development.

Transmission line projects are environmentally friendly and do not involve any disposal of solid effluents and hazardous substances in land, air and water. The constructional features of 400 kV Transmission line is such that it is not affecting the environment as it's not dividing the existing forest because of the long spans between the towers (400 Mtrs) of the transmission line follows the forest road / forest block boundary thus involving minimum tree felling and also allowing minimal impact to bird movement due to high towers. The ground clearance for lower most conductors is 8.84 Meters. The spacing between the phase conductors is (4 Mtrs) as well. A very small space is required for the construction of tower foundations (maximum 20 X 20 Mtrs). The tower foundations are under the ground (3.5 Mtrs) and a small portion of 0.50X0.50 Mtrs are elevated as plinth.

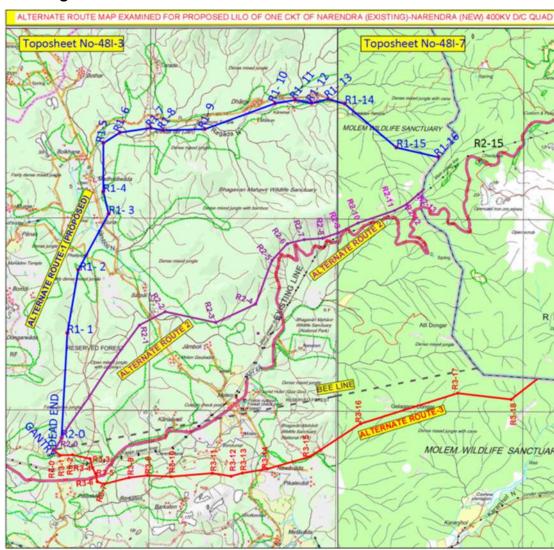
The 400 kV D/C Narendra (Karnatka) – Xeldem (Goa) Transmission Line starts from Narendra village in Dharwad District, Karnatka by tapping the existing 400 kV Narendra line of PGCIL by LILO and terminating at 400/220 kV substation at Xeldem in Goa. The line will be passing through Dharwad, Belgaum and Uttar Kannada District of Karnataka and South Goa District of Goa.

Three alternative route corridors were identified largely by maximizing linear opportunities, such as following existing roadways and power line corridors and negotiating rivers, railway and road crossings. All efforts have been made to provide a minimum no of angle points. Power line crossings have been fixed as close as possible to a right angle.

In Karnataka the total length of the proposed route is 77.631 Km. Out of this only 28.740 Km is forest land and 6.61 Km falls in Dandeli Wild Life Sanctuary and the remaining 42.281 Km is Non Forest Land. In Dandeli Wild Life Sanctuary, there is one 220 kV line and one 110 kV line of KPTCL feeding Goa. The 110 kV line is defunct from the border of Goa to Anmod village. Beyond Anmod this 110 kV line is charged and is feeding Anmod Substation so cannot be used. As per the directions of PCCF (WL) and Chief Wild Life Warden Karnataka, proposed route has been aligned such that our 400 kV transmission line will be using the defunct 110 kV corridor thus avoiding new corridor where ever possible. The comparative statatement of three alternative lines considered is provided in **Table 1.1**.

The total Bee Line Length in Karnataka is 75.645 Km. The line length of Alternate – I (Proposed Line) is 77.63 Km. Alternate – II is 79.1 Km. Alternate – III is 79.855 Km.

- Alternate Route I- The length of forest and wild life in alternate I is 35.35 Km (Forest –28.74 Km and WL 6.61 Km).
- Alternate Route II- The length of forest and wildlife in alternate II is 51.5 Km (Forest 43.40 Km and WL 8.1 Km).
- Alternate Route III- The length of forest & wildlife in alternate III is 48.96 Km (Forest 41.91 Km and WL 7.035 Km).


In view of above facts, it is evident that alternate – I involves the minimum forest and Wild Life Sanctuary land as well non-forest land.

Description	Alternate Route 1 (Proposed Route)	Alternate Route 2	Alternate Route 3
Bee Line Length	68.74Km	68.74Km	68.74Km
Line Length	77.63 Km	79.1 Km	79.85 Km
Angle Points	47	60	54

 Table 1.1
 Comparative Statement of Three Alternative Routes

Description	Alternate Route 1 (Proposed Route)	Alternate Route 2	Alternate Route 3
Forest Length	28.74 Km	43.40 Km	41.91 Km
Wildlife Length	6.61 Km	8.1 Km	7.035 Km
Total Forest & WL Length	35.35 Km	51.5 Km	48.96 Km
Forest Area (Ha)	132.205 Ha	199.64 Ha	192.79 Ha
Wildlife & NP Area	30.412 Ha	37.26 Ha	32.36 Ha
Total Forest & WL Area	162.617 Ha	236.9 Ha	225.15 Ha
Density of Forest Area	Moderate Dense	High Dense	Moderate Dense

After detailed analysis as per **Table 1.2** above, it is observed that the alternative – I has the least route length and has minimum crossings in terms of rail, road and existing power line. Keeping the above points in consideration, we propose Alternative – I to be taken as final proposed route alignment. The area falling in Goa section is presented below (Refer **Figure 1.1**).

www.erm.com Version: 2.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

1.4 Report Layout

The report is presented in following format.

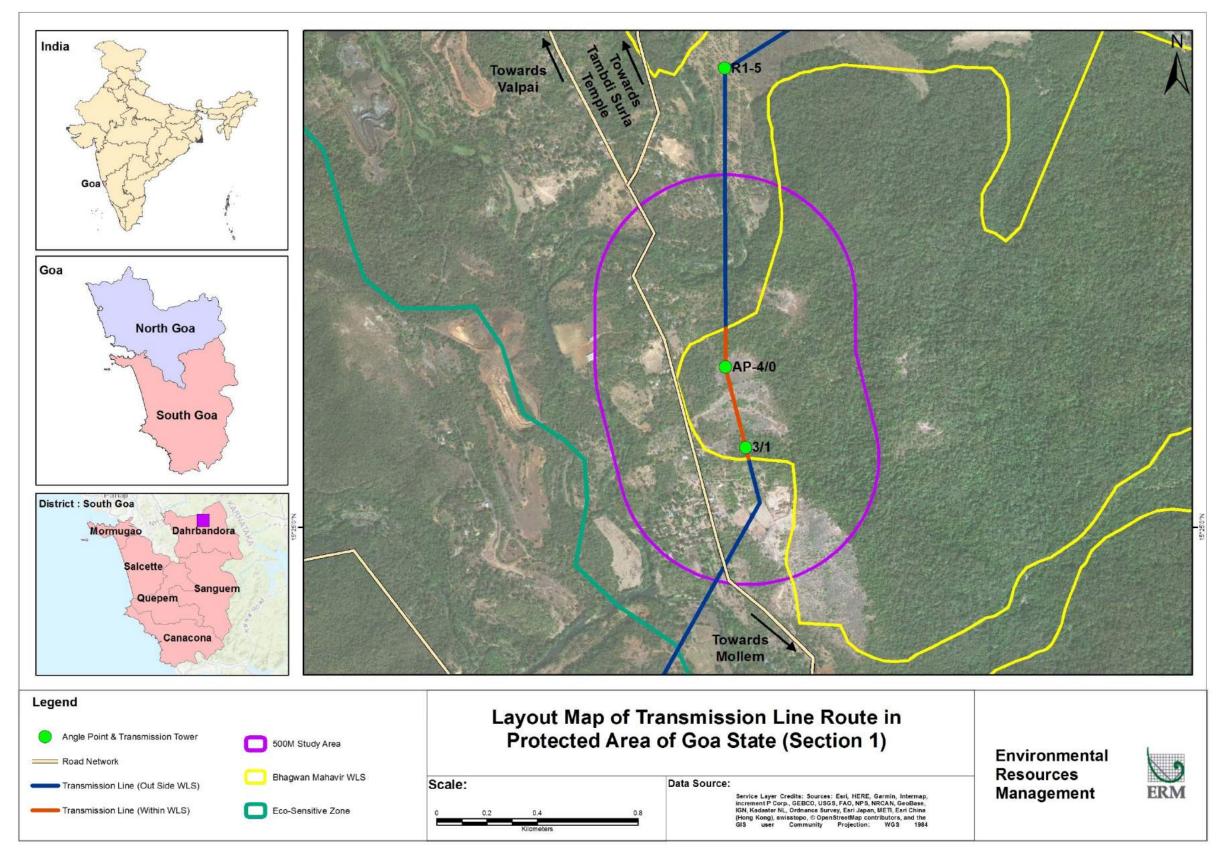
Section	Name
Chapter 1 (This Section)	Introduction
Chapter 2	Project Description
Chapter 3	Ecological Baseline
Chapter 4	Impact Assessment of Transmission line on Biodiversity
Chapter 5	Mitigation Measures
Chapter 6	Biodiversity Management Plan

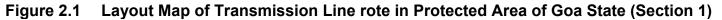
2. PROJECT DESCRIPTION

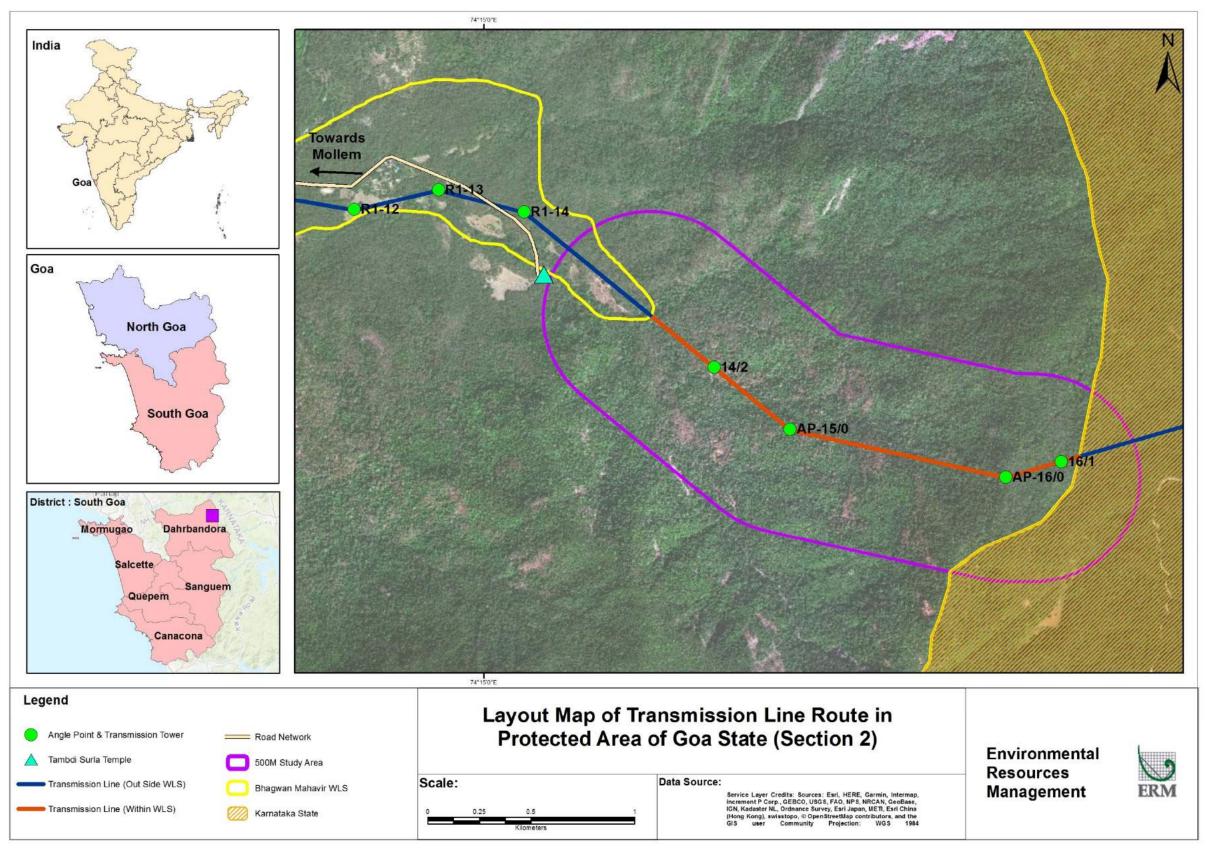
The project is a part of "Additional 400 kV feed to Goa and Additional system for Power Evacuation from Generation Projects Pooled at Rajgarh (Tamnar) Pool". PFC Consulting Limited (A Wholly owned subsidiary of Power Finance Corporation Limited) on behalf of Ministry of Power (Gol) entrusted Goa Tamnar Transmission Project Ltd. to construct the transmission projects in Goa, Karnataka & Chhattisgarh state for "Additional Feed of 400 kV to Goa State".

The project component for this transmission line project is presented in the Table 2.1 below

Sn	Transmission System for "Additional 400kV feed to Goa"
1.	LILO of one ckt. of Narendra (existing) – Narendra (New) 400kV D/c quad line at Xeldem
2.	Xeldem – Mapusa400kV D/c (quad) line
3.	 Establishment of 2x500MVA, 400/220kV substation at Xeldem 400kV ICTs : 2x500MVA, 400/220kV ICT bays: 2 nos. Line bays: 4 nos. (2 nos. for Xeldem – Mapusa (Goa State) 400kV D/c (quad) line & 2 nos. for LILO of one ckt of Narendra (existing) – Narendra (New) (Karnataka State) 400kV D/c quad line at Xeldem) Bus Reactor: 1x125MVAR Bus Reactor Bay: 1 no Space for 2x500MVA, 400/220kV ICTs (future) Space for ICT bays (future): 2 nos. Space for ICT bays (future): 2 nos. Space for Line bays along with Line Reactors (future): 4 nos. 1x63MVAR switchable line reactor along with 500 Ohms NGR and its auxiliaries (for Narendra (existing) – Xeldem 400kV line formed after LILO of one ckt of Narendra (existing) – Narendra (New) 400kV D/c quad line at Xeldem) 1x80MVAR switchable line reactor along with 500 Ohms NGR and its auxiliaries (for Narendra (New) –Xeldem 400kV line formed after LILO of one ckt of Narendra (existing) – Narendra (New) 400kV D/c quad line at Xeldem) 220kV 220kV inter-connection with Xeldem (existing) substation ICT bays: 2 nos. Line bays: 6 nos.


Table 2.1 Transmission Line Project Components


2.1 Transmission Line Route in Goa State Protected Areas


Space for ICT bays (future): 2 nos.


Space for Line bays (future): 6 nos.

The Transmission line route passes through the Bhagwan Mahaveer Wildlife Sanctuary (BMWS). It Intercepts BMWS in two sections. At first it enters the BMWS near Surla Village and then secondly it enters ahead of Tambdi Surla Temple and enters in Karnataka. The location map of the transmission line in protected area of Goa State is provided in *Figure 2.1*. and *Figure 2.2*.

The total length of the Transmission Line within BMWS, falls in two Surveys numbers/Forest compartments. The details are given in Table 2.2.

DGPS No.	UTM		Degree, Minute Second		Wildlife Division	Village Name	Compartment /Survey No.	Area (Ha.)	Legal Status of Lanc
	Easting	Northing	Longitude	Latitude					
40	413914	1705355	74°11'51.64"	15°25'25.47"					BMWS
41	413960	1705379	74°11'53.18"	15°25'26.26"	-		S.No. 23	2.53	BMWS
42	413914	1705204	74°11'51.65"	15°25'20.56"					BMWS
43	413960	1705210	74°11'53.2"	15°25'20.76"					BMWS
44	413992	1704836	74°11'54.32"	15°25'08.59"					BMWS
45	414054	1704821	74°11'56.4"	15°25'08.11"					BMWS
60	420372	1706810	74°15'28.13"	15°26'13.58"			Surla S.No. 73		BMWS
61	420298	1706811	74°15'25.65"	15°26'13.6"	North	0.1			BMWS
62	420616	1706542	74°15'36.35"	15°26'04.88"	Goa	Suna			BMWS
63	420657	1706567	74°15'37.72"	15°26'05.7"					BMWS
64	420969	1706299	74°15'48.22"	15°25'57.01"				9.01	BMWS
65	420958	1706257	74°15'47.86"	15°25'55.65"					BMWS
67	421968	1706025	74°16'21.77"	15°25'48.21"					BMWS
68	421967	1706073	74°16'21.73"	15°25'49.77"	1				BMWS
69	422070	1706049	74°16'25.19"	15°25'49"					BMWS
70	422112	1706113	74°16'26.59"	15°25'51.09"	1				BMWS
	I	1	1	1	1		Total	11.54	1

 Table 2.2
 Coordinate Statement of required area of Wildlife Division, North Goa

2.2 Tower Details

Tower detailed for the transmission line are presented in the *Table 2.3.* A total of 25 transmission towers are to be erected for the entire stretch within Bhagwan Mahaveer Wildlife Sanctuary (BMWS).

Tower Parameter	Tower Details		
Type of the Towers	WZ-1 DA,DB,DC,DD WZ-2 DA,DB,DC,DD		
Total height of the tower above the ground level	46.40 m		
Average distance between the Towers	400 m		
Total no. of towers installed within the Sanctuary area	06 (Including angle & suspension)		
Foundation area for each tower	20 X 20 m		
Elevated Plinth area	0.50X0.50 m		
Type of basement	Concrete (RCC/PCC)		
Depth	3.5 m		
Mode of pit digging for basement construction	Drilling & Manual excavation		

Table 2.3 Tower Details

The first section within the near the Surla village next to Darbandora-Sancodemo-Mollem-Collem road bears one angle tower (A/P-4/0) and one extension tower (3/1). The terrain in this region is undulating plateau with open grassland and rocky outcrops with dense vegetation in the fringes. (Refer *Figure 2.1*).

The second section where the transmission line enters the BMWLS is ahead of Tambdi Surla Temple are two angle towers (AP-15/0 and AP-16/0) and two extension tower ((14/2 and 15/1). The terrain is hilly with gentle gradient at tower 14/2 and it gets steeper till AP-16/0. After AP-16/0 the terrain is cliff shaped and transmission line enters Karnataka border connecting at AP-17. (Refer *Figure 2.2*)

Tower design diagrams are presented in *Annex A*, and foundation design diagrams are presented in *Annex B*.

2.3 Conductor Details

The horizontal distance between two conductors vary from 11 m. The lowest conductor from ground will be providing ground clearance of 8.84 m. he conductor arrangement is present in *Table 2.4.*

Conductor Details	
Distance between the two conductors	
Phase to Phase	11 m
Mid Span Clearance	9 m
Ground Clearance	8.84 m

Table 2.4Conductor Details

2.4 Siting Criteria for Transmission Line

The siting criteria¹ for transmission line sector is given in the following bullets

- The alignment of the transmission line should be most economical from the point of view of construction and maintenance.
- The alignment of the transmission line selected should be the shortest route possible.
- Routing of transmission line through protected/reserved forest area should be avoided. In case it
 is not possible to avoid the forests or areas having large trees, the route should be aligned in
 such a way that cutting of trees is minimum.
- The route should have minimum crossings of major rivers, railway lines, national/state highways, overhead EHV power line and communication lines.
- The number of angle points shall be kept at a minimum.
- Marshy and low lying areas, river beds and earth slip zones shall be avoided to minimize risk to the foundations.
- It would be preferable to utilize the ground level for the alignment.
- Crossing of power lines shall be minimum. In case it is required, a gap of a minimum distance of 300 m between powerlines to avoid induction problems on the lower voltage lines.
- Crossing of communication line shall be minimized and if crossings do occur they shall be cross
 preferably at right angles Proximity and parallelism with telecom lines shall be eliminated to avoid
 danger of induction to them.
- Areas subjected to flooding such as ditches (nullahs) shall be avoided.
- Restricted areas such as civil and military airfield shall be avoided. Care shall also be taken to avoid aircraft landing approaches.
- All alignment should be easily accessible both in dry and rainy seasons to enable maintenance throughout the year.
- Certain areas such as quarry sites, tea, tobacco plantations and saffron and rice fields and gardens & nurseries which will result in problems of right of way during construction and maintenance of towers, should be avoided.
- Angle points should be selected such that shifting of the point within 100 m radius is possible at the time of construction of the transmission line.
- The line routing should avoid large habitations, densely populated areas, forest, animal/bird sanctuaries, reserve coal belt areas, oil pipe line/underground inflammable pipe lines etc. to the extent possible.
- The areas requiring special foundations and those prone to flooding should be avoided.

2.5 Construction Activities and Methods

2.5.1 Installation of 400 kV steel tower foundations

The foundations will be excavated manually using manual or mechanised tools and plants and concrete will be mixed manually by hand mixing at the same location.

⁽¹⁾ Siting Criterial for Transmission Line MoEF&CC

The standard foundation practice is to have four individual footings for each tower leg. The tower foundation area will be set out and pegged prior to foundation excavation. All such removals are restored upon completion of foundation works. Excavations are set out specifically for the type of tower and the type of foundation required for each specific site.

When each leg is excavated the formation levels (depths) are checked by the onsite engineer. A Prop technique is used to set and hold the tower stubs in position while the concrete is being poured and cured.

After concrete is poured the remaining part of the foundation, the shear block or neck, is shuttered. Once the shuttering is complete more concrete may be poured and the foundation completed. The tower foundations are backfilled one leg at a time usually with the material already excavated. The backfill is placed and compacted in layers. (Refer *Figure 2.3*)

Figure 2.3 Photograph setting template being prepared for final concreting

Foundation size

The average foundation size for each tower leg used on the 400kV transmission system is $5.3m \times 5.3m \times 3.6m$ for single circuit angle tower, $5.1m \times 5.1m \times 4m$ for double circuit angle tower and $3.4m \times 3.4m \times 2.8m$ for double circuit intermediate tower.

Working area

The average working area for construction of a 400 kV tower will extend 10 metres all around the footprint of the base of the tower.

Construction equipment to be used for foundation

- 4x4 vehicle
- Concrete vibrator
- Water pump
- Timber or other Shuttering boxes
- 360° tracked excavator (7 ton normally).
- Transit van
- Chains another small tools
- Concrete Mixer (200Kgs)

Duration of foundation work

- Tower foundation work 4-6 days
- Crew size 18-20 workers

2.5.2 Erection of Tower Body

The most common and effective method of constructing a transmission line of this nature is a "derrick pole". The methodologies are outlined below.

Derrick Pole Methodology

The tower can be erected using a derrick / gin pole and tractor. The derrick pole is a very simple and straight forward way to build the tower where small sections of steel are lifted into place using the derrick and a winch. As illustrated the derrick consists of a solid steel pole which is held in position using guy ropes anchored to the ground (Refer *Figure 2.4*).

Figure 2.4 Model visual: Derrick pole at tower base

Construction equipment to be used for tower erection.

- 4x4 vehicle
- Winch
- Tractor
- Derrick pole
- Transit van
- Chains and other small tools

Duration of tower erection works

The average duration of tower building works is as follows:

- Each Tower erection: 6-8 days
- Crew size: 35 workers

2.5.3 Stringing of Conductor

Stringing of overhead lines refers to the installation of phase conductions and shield-wires on the supporting pole-set or tower structures. The conductor is kept clear of all obstacles along the straight by applying sufficient tension. This method of the pulling of a light pilot line (nylon rope) which is normally carried by hand into the stringing wheels. This in turn is used to pull a heavier pilot line (Steel rope) which is subsequently used to pull in the conductors from the drum stands using specifically designed "puller – tensioner" machines, see photograph below (Refer *Figure 2.5*). The main advantages with this method are (a) the conductor is protected from surface damage and (b) major obstacles such as road and rail crossings can be completed without the need for major disruption.

Figure 2.5 Puller – Tensioner machine

Once the conductor has been pulled into position, one end of the straight is terminated on the appropriate tension fittings and insulator assemblies. The free end of the straight is then placed in temporary clamps called "come-alongs" which take the conductor tension. The conductor is then cut from the puller-tensioner and the conductor is sagged using a chain hoist.

Construction equipment to be used during stringing of conductor and earth wire

- 4x4 vehicles
- Puller tensioner X 2 (see appendix 4 for details)
- Tractor
- Drum stands X 2
- Drum carriers X 2
- Stringing wheels
- Conductor drums
- Compressor & head
- Transit vans
- Chains and other small tools

Duration of stringing works

The average duration of stringing works is typically 1 week per straight. This figure is approximately the same for all straights regardless of length as the most time consuming aspect is the movement and setup of stringing equipment. Stringing crews are typically quite large and could have as many as 65 workers.

2.6 Construction Period

The proposed construction is scheduled to start from September 2019 and likely to be completed by March 2020 (Refer *Table 2.5*) in Bhagwan Mahaveer Wildlife Sanctuary.

SN.	Area of Construction	Tentative Period (month and year)
1	Total period for the construction of the project	Mar '19 to Jan'21
2	Construction along the Bhagwan Mahaveer Wildlife Sanctuary	Sep '19 to Mar'20

Table 2.5 Proposed Construction Period

2.7 Employment

A total of 138 man power is expected to be deployed for the Goa section of the transmission line passing through Bhagwan Mahaveer Wildlife Sanctuary. This includes 10 skilled man power, 8 semi-skilled man power and 120 unskilled manpower. (Refer *Table 2.6*)

Table 2.6	Employment Generation
-----------	-----------------------

Source of Manpower	Skilled	Semi-skilled	Unskilled	Total
On Roll Company	4	0	0	4
On roll of EPC contractor	6	4	0	10
Involvement of locals- non-technical people	0	4	120	124
Total	10	8	120	138

2.8 **Operation and Maintenance**

Activities for routine patrols, inspections, or scheduled maintenance, are planned in advance. However, there will be an occasional need for emergency response in cases where safety and property are threatened, to prevent imminent damage to the transmission line and ancillary facilities, or to restore service in the event of an outage. Routine, corrective, and emergency response activities will be conducted in accordance with typical O&M schedules.

Routine Maintenance (Preventative Maintenance)

Routine maintenance activities are conducted on a regular basis and have been carried out historically to identify and repair any deficiencies. These activities do not damage vegetation or soil and do not adversely impact sensitive resources including known federal and state listed species, waters and cultural resources. Personnel are generally present in any one area for less than one day. The following are examples of routine maintenance activities:

 Routine air patrols to inspect for structural and conductor defects, conductor clearance problems and hazardous trees.

- Routine ground patrols to inspect structural and conductor components. Such inspections generally require either an all-terrain vehicle (ATV) or pickup and possibly additional support vehicles traveling on access and service roads and may rely on either direct line-of-sight or binoculars. In some cases, the inspector may walk the ROW. Follow-up maintenance is scheduled depending on the severity of the problem either as soon as possible or as part of routine scheduled maintenance.
- Climbing surveys may be necessary to inspect hardware or make repairs. Personnel generally
 access these structures by pickup, ATV, or on foot.
- Structure or conductor maintenance typically occurs manually. The maintenance vehicle may be located on or off a road, and no-to-minimal grading is necessary to create a safe work area.
- Cathodic protection surveys to check the integrity and functionality of the anodes and ground beds. These surveys typically require personnel to use an ATV or pickup and make brief stops.
- Routine cyclical vegetation clearing to trim or remove tall shrubs and trees to ensure adequate ground-to-conductor clearances. Vegetation clearing cycles vary from 3 to 5 years or as needed (dependent upon the vegetation present). Personnel generally access the area by pickup, ATV, or on foot; use chainsaws to clear the vegetation; and typically spend less than half a day in any one specific area. In some cases vegetation may be cleared using mechanical means.
- Removal of individual trees or snags (hazard trees) that pose a risk of falling into conductors or structures and causing outages or fires. Personnel generally access hazard trees by truck, ATV, or by foot from an access or service road, and cut them with a chainsaw or similar tool. Any felled trees or snags are left in place as sources of large woody debris or as previously directed by the land management agency. Felled green trees are limbed to reduce fire hazard.

Corrective maintenance

Corrective maintenance activities are relatively large-scale efforts that occur infrequently, may result in more extensive vegetation clearing or earth movement, and may include rehabilitation seeding and associated activities. Personnel are generally present in any one location or area for a prolonged time, generally more than one day. The following are examples of corrective maintenance:

- Non-cyclical vegetation clearing to remove saplings or larger trees in the ROW.
- Structure or conductor maintenance in which earth must be moved, such as the creation of a landing pad for construction or maintenance equipment.
- Structure (e.g., cross-arm, insulator, structure) replacement.
- Follow-up restoration activities, such as seeding, noxious weed control, and erosion control.
- Conductor repair or replacement, which requires the use of several types of trucks and equipment and grading to create a safe work area to hang and pull the conductor into place.

Emergency situations

Emergency situations are those conditions that may result in imminent or direct threats to public safety or threaten' ability to provide reliable transmission service to its customers. Emergency situations may include:

- Failure of conductor splices.
- Damage to structures or conductors from wildfire, high winds, ice, or other weather related conditions.
- Line or system outages or fire hazards caused by trees falling into conductors.

- Breaking or imminent failure of cross-arms or insulators, which could, or does, cause conductor failure.
- Damage to structures or conductors from vandalism In the case of an emergency where life or substantial property is at risk or there is a potential or actual interruption in service, the Companies will promptly respond to the emergency and conduct any and all activities, including emergency repair requiring heavy equipment access to the structures or other ancillary facilities, needed to remedy the emergency and will implement feasible and practicable Environmental Protection Measures (EPMs).

3. ECOLOGICAL BASELINE

3.1 Physiographic Unit

The entire Goa state can be divided into three main physiographic units viz, the mountainous region of the Sahyadri in the east, the middle level plateaus in the centre and the low-lying river basins with coastal plains. Goa includes a portion of the Western Ghats, a range of mountains 1,600 km long extending from north of Mumbai to Cape of Comorin (Kanyakumari), which is identified as one of the `hotspots' of biological diversity and endemism in the world.¹

The Ghats extend in the north south direction, and exhibit rise in altitude. Goa has a hilly terrain especially on its eastern side where lies the southern end of the northern part of the Western Ghats.

3.2 Climate

The State of Goa is situated in the tropics and has profound orographic influence. The climate is humid throughout the year, with humidity level ranging from 75% to 95% in the monsoon. The main feature of the Goa climate is the south-west monsoon, which occurs between June and September. The average rainfall is 2500 mm to 3000 mm, although in Western Ghats the downpour is considerably high (over 4000 mm) than on the coast. In addition there are pre-monsoon (May) and post-monsoon (October) showers as a result of the north-east monsoon. Goa receives rain from the south-west monsoon, thereby experiencing a dry period lasting from November to May [November to February (winter) and March to May (summer)]. There is a slight variation in temperature through the seasons. May is the relatively warmest month and the mean daily temperature is around 30° C and maximum temperature rises to 36° C. January is the coolest with mean daily temperature of about 25° C. The average temperature ranges between 21° C and 30° C.³

During the survey, the weather was sunny with at least two incidents of thunderstorm and heavy rains in evening and night.

3.3 The Study Area

The proposed transmission line intersects the Bhagwan Mahaveer Wildlife Sanctuary at two locations as presented in *Figure 2.1* and *Figure 2.2* of Chapter 2. The entire stretch of transmission line route is a green field area. The core and buffer areas are demarcated as following.

Core Area: The transmission line route, the tower locations (with activity areas of 10 m radius) and the Right of Way (23 m on each side from median of the line route) is considered as Core area for biodiversity assessments.

Buffer Area: Buffer areas are considered 500 m radius areas from the transmission tower locations and the transmission route.

3.4 Study Duration

The ERM team comprising of three members undertook a 5 day reconnaissance survey of the transmission line route from 19th September to 24rd September 2018. The reconnaissance survey

⁽¹⁾ Myer, N. (1990): The biodiversity challenge: Expanded hot spots analysis. Environmentalist. 10: 243-256.

^{(&}lt;sup>2</sup>) Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B and Kent, J. (2000): Biodiversity hotspots for conservation priorities. Nature. 403: 853-858.

^{(&}lt;sup>3</sup>) Joshi, V. C and Janarthanam, M. K. (2004): The diversity of life forms type, habitat preference and phenology of the endemics in the Goa region of Western Ghats, India. Journal of Biogeography. 31: 1227-1237.

identiifed habitats and approaches to the transmission line route. Based on the reconnaissance survey, plan was developed to undertake a detailed survey. Interactions with the proponent was also undertaken on the different alternatives of the transmission line routes.

The detailed 7 day ecological survey was commissioned from 2nd October to 9th October 2018. The survey team has ERM team member and external species experts from various groups of flora and fauna to establish the ecological baseline of the study area.

3.5 Survey Team

The survey team had following members for the enumerating flora and fauna of the transmission line corridor. The team composition is given in *Table 3.1.*

Name of the Expert	Area of Specialization	
ERM Team		
Dr. Rahul Srivastava (Senior Consultant)	Avifauna and Mammal Expert	
Mr. Saumabha Bhattacharya (Consultant)	Avifauna Expert	
Dr. Omesh Bajpai (Consultant)	Plant Taxonomist	
Mr. Suhas Fuladi (Assistant Consultant)	Mammal Expert	
External Expert		
Mr. Nilim Kumar Khaire (Herpetological Society of India, Pune)	Herpetofauna Expert (Snakes)	
Dr. Varad B Giri (Herpetological Society of India, Pune)	Herpetofauna Expert (Amphibians and Reptiles)	
Dr. Mandar N Datar (Agharkar Research Institute, Pune)	Plant Taxonomist	
Mr. Vijay Patil (Herpetological Society of India, Pune)	Field Support & Data Collection	
Mr. Aamatya Sharma (Herpetological Society of India, Pune)	Field Support (Data and Photography)	

Table 3.1	Ecological Survey Team
-----------	------------------------

3.6 Scope of Work for Study

The Study was undertaken to achieve the following scope of work,

- Establish a preliminary baseline of terrestrial and aquatic floral and faunal species within the study area (Length ~ 3 km in WLS in Goa (approx.) with 46 m width¹) and immediate vicinity based on primary survey along with review of secondary literature.'
- Assess the status of major habitats/forests and associated floral species along the proposed transmission line passing through the WLS/Tiger Reserve/Elephant Reserve;
- Identify flagship species corridors, through primary surveys and reiew of relevant management plans, such as those for tiger and elephant likely impacted by the proposed project associated activities;
- Identify & evaluate the likely impacts of the proposed transmission line during the construction and operation phase on the habitat and wildlife species found in the area;
- Suggest mitigation measures and a BMP to minimize the likely impact on protected area, its habitat values and overall ecology of the wildlife/Tiger/Elephant reserve corridors.

The approach and methodology for the above scope of work is discussed hereunder

¹ http://mofpi.nic.in/sites/default/files/GUIDELINES_06.11.2015.pdf

3.7 Approach and Methodology

3.7.1 Approach

Following step wise approach was followed in order to achieve the conformity with the scope of work for baseline data collection

Step 1: Reconnaissance Survey- A reconnaissance survey to understand the complexity of terrain, habitats available, approach for various locations enroute to transmission line corridor and potential areas for species enumeration.

Step 2: Secondary Data Collection- Available secondary data through published research papers, books and periodicals and PhD thesis from the area was reviewed and enlisted to confirm the presence of species. Secondary data was also collected on the historical surveys in the area. Management plan of the protected area was also reviewed. Consultation with the locals and forest officials were also made.

Step 3: Primary Data Collection-Primary surveys were undertaken to understand the actual baseline and analyse the impacts of the proposed project on ecological baseline.

Step 4: Biodiversity Impact Assessment- Assessment of impact of the various construction and operation activities on the ecological baseline.

Step 5: Biodiversity Management Plan-Preparation of Management plan for mitigation of major impacts of construction and operation activities

3.7.2 Methodology of Primary Data Collection

Primary data collection methods for flora and fauna species are discussed hereunder

Floral Assessment

Floral assessment were focused on

- Enumeration of Trees, Shrubs, Herbs, climbers and orchids likely to encounter on the transmission line route and its immediate vicinity;
- Undertake phytosociology along the transmission line corridor to calculate frequency, density and abundance for plant species along with the IVI and calculation of species richness and species diversity;
- The enumerated list of floral species will be compared to Indian Red Data Book and species listed in the IUCN Red data list to confirm their conservation status.
- Following will be emphasized;
 - Species with conservational significance (Indian Red Data Book)
 - Endemic flora species
 - Species with high commercial value

The detailed methodology for data collection for each floral groups (Habit) are presented here under

Trees: Quantitative data was collected using standard quadrate methods of sample plot size 10 m x 10 m for trees in various habitat types along the transmission line route and immediate vicinity.

Shrubs: Quantitative data was collected using standard quadrate methods of sample plot size 10 m x 10 m for shrubs in various habitat types along the transmission line route and immediate vicinity.

Annuals (Herbs, Grasses, Pteridophytes, etc.): Quantitative data was collected on plateaus associated with transmission line using standard quadrate methods of sample plot size 1 m x 1 m for herbs, grasses.

Climbers: Quantitative data was collected using standard quadrate methods of sample plot size 10 m x 10 m for large climbers (lianas) in various habitat types along the transmission line route and immediate vicinity.

Details of the quadrates is presented in Refer Table 3.2 and sampling photographs in Figure 3.1

S.N.	Quadrat Size	Number of Quadrates				
		Core Zone	Buffer Zone	Study Area		
1.	Trees, shrubs and lianas	5	2	7		
2.	Annuals (Herbs, Grasses, Pteridophytes, etc.) and climbers	1	4	5		

Table 3.2Details of Floral Survey Quadrates

Faunal Assessment

- Faunal assessment was carried out through enumeration of herpetofauna amphibians and reptiles), avifauna (resident and migratory) and mammals likely to encounter on the transmission line route and its immediate vicinity;
- Assessment of various faunal habitats;
- The enumerated list of faunal species will be compared to Indian Wildlife Protection Act, 1971 schedules and species listed in the IUCN Red -List v.2018.2 to confirm their conservation status.
- Following will be emphasized;
 - Species with conservational significance (Sch. I of IWPA,1972, IUCN v2018.2 Red -List species
 - Endemic faunal species
 - Species listed in CITES Appendix I & II

The detailed methodology for data collection for each faunal groups are presented here under,

Four Transects were laid to enumerate

Herpetofauna: In view of the activity pattern of herpetofauna, diurnal and nocturnal surveys were carried out in the study area. Amphibians and reptiles are known to inhabit various habitats and remain among leaf litter or under rocks and thus special efforts were taken to locate and study those using following methods:

- **Direct Search Method:** This method involves searching thoroughly the known habitats of amphibians and reptiles. Intensive searching was carried out in most of the habitats by removing stones, logs, among leaf litter and on trees. This is not a time constrained method so considerable and roughly equal amount of time was spent in most of the habitats.
- **Searching streams:** This method was utilized to study amphibians and certain reptiles which are closely associated with aquatic habitats. The surveys were conducted mostly during the night. A few streams coming in or close to the Transmission Line route were surveyed.
- **Opportunistic records:** The local nature enthusiasts are photographing amphibians and reptiles and posting these images on social networking sites. A few of them send these images for identification to us. This network of local contacts was used to understand the

herpetofauna diversity in the study area. The identifications of images taken by locals were confirmed by detailed observations.

- **Systematic Analysis:** In the study area except a few frogs and lizards, there is less ambiguity in the taxonomy of most of the known amphibians and reptiles. A through taxonomic examination was carried out for most of the herpetofauna encountered during field surveys. The identification was based on recent and historical publications.

Avifauna: In view of the activity of the Avifaunal species early morning and evening surveys were undertaken for enumerating species presence along the transmission line route and buffer area. Day surveys were undertaken to enumerate the soring birds. Following methods were implied

- Total or flock / block count method: Sridharan 1989¹, Bhupathy 1991², Thompson 2002)³ were adopted to assess the status of aquatic birds in dam /water bodies and point count method in the riparian forest along stream / river side (Gregory et al. 2002)⁴ of the project area. Birds in the riparian forests were recorded and enumerated within 50 m radius as part of point count.
- Point Count (Hutto et al. 1986⁵, Bibby et al. 1992⁶, Rosentod et al. 2002⁷, Salim and Rahul 2002⁸) and area search (Dieni and Jones 2002⁹) techniques were applied to assess the status of terrestrial birds. Point counts in the forest and allied habitats were made within 50 m radius, while in agriculture that include fallow lands, and scrub / grassland / barren area habitats, birds were recorded within 100 m radius.
- Additional effort was made to locate/identify the presence of any breeding/nesting sites / roosting sites of avifauna.
- Species identification was confirmed using the field guides for the avifaunal species

Mammals

Mammalian fauna was assessed at each sampling locations in different habitats through recording both direct and indirect evidences.

- Status and distribution of different mammalian fauna was quantified using direct count covering all the terrestrial habitats of the transmission line and Right of way areaadopting road count (Burnham et al. 1980¹⁰, Sale and Berkmuller 1988¹¹, Rodgers 1991¹²). These

¹⁰ Burnham, K.P., D.R. Andreson., and J.L. Laake. 1980. Estimation of density from line transect sampling of biological population. Wildl. Mongr. No. 72. The Wildlife Society, Washington D.C. 202p

¹ Sridharan, U. 1989. Comparative ecology of resident ducks in Keoladeo National Park, Bharatpur. Ph.D. Dissertation, University of Bombay, Bombay.

² Bhupathy, S. 1991. Blotch structure in individual identification of the Indian Python (Python molurus molurus Linn.) and its possible usage in population estimation. Journal of Bombay Natural History Society 87: 399–404. 85

³ Thompson, W.L. 2002.Towards reliable bird surveys: accounting for individuals present but not detected. The Auk. 119:18-25. ⁴ Gregory, R. D., Gibbons, D. W. and Donald, P. F. 2002. Bird census and survey techniques. Pp:17-56. In: Bird Ecology and

Conservation: A Handbook of Techniques. (Eds.) W. J. Sutherland, I. Newton and R. E. Green. Oxford University Press, Oxford. 386 p.

⁵ Hutto, R.L., S.M. Pletsechel and P. Hendrick. 1986. A fixed radius point count method for non breeding season use. The Auk. 103: 593-602.

⁶ Bibby, C.J., N.D., Burgerss and D.A. Hill. 1992. Bird Census techniques, Academic Press, London.

⁷ Rosentod, S.S., Anderson, B.R., Giesenk. N, Leukerig, T., and Carter, M.F. 2002. Land bird counting techniques: Current practises and an alternative. The Auk 119(1):46-53

⁸ Salim, J. and Rahul, K. 2002. Field methods for bird surveys. Bombay Natural History Society; Department of Wildlife Sciences, Aligarh Muslim University, Aligarh, and world Pheasant association, South Asia Regional Office (SARO), New Delhi, India. 61 p.

⁹ Dieni, J.S. and Jones, S.L. 2002. A field test of the area search method for measuring breeding birds population. J. Field Ornithology, 73: 253-257.

¹¹ Sale, J.B. and K. Berkmuller, 1988. Manual of Wildlife Techniques for India. FAO, United Nation's India Establishment of Wildlife Institute of India Dehra Dun.

¹² Rodgers, W.A. 1991. Technique for Wildlife Census in India, A field Manual. Technical Manual. TM2. Wildlife Institute of India, Dehra Dun. India.81pp.

survey routes were the area between two sample points and the forest trails that traverse across different habitats and land uses.

- In addition indirect evidences (pellets, dungs, droppings, scats and other tracks and signs), were searched within circular (25m radius) plots at each sampling location, which provide relative abundance of presence of mammalian fauna (Thompson et al. 1989¹, Rodgers 1991, Henke and Knowlton 1995², Allen et al. 1996³).
- Further presence of different faunal species was also ascertained and substantiated by interviewing the local people with the pictures of the mammals from the field guides that could probably occur in the area and discussion with local experts.

Field Survey pictorial representation are provided in Figure 3.1

¹ Thommpson, I.D., Davidson, I.J., O' Donnell, S. and Brazeau, F. 1989. Use of track transect to measure the relative occurrence of some arboreal mammals in uncut forest and regeneration stands. Canadian Journal of Zoology. 67: 1816-1823.

² Henke, S.E. and knowlton, F.F. 1995. Techniques for estimating Coyote abundance. Pp; 71-78. In: Proceedings of the symposium: Coyotes in the southwest. Parks and wildlife Department: Austin, Texas.

³ Allen, L., Engeman, R. and Krupa, H. 1996 Evaluation of three relative abundance indices for assessing dingo population. Wildlife Research. 23 197-206.

3.8 Floral Assessment

3.8.1 Vegetation Profile in Study Area

The vegetation¹ of the study area is a mosaic of tropical evergreen, tropical semi-evergreen and moist deciduous forests along with the lateritic plateaus or lateritic outcrops. The higher altitudinal area and the area along the riverbanks have tropical evergreen forests; while the area of lower altitude and more towards the plains comprises tropical moist deciduous type of forests. The tropical semi-evergreen forests are transitional between evergreen forests and moist deciduous forests. Beside these three forest types, lateritic plateaus or lateritic outcrops also occurs in patches in the area. The brief account of these vegetation types is given below and pictorial representation is provided in *Figure 3.2*.

West Coast Tropical Evergreen Forests

The evergreen type of forests is mainly seen on higher altitudes and along the riverbanks, because of the perennial sources of water within the study area. The tall and lofty components here are *Actinodaphne angustifolia, Canarium strictum, Diospyros buxifolia, Diospyros pruriens, Garcinia gummi-gutta, Holigarna grahamii, Knema attenuata, Mammea suriga, Polyalthia fragrans, Syzygium laetum, Vitex altissima, etc. The middle-sized trees are composed of <i>Litsea coriacea, Aporusa cardiosperma, Antidesma acidum, Blachia andamanica* subsp. *denudata, Ixora nigricans, Psychotria dalzellii, Memecylon terminale, Dracaena terniflora.* The trees found in the riparian forests are *Calophyllum calaba, Lophopetalum wightianum* and *Hydnocarpus pentandrus. Arenga wightii,* a common palm can be seen near streams and rivers. Along the rivers shrubs like *Melastoma malabathricum* and *Wendlandia thyrsoidea* can also be seen. Some woody climbers or lianas found in this type of forest are *Entada rheedei, Gnetum ula, Chonemorpha fragrans, Ancistrocladus heyneanus, Luvunga eleutherandra, Paramignya monophylla* and *Toddalia asiatica.* Undergrowth is formed by shrubby species like *Dracaena terniflora, Ixora coccinea* and herbaceous species of families Cyperaceae, Zingiberaceae, Commelinaceae and Asteraceae.

Epiphytic plants in evergreen forests are restricted to family Orchidaceae (belonging to the genera like *Aerides, Bulbophyllum, Cymbidium, Eria* and *Vanda*) and Apocynaceae (*Hoya wightii*). Other epiphytes or lithophytes like *Utricularia striatula* and *Argostemma courtallense* are also found in the crevices of rocks and on trunks of tall trees where there is little soil and moisture. Common epiphytic ferns growing on trees are *Drynaria quercifolia* and *Pyrrosia adnascens*. The herbaceous flora includes *Costus speciosus, Impatiens* sp., *Phyllanthus* sp., *Urena lobata, Gynura nitida,* etc.

West Coast Semi-Evergreen Forests

These forests are transitional between moist deciduous forests and evergreen forests and found in the upper parts of ghats and lower elevations near stream beds. The semi-evergreen formations are seen with isolated patches of evergreen forests in ravines and valleys.

The following two edaphic types are found depending on local variation in soil and moisture within semi-evergreen forests.

Cane Breaks- These occur on the slopes of the ghat region. *Calamus thwaitesii* is more common in lower elevation areas. *Calamus pseudotenuis* is more common on higher elevations.

Lateritic Semi-evergreen forests- These forests are distributed over elevations above 200 m. Important species found in these areas are *Actinodaphne angustifolia*, *Canthium dicoccum*, *Macaranga peltata*, *Careya arborea*, *Lagerstroemia lanceolata*, *Pterospermum diversifolium*, etc. The second storey includes *Glochidion hohenackeri*, *Olea dioica*, *Ixora nigricans*, *Celtis timorensis*, etc.

¹ Datar, M. N., & Lakshminarasimhan, P. (2013). *Flora of Bhagwan Mahavir (Molem) National Park and Adjoinings, Goa.* Botanical Survey of India

The shrubs found in undergrowth are Chassalia curviflora var. ophioxyloides, Glycosmis pentaphylla, Maesa indica, Leea asiatica, Leea indica, Crotalaria retusa and Gnidia glauca. These species are often associated with climbing shrubs like Connarus monocarpus and Clematis gouriana. Some of the common herbs include Impatiens balsamina, Cyperus sp., Asystasia dalzelliana, Cynarospermum asperrimum, Lindernia sp., and grasses such as Apluda mutica, Eragrostis unioloides, Garnotia arboreum and Ischaemum sp.

Moist Deciduous Forests- Most of the forests in the study area fall in this category. This type of forest is mostly found in the plains between the altitudes from 80 to 200 m. Important floristic elements found in these areas are Careya arborea, Dillenia pentagyna, Grewia tiliifolia, Lannea coromandeliaca, Terminalia sp., Schleichera oleosa, Xylia xylocarpa, Haldina cordifolia, etc. Other trees found in moist deciduous forests are Falconeria insignis, Wrightia sp., Flacourtia montana, etc. The dominant families are Rubiaceae (Ixora, Mitragyna), Bignoniaceae (Heterophragma, Stereospermum, Oroxylum) Euphorbiaceae (Mallotus, Glochidion, Antidesma, Briedelia) and Leguminosae (Dalbergia, Acacia, Albizia). These elements are sometimes intermixed with species of Dendrocalamus and Bambusa. In the riparian patches, Hopea ponga and Crateva magna are seen. The shrubs or second storey of trees includes Catunaregam spinosa, Flemingia strobilifera, Canthium sp., Strychnos nux-vomica, Meyna laxiflora, Ziziphus xylopyrus, Xantolis tomentosa. Common epiphyte, especially on most of the Terminalia sp. is Rhynchostylis retusa. Aerides crispa and Aerides maculosa are also found epiphytic on many trees.

The ground flora in forest clearings and exposed situations comprises members of Leguminosae: Papilionoideae (Geissaspis, Crotalaria, Indigofera, Alysicarpus, Desmodium, Tadehagi), Acanthaceae (Justicia, Lepidagathis, Rungia), Rubiaceae (Spermacoce, Neanotis, Hedyotis), Euphorbiaceae (Euphorbia), Asteraceae (Blumea, Elephantopus, Senecio, Phyllocephalum) and Lamiaceae (Leucas, Platostoma, Pogostemon, Hyptis). In open areas climbers and twiners of Convolvulaceae, Leguminosae: Papilionoideae, Smilacaceae, Ranunculaceae have been recorded.

The Plateaus:- Lateritic plateaus or lateritic outcrops are of common occurrence in Western Ghats of Goa. They are very specific as far as their floristic composition and geology are concerned. These outcrops are dry and barren during most of the year, but after the arrival of monsoon many tiny plants start appearing on them. Utricularia lazulina, Utricularia uliginosa and Utricularia reticulata are the common insectivorous species on the outcrops. In addition, Eriocaulon sp., Lindernia ciliata, Impatiens minor, Fimbristylis sp., Rhamphicarpa longiflora and Jansenella griffithiana are also seen on plateaus. Most of the vegetation on plateaus sustain till September only.

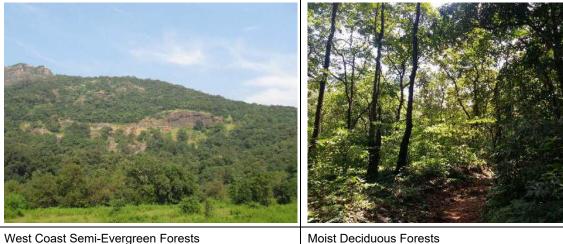


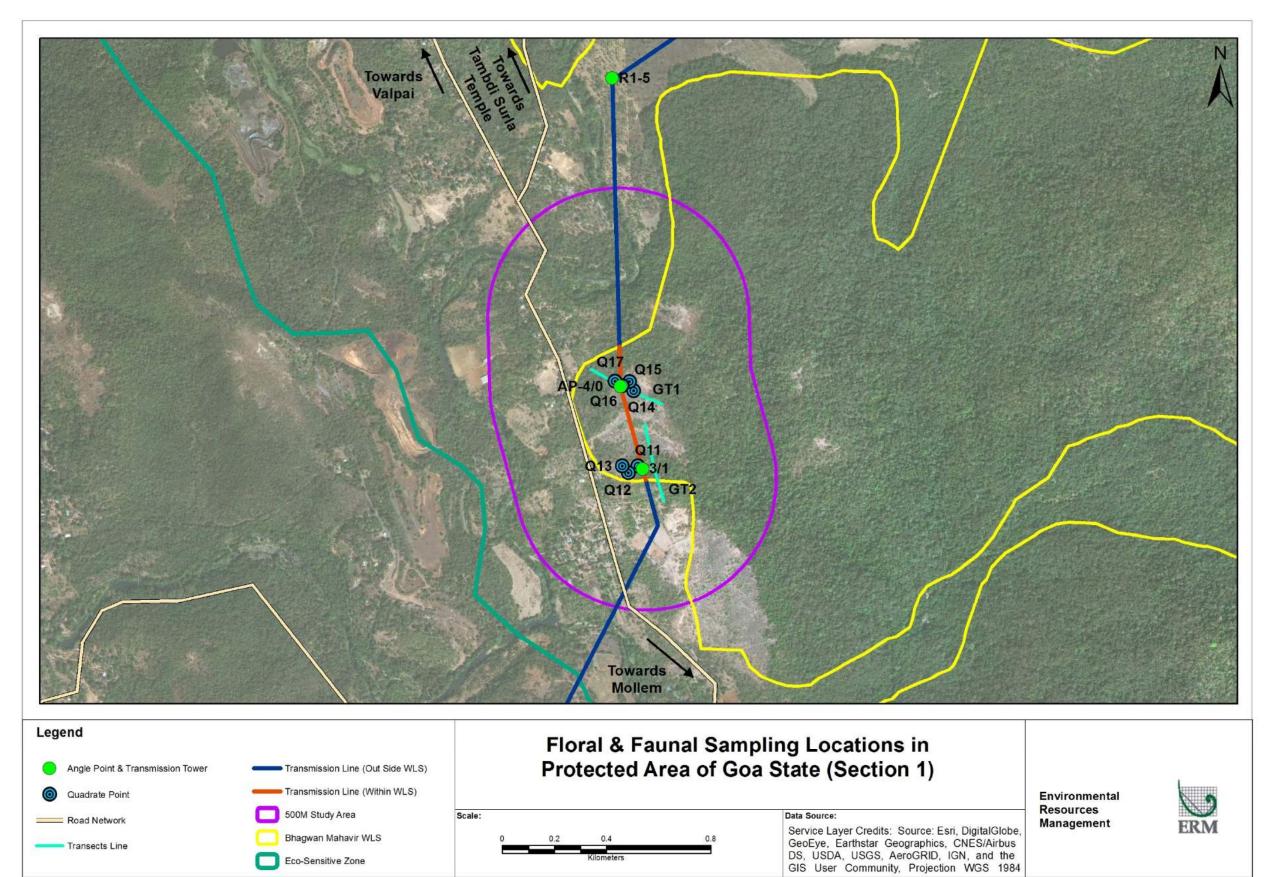
Figure 3.2 Vegetation Types in the Study Area

West Coast Semi-Evergreen Forests

Lateritic Plateau Vegetation

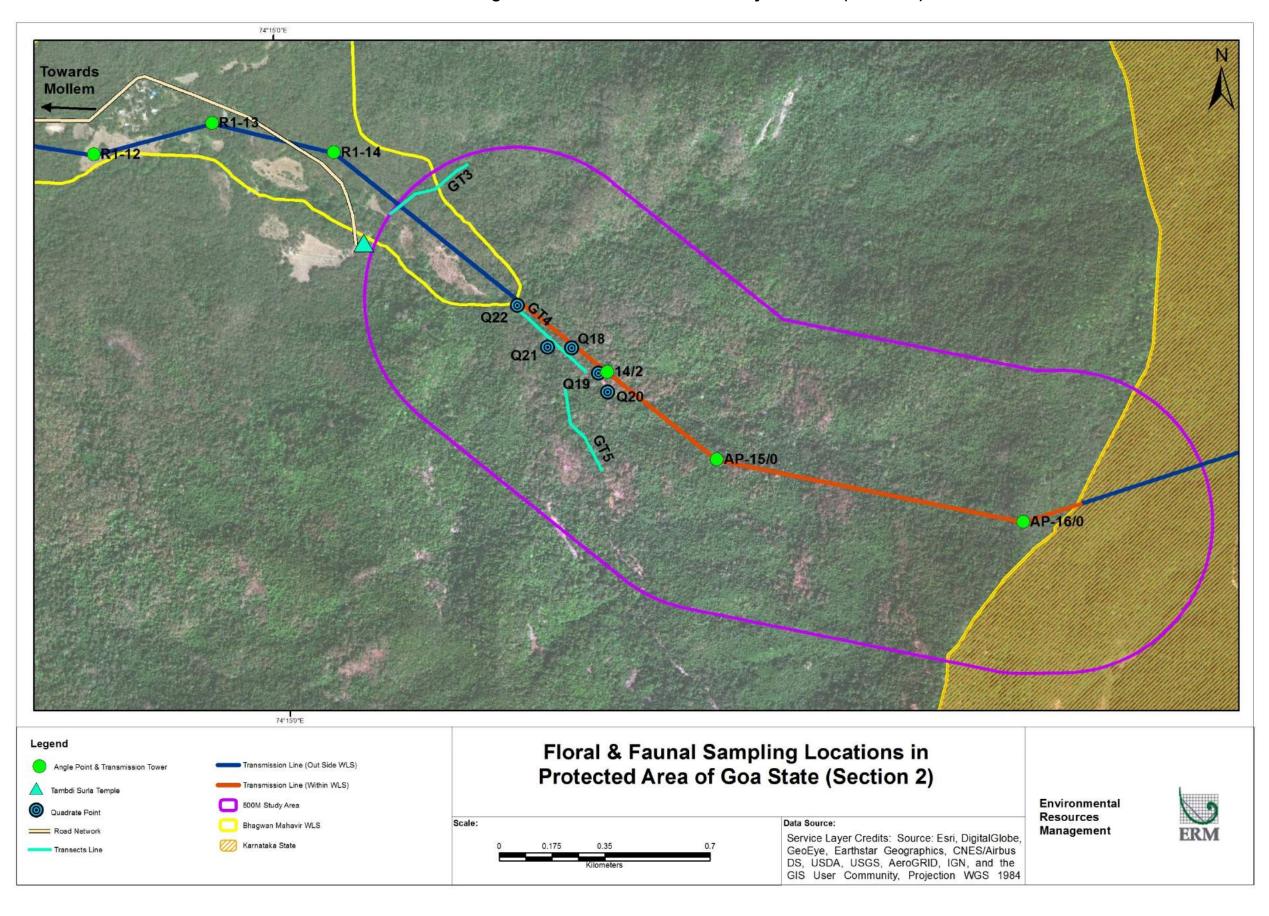
Lateritic Plateau Ground Cover

Cane Breaks-West Coast Semi-Evergreen Forests


Tambdi Surla Waterfall- Lateritic Semi-evergreen forests

Following quadrates (Refer *Table 3.3*) were laid in the core and buffer zone of the Transmission line corridor. The quadrates location is shown in *Figure 3.3* and *Figure 3.4*

Quadr	Quadrates in Core Zone			Quadrates in Buffer Zone			
Q11:	43 P 413994.88 m E; 1704898.54 m N	Lateritic Plateau Vegetation	Q12:	43 P 413956.80 m E 1704872.58 m N	Moist Deciduous Forests		
Q16:	43 P 413943.56 m E 1705206.48 m N	Lateritic Plateau Vegetation	Q13:	43 P 413935.33 m E 1704899.98 m N	Lateritic Plateau Vegetation		
Q17:	43 P 413916.26 m E 1705225.60 m N	Moist Deciduous Forests	Q14:	43 P 413986.83 m E 1705186.19 m N	Lateritic Plateau Vegetation		
Q18:	43 P 420489.54 m E 1706658.67 m N	Moist Deciduous Forests	Q15:	43 P 413971.41 m E 1705222.75 m N	Moist Deciduous Forests		
Q19:	43 P 420576.37 m E 1706572.20 m N	West Coast Tropical Evergreen Forests	Q20:	43 P 420605.24 m E 1706509.50 m N	West Coast Tropical Evergreen Forests		
Q22:	43 P 420314.00 m E 1706804.00 m N	Moist Deciduous Forests	Q21:	43 P 420410.80 m E 1706663.15 m N	West Coast Tropical Evergreen Forests		


Table 3.3	Details of the Quadrate Surveyed and its Distribution
	Details of the Quadrate our reyea and its Distribution

www.erm.com Version: 2.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

3.8.2 Taxonomic Status-Species Richness

In core zone of Goa, sampling was done in only one vegetation type i.e forest. The diversity is represented by 19 families 26 genera and 27 species.

In buffer zone two vegetation types were surveyed yielding 11 families 14 genera and 15 species from forests and 5 families 7 genera and 7 species from plateaus. Overall diversity is represented by 28 families 42 genera and 45 species. (Refer *Table 3.4*)

Table 3.4Taxonomic Status of Flora along the Proposed Transmission line
route

Таха	Co	ore Zone		СТ	Buffer Zone			BT	SAT
	FT1 (Forests)	FT2	FT3		FT1 (Forests)	FT2 (Plateaus)	FT3		
Family	19	0	0	19	11	5	0	16	28
Genus	26	0	0	26	14	7	0	21	42
Species	27	0	0	27	15	7	0	22	45

Note1: FT1- West Coast Semi-Evergreen Forests, FT2-Lateritic plateaus; CT-Core Zone Total, BT-Buffer Zone Total, SAT-Study Area Total

3.8.3 Status of Growth Forms

Various growth forms studied are discussed hereunder;

- **Tree:** A woody, perennial plant, having a single trunk (bole) with multiple branches.
- **Shrub:** A woody, perennial plant, generally smaller than a tree, and with several stems arising from the ground level.
- Herb: A non-woody plant other than grasses.
- Grass: Plant belonging to the grass families Poaceae, Cyperaceae and Juncaceae.
- Pteridophyte: The vascular plant (with xylem and phloem) that disperses spores
- Climber: Plant, which climb up trees and other tall objects.

Study area is represented by twenty five (25) trees species; three (3)species of shrubs and eleven (11) species of lianas/climbers in forests and four (4) species of herbs and three (3) species of grasses. Details are provided in *Table 3.5.*

Table 3.5Status of Floral Growth forms along the Proposed TransmissionLine Route

Growth forms	Core Zone			СТ	E	Buffer Zone			SAT
	FT1(Forest)	FT2	FT3		FT1(Forests)	FT2(Plateaus)	FT3	-	
Tree	15	0	0	15	10	0	0	10	25
Shrub	3	0	0	3	0	0	0	0	3
Herb	0	0	0	0	0	4	0	4	4
Grass	0	0	0	0	0	3	0	3	3
Climber	9	0	0	9	5	0	0	5	11
Total Species	27	0	0	27	15	7	0	22	45

Note1: FT1- West Coast Semi-Evergreen Forests, FT2-Lateritic plateaus; CT-Core Zone Total, BT-Buffer Zone Total, SAT-Study Area Total

Note2: Lianas are treated here under shrubs and climbers based on their habit.

3.8.1 Status of Tree species

A total of 38 trees and liana species were recorded from study area. Based on IVI values *Lagerstroemia microcarpa* and *Memecylon umbellatum* were found to be dominant amongst trees, while amongst lianas *Getonia floribunda* was dominant. The details are presented in **Table 3.6.**

Table 3.6Important Value Index (IVI) and Rank Order of Tree Species and
lianas in Study Area

S. N.	Tree Species	RF (%)	RDN (%)	RA (%)	IVI	RO
Core Z	Zone					
1	Allophylus cobbe (L.) Raeusch.	2.63	1.61	2.37	6.62	10
2	Beilschmiedia dalzellii (Meisn.) Kosterm.	5.26	3.23	2.37	10.86	8
3	Calamus thwaitesii Becc.	2.63	3.23	4.74	10.60	9
4	Careya arborea Roxb.	2.63	1.61	2.37	6.62	10
5	Catunaregam spinosa (Thunb.) Tirveng.	2.63	1.61	2.37	6.62	10
6	Combretum latifolium Blume	2.63	1.61	2.37	6.62	10
7	Dalbergia horrida (Dennst.) Mabb.	7.89	4.84	2.37	15.10	6
8	Dillenia pentagyna Roxb.	5.26	6.45	4.74	16.46	5
9	Diploclisia glaucescens (Blume) Diels	2.63	3.23	4.74	10.60	9
10	Embelia tsjeriam-cottam (Roem. & Schult.) A. DC.	2.63	1.61	2.37	6.62	10
11	Flacourtia montana J. Graham	2.63	1.61	2.37	6.62	10
12	Getonia floribunda Roxb.	7.89	6.45	3.16	17.51	4
13	Hopea ponga (Dennst.) Mabb.	2.63	1.61	2.37	6.62	10
14	Ixora brachiata Roxb.	2.63	1.61	2.37	6.62	10
15	Lagerstroemia microcarpa Wight	2.63	9.68	14.23	26.54	2
16	Leea indica (Burm. f.) Merr.	2.63	1.61	2.37	6.62	10
17	Lepisanthes tetraphylla (Vahl) Radlk.	2.63	3.23	4.74	10.60	9
18	Memecylon umbellatum Burm. f.	5.26	9.68	7.11	22.06	3
19	Moullava spicata (Dalzell) Nicolson	2.63	1.61	2.37	6.62	10
20	Olea dioica Roxb.	2.63	1.61	2.37	6.62	10
21	Schleichera oleosa (Lour.) Oken	2.63	1.61	2.37	6.62	10
22	Tabernaemontana heyneana Wall.	5.26	4.84	3.56	13.66	7
23	Terminalia bellirica (Gaertn.) Roxb.	2.63	3.23	4.74	10.60	9
24	Terminalia elliptica Willd.	7.89	16.13	7.91	31.93	1
25	Ventilago denticulata Willd.	2.63	1.61	2.37	6.62	10
26	Xantolis tomentosa (Roxb.) Raf.	5.26	3.23	2.37	10.86	8
27	Ziziphus rugosa Lam.	2.63	1.61	2.37	6.62	10
Buffer	zone	RF (%)	RDN (%)	RA (%)	IVI	RO
1	Albizia odoratissima (L. f.) Benth.	6.25	2.50	2.94	11.69	4
2	Bombax ceiba L.	6.25	2.50	2.94	11.69	4

S. N.	Tree Species	RF (%)	RDN (%)	RA (%)	IVI	RO
3	Calamus thwaitesii Becc.	12.50	30.00	17.65	60.15	2
4	Derris heyneana (Wight & Arn.) Benth.	6.25	2.50	2.94	11.69	4
5	Dillenia pentagyna Roxb.	6.25	2.50	2.94	11.69	4
6	Diospyros paniculata Dalzell	6.25	5.00	5.88	17.13	3
7	Diospyros pruriens Dalzell	6.25	5.00	5.88	17.13	3
8	Grewia tiliifolia Vahl	6.25	2.50	2.94	11.69	4
9	Holigarna grahamii (Wight) Kurz	6.25	2.50	2.94	11.69	4
10	Hopea ponga (Dennst.) Mabb.	6.25	30.00	35.29	71.54	1
11	Lophopetalum wightianum Arn.	6.25	2.50	2.94	11.69	4
12	Paramignya monophylla Wight	6.25	2.50	2.94	11.69	4
13	Pterospermum diversifolium Blume	6.25	2.50	2.94	11.69	4
14	Sterculia guttata Roxb. ex DC.	6.25	2.50	2.94	11.69	4
15	Ventilago denticulata Willd.	6.25	5.00	5.88	17.13	3
Study	Area	C-IVI	B-IVI	TOTAL		
1	Albizia odoratissima (L. f.) Benth.		2.94	2.94		
2	Allophylus cobbe (L.) Raeusch.	6.62		6.62		
3	Beilschmiedia dalzellii (Meisn.) Kosterm.	10.86		10.86		
4	Bombax ceiba L.		2.94	2.94		
5	Calamus thwaitesii Becc.	10.60	17.65	28.25		
6	Careya arborea Roxb.	6.62		6.62		
7	Catunaregam spinosa (Thunb.) Tirveng.	6.62		6.62		
8	Combretum latifolium Blume	6.62		6.62		
9	Dalbergia horrida (Dennst.) Mabb.	15.10		15.10		
10	Derris heyneana (Wight & Arn.) Benth.		2.94	2.94		
11	Dillenia pentagyna Roxb.	16.46	2.94	19.40		
12	Diospyros paniculata Dalzell		5.88	5.88		
13	Diospyros pruriens Dalzell		5.88	5.88		
14	Diploclisia glaucescens (Blume) Diels	10.60		10.60		
15	Embelia tsjeriam-cottam (Roem. & Schult.) A. DC.	6.62		6.62		
16	Flacourtia montana J. Graham	6.62		6.62		
17	Getonia floribunda Roxb.	17.51		17.51		
18	Grewia tiliifolia Vahl		2.94	2.94		
19	Holigarna grahamii (Wight) Kurz		2.94	2.94		
20	Hopea ponga (Dennst.) Mabb.	6.62	35.29	41.91		
21	Ixora brachiata Roxb.	6.62		6.62		
22	Lagerstroemia microcarpa Wight	26.54		26.54		
23	Leea indica (Burm. f.) Merr.	6.62		6.62		

www.erm.com Version: 2.0

Project No.: 0476969

Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL)

S. N.	Tree Species	RF (%)	RDN (%)	RA (%)	IVI	RO
24	Lepisanthes tetraphylla (Vahl) Radlk.	10.60		10.60		
25	Lophopetalum wightianum Arn.		2.94	2.94		
26	Memecylon umbellatum Burm. f.	22.06		22.06		
27	Moullava spicata (Dalzell) Nicolson	6.62		6.62		
28	Olea dioica Roxb.	6.62		6.62		
29	Paramignya monophylla Wight		2.94	2.94		
30	Pterospermum diversifolium Blume		2.94	2.94		
31	Schleichera oleosa (Lour.) Oken	6.62		6.62		
32	Sterculia guttata Roxb. ex DC.		2.94	2.94		
33	Tabernaemontana heyneana Wall.	13.66		13.66		
34	Terminalia bellirica (Gaertn.) Roxb.	10.60		10.60		
35	Terminalia elliptica Willd.	31.93		31.93		
36	Ventilago denticulata Willd.	6.62	5.88	12.50		
37	Xantolis tomentosa (Roxb.) Raf.	10.86		10.86		
38	Ziziphus rugosa Lam.	6.62		6.62		

Notes: RF- Relative Frequency, RDN- Relative Density, RDO- Relative Dominance, C-IVI- Core Important Value Index, B-IVI-Buffer Important Value Index, RO- Rank Order (based on the relative frequency of each species, highest being 1 and lowest being 5).

3.8.2 Status of Annuals (Herbs and Grasses species)

Total of seven species were recorded from lateritic plateaus of buffer zones. Of these seven species three are grasses. Based on IVI values *Eriocaulon eurypeplon* and *Glyphochloa henryi* are dominant species. The details are presented in *Table 3.7.*

Table 3.7Important Value Index (IVI) and Rank Order of Herbs and GrassSpecies

Herb Species	RF (%)	RDN (%)	RA (%)	IVI	RO
Eriocaulon eurypeplon Koern.	20	220.8	47.52	288.325	1
Lepidagathis prostrata Dalzell	20	16	3.444	39.444	4
<i>Glyphochloa henryi</i> Janarth., V.C.Joshi, S.Rajkumar	20	102.8	22.126	144.927	2
Geissaspis tenella Benth.	16	1.6	0.431	18.031	5
Murdannia semiteres (Dalzell) Santapau	12	1.2	0.431	13.631	6
<i>Dimeria</i> sp.	8	46.8	25.183	79.983	3
<i>Indopoa paupercula</i> (Stapf) Bor ex Ramamoorthy	4	0.8	0.861	5.661	7

3.8.3 Status of Medicinal Plants

The medicinal plants observed within transmission line route are detailed in the *Table 3.8* and represented in *Figure 3.5.*

S.N.	Species	Habit	CZ	BZ	Medicinal use
1	Bombax ceiba L.	Tree		@	Skincare
2	Catunaregam spinosa (Thunb.) Tirveng.	Shrub	@		Diarrhoea and dysentery
3	<i>Embelia tsjeriam-cottam</i> (Roem. & Schult.) A. DC.	Shrub	@		Vermifuge
4	Ixora brachiata Roxb.	Tree	@		Antimicrobial
5	Moullava spicata (Dalzell) Nicolson	Liana	@		Pneumonia, skin diseases
6	Schleichera oleosa (Lour.) Oken	Trees	@		skin diseases
7	Tabernaemontana heyneana Wall.	Tree	@		Antibacterial
8	Terminalia bellirica (Gaertn.) Roxb.	Tree	@		In Triphala
		Total	7	1	

 Table 3.8
 Medicinal Plants recorded from Transmission Line Route

Source: Datar and Lakshminarasimhan, 2013

Notes: CZ- Core Zone, BZ- Buffer Zone, CS- Common Species, @-Presence

Figure 3.5 Medicinal Plants recorded from Transmission Line Route

Terminalia bellirica

Catunaregam spinos

Moullava spicata

3.8.4 Status of Threatened Plants

In study area six (06) species were found to be threatened of which four (04) arboreal species occur in forests and two (02) herbaceous species were observed growing on lateritic outcrops. The species are listed in *Table 3.9* and represented in *Figure 3.6*

S. N.	Name of species	Habit	Zones (Core Zone/ Buffer Zone)	IUCN,V2018.2
1	Diospyros paniculata Dalzell	Tree	BZ	VU
2	Holigarna grahamii (Wight) Kurz	Tree	BZ	LC
3	Hopea ponga (Dennst.) Mabb.	Climber	CZ,BZ	EN
4	Tabernaemontana heyneana Wall.	Tree	CZ,BZ	NT
5	Eriocaulon eurypeplon Koern.	Herb	CZ	LC
6	Geissaspis tenella Benth.	Herb	CZ	LC

Table 3.9Threatened Species

Notes: CZ– Core Zone, BZ- Buffer Zone, Source-Secondary Data

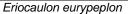
Source: Nayar, T. S., Garden, J. N. T. B., Research Institute, Beegam, A. R., & Sibi, M. (2014). Flowering plants of the Western Ghats, India. Jawaharlal Nehru Tropical Botanic Garden and Research Institute.

Figure 3.6 Threatened Species

Hopea ponga

Tabernaemontana heyneana

3.8.5 Status of Endemic Species


The Western Ghats region have higher endemicity within floral species. A total of 12 endemic plants were reported of which four (04) are herbaceous; three (03) are climbers and five (05) are tree species. The endemic species are listed in *Table 3.10* and presented in *Figure 3.7.* These species are endemic to Western Ghats of India.

S. N.	Name of species	Family	Local Name	Habit	Zones
					(CZ, BZ)
1	Derris heyneana (Wight & Arn.)Benth.	Leguminosae	-	С	BZ
2	Diospyros paniculata Dalzell	Ebenaceae	-	Т	BZ
3	Eriocaulon eurypeplon Koern.	Eriocaulaceae	-	Н	
4	Flacourtia montana J. Graham	Flacourtiaceae	Chaper	Т	CZ
5	Geissaspis tenella Benth.	Leguminosae	-	Н	
6	Glyphochloa henryi Janarth., V.C.Joshi , S.Rajkumar	Poaceae	-	Н	
7	Holigarna grahamii (Wight) Kurz	Anacardiaceae	-	Т	BZ
8	Hopea ponga (Dennst.) Mabb.	Dipterocarpaceae	Kaushi	С	CZ
9	Indopoa paupercula (Stapf) Bor ex Ramamoorthy	Poaceae	-	Н	
10	Ixora brachiata Roxb.	Rubiaceae	-	Т	CZ
11	Moullava spicata (Dalzell) Nicolson	Leguminosae	Shamachi vel	С	CZ
12	Tabernaemontana heyneana Wall.	Apocynaceae	Nagkuda	Т	CZ

Table 3.10Endemic Species

Figure 3.7 Endemic Species

Geissaspis tenella

Hopea ponga

Indopoa paupercula

3.8.6 Overall Species Richness

The study area is represented by 38 species 36 genera and 25 families while associated 60 species belong to 55 genera and 37 family. Overall diversity comprises of 60 species 55 genera and 37 families. The details are presented in *Table 3.11.*

Table 3.11	Overall Species Richness of Flora along the transmission line
	route

Parameters	Study Area List	SS	Overall
Family	25	37	37
Genus	36	55	55
Species	38	60	60

Notes: SS-taxa which were documented as associated species. Study area list contains taxa documented in quadrats.

3.8.7 Species Diversity and Species Evenness

The species diversity is represented by Shannon Weiner Diversity Index¹ and Simpson Diversity Index² along with Species evenness from the data collected from the study area. The species diversity and species evenness are presented in *Table 3.12*.

Table 3.12 Species Diversity and Species Evenness

Species	Core Zone	Buffer Zone
Shannon Weiner Index of Diversity (H')	2.99	2.094
Simpson Index of Diversity	0.373	0.432
Species Evenness	0.907	0.773

¹ Shannon, C. E. (1948) A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423 and 623– 656.

² Simpson, E. H. (1949). "Measurement of diversity". Nature. 163: 688.

3.8.8 Overall Species list

The overall species list is presented as hereunder in Table 3.13;

Table 3.13Overall List of Flora (Botanical name, Family, Local name,
Locality, Local name, Growth form, Vegetation/Forest type) along the
Proposed Transmission line

S.N.	Species name	Family	Habitat	Habit	Threatened status
1	Aerides maculosa Lindl.	Orchidaceae Fore		Epiphytic	Endemic
2	Albizia odoratissima (L. f.) Benth.	Leguminosae	Forest	Tree	
3	Allophylus cobbe (L.) Raeusch.	Sapindaceae	Forest	Tree	
4	Beilschmiedia dalzellii (Meisn.) Kosterm.	Lauraceae	Forest	Tree	
5	Bombax ceiba L.	Malvaceae	Forest	Tree	
6	Calamus thwaitesii Becc.	Arecaceae	Forest	Liana	
7	Careya arborea Roxb.	Lecythidaceae	Forest	Tree	
8	Catunaregam spinosa (Thunb.) Tirveng.	Rubiaceae	Forest	Tree	
9	Chamaecrista absus (L.) H. S. Irwin & Barneby	Leguminaceae	Forest	Herb	
10	Cissus repanda Vahl	Vitaceae	Forest	Shrub	
11	Combretum latifolium Blume	Combretaceae Fores		Liana	
12	Dalbergia horrida (Dennst.) Mabb.	Leguminosae	Forest	Liana	
13	Derris heyneana (Wight & Arn.) Benth.	Leguminosae	Forest	Liana	Endemic
14	Dillenia pentagyna Roxb.	Dilleniaceae	Forest	Tree	
15	Dimeria sp.	Poaceae	Plateau	Herb	
16	Dioscorea bulbifera L.	Dioscoriaceae	Forest	Climber	
17	Diospyros paniculata Dalzell	Ebenaceae	Forest	Tree	Endemic
18	Diospyros pruriens Dalzell	Ebenaceae	Forest	Tree	
19	Diploclisia glaucescens (Blume) Diels	Menispermaceae	Forest	Liana	
20	Embelia tsjeriam-cottam (Roem. & Schult.) A. DC.	Myrsinaceae	Forest	Tree	
21	Eriocaulon dalzellii Koern.	Eriocaulaceae	Plateau	Herb	Endemic
22	Eriocaulon eurypeplon Koern.	Eriocaulaceae	Plateau	Herb	Endemic
23	Flacourtia montana J. Graham	Flacourtiaceae	Forest	Tree	Endemic
24	Geissaspis tenella Benth.	Leguminaceae	Leguminaceae Plateau Herb		Endemic
25	Getonia floribunda Roxb.	Combretaceae	Forest	Liana	
26	<i>Glyphochloa henryi</i> Janarth., V.C.Joshi, S.Rajkumar	Poaceae	Plateau	Herb	Endemic

S.N.	Species name	Family	Habitat	Habit	Threatened status
27	Grewia nervosa (Lour.) Panigrahi	Tiliaceae	Forest	Shrub	
28	Grewia tiliifolia Vahl	Malvaceae	Forest	Tree	
29	Holigarna grahamii (Wight) Kurz	nii (Wight) Kurz Anacardiaceae Forest Tree			
30	Hopea ponga (Dennst.) Mabb.	Dipterocarpaceae	Forest	Tree	Endemic
31	Indigofera dalzellii T. Cooke	Leguminaceae	Plateau	Herb	Endemic
32	Indopoa paupercula (Stapf) Bor ex Ramamoorthy	Poaceae	Plateau	Herb	Endemic
33	Ischaemum semisagittatum Roxb.	Poaceae	Plateau	Herb	
34	Ixora brachiata Roxb.	Rubiaceae	Forest	Tree	Endemic
35	Lagerstroemia microcarpa Wight	Lythraceae	Forest	Tree	
36	Leea indica (Burm. f.) Merr.	Leeaceae	Forest	Tree	
37	Lepidagathis prostrata Dalzell	Acanthaceae	Plateau	Herb	
38	Lepisanthes tetraphylla (Vahl) Radlk.	Sapindaceae	Forest	Tree	
39	Lophopetalum wightianum Arn.	Celastraceae	Forest	Tree	
40	Memecylon umbellatum Burm. f.	Melastomataceae	Forest	Tree	
41	Moullava spicata (Dalzell) Nicolson	Leguminosae	Forest	Liana	Endemic
42	Murdannia semiteres (Dalzell) Santapau	Commelinaceae	Plateau	Herb	
43	Olea dioica Roxb.	Oleaceae	Forest	Tree	
44	<i>Ophiorrhiza rugosa</i> Wall. var. <i>prostrata</i> (D. Don) Deb & D. C. Monda	Rubiaceae Forest		Herb	
45	Paramignya monophylla Wight	Rutaceae	Forest	Tree	
46	Pterospermum diversifolium Blume	Malvaceae Forest		Tree	
47	Rhamphicarpa longiflora (Arn.) Benth.	Schrophulariaceae	Plateau	Herb	
48	Rhynchostylis retusa (L.) Blume	Orchidaceae	Forest	Epiphtic	
49	Schleichera oleosa (Lour.) Oken	Sapindaceae	Forest	Tree	
50	Smithia salsuginea Hance	Legumiaceae	Plateau	Herb	Endemic
51	Sterculia guttata Roxb. ex DC.	Sterculiaceae	Forest	Tree	
52	Strychnos nux-vomica L.	Loganiaceae	Forest	Tree	
53	Tabernaemontana heyneana Wall.	Apocynaceae	ae Forest Tree		Endemic
54	Tephrosia coccinea Wall.	<i>Tephrosia coccinea</i> Wall. Leguminaceae Forest		Herb	Endemic
55	<i>Terminalia bellirica</i> (Gaertn.) Roxb.	Combretaceae	Forest	Tree	
56	Terminalia elliptica Willd.	Combretaceae	Forest	Tree	
57	Ventilago denticulata Willd.	Rhamnaceae	Forest	Liana	

S.N.	Species name	Family	Habitat	Habit	Threatened status
58	Xantolis tomentosa (Roxb.) Raf.	Sapotaceae	Forest	Tree	
59	Ziziphus oenoplia (L.) Mill.	Rhamnaceae	Forest	Shrub	
60	Ziziphus rugosa Lam.	Rhamnaceae	Forest	Tree	

3.9 Faunal Assessment

Faunal Assessments were focused on the faunal groups such as Herpetofauna (Amphibians and Reptiles), Avifauna and Mammals. Details of these groups are discussed in below sections.

The faunal species survey were made along the transects locations mostly around 50 m width on either side. The location of the transects are discussed as below and presented in *Table 3.14* below

Transect No.	Habitats
Section 1: GT1	Intersecting the Lateritic Plateau and Moist Deciduous Forest at Tower LocationAP-4/0
Section 1: GT2	Running parallel to transmission line adjacent to Tower location 3/1 between the Lateritic Plateau and Moist Deciduous Forest
Section 2: GT3	Intersecting the Transmission line between Tower location R1-14 and 14/2 within the buffer area
Section 2: GT4	Runs parallel to the transmission line in Moist Deciduous Forest
Section 2: GT5	Runs diverging from the transmission line in the buffer area

 Table 3.14
 Transects for Faunal Survey

The location of the transects are provided in Figure 3.3 and Figure 3.4.

3.9.1 Herpetofauna

Most of the amphibians and reptiles are generalist and occur in various habitats and a few are habitat specific. There are burrowing, terrestrial, aquatic and arboreal species of amphibians and reptiles. Most of the amphibians and a few reptiles are only active during the monsoon season and a few species are active throughout the year.

The burrowing species mostly occupy habitats with good canopy cover and thus confined to the forests. Although there are a few exceptions. Most of the burrowing herpetofauna is thus active during monsoon season. The terrestrial species mostly confined to forest floor and are seen among leaf litter, under logs or rocks. These species are considerably sturdy and are seen throughout the year. Aquatic species are mostly seen close to streams, pools and rivers and are solely depend on these water sources for majority of their activities. Due to this specific requirement, they are mostly encountered during monsoon season. Many aquatic amphibians utilize stagnant pools and a few are only seen in the forest streams. The arboreal forms are also mostly seen in the forest habitats. Arboreal reptiles are seen throughout the year but amphibians and mostly seen during rainy season.

Many of the endemic herpetofauna is confined to natural and less disturbed forest habitats. The species which are widely distributed are mostly seen in the disturbed habitats as well.

Past Records of Herpetofauna from the region

Western Ghats of Goa –Brief Details

The Western Ghats region in Goa, although rich in floral and faunal diversity, the herpetofauna is poorly studied. Except a few anecdotal studies describing new species in the recent past, this region is grossly understudied for the amphibians and reptiles. Most of the present day understanding of the herpetofauna of this region is based on historical reports. In the last two decades, a few new species of amphibians and reptiles were described from the Western Ghats region of Goa. This region is a northernmost distribution limit for a few species of herpetofauna viz. *Ophiophagus hannah* (King cobra), *Hypnale hypnale* (Hump-nosed pit viper) and *Draco dussumieri* (Draco).

All these species are commonly seen in Goa but are uncommon or absent in the adjacent Western Ghats region of Maharashtra. Another endemic and Engangered species *Pedostibes tuberculosus* (Malabar tree toad) is also commonly seen in a few pockets in the Western Ghats region of Goa. Two species of caecilians *Gegeneophis goaensis* and *G. pareshi*, two species are frogs *Minervarya gomantaki* and *M. goemchi* and one species of lizard *Cnemaspis goaensis* are presently only known from the Western Ghats region of Goa.

Habitats in Transmission Line Route

Forest Near Tambdi Surla

The habitat near Tambdi Surla in Goa is mostly composed of tropical evergreen to tropical semievergreen forest over an elevation gradient. The forest at the lower altitude is slightly disturbed due to human interference but on higher reaches it is pristine. There are series of perennial streams in this patch and many of them were active during the study period. Some of these smaller streams forms cascades on higher riches and on lower altitude they are open and wider. Due to the presence of cane, thick undergrowth and steep terrain, a few places are inaccessible in this landscape. The pristine, less disturbed natural forest, rich undercover and presence of perennial streams are ideal requirements for the herpetofauna. The habitat in Goa is thus rich due to above mentioned ideal requirements and supports important herpetofaunal elements like *Ophiophagus hanna* (King cobra), *Python bivattatus* (Burmese python) and *Pedostibes tuberculosus* (Malabar tree toad).

Lateritic plateau

The other patch in the study area is a lateritic plateau, surrounded by thick vegetation. These plateaus appear barren during dry seasons but in monsoon they are the abode to many species of herpetofauna. They are also the breeding ground for many endemic amphibians and reptiles. These plateaus are highly exposed due to the lack of tree cover and appear less productive. But they are abode to many dry adapted species of herpetofauna like Saw-scaled viper, *Echis carinatus* and *Ophisops*. Two recently described species of frogs *Minervarya gomantaki* and *M. cepfi* was also predominantly seen on these lateritic plateaus.

Status of Amphibians

Amphibians are poikilothermic vertebrates, primarily depend of fresh water for their survival. Hence major activities of many amphibians and confined to rainy season. Although this rapid assessment survey was conducted after the rainy season we reported eight species of amphibians. Based on secondary reports and personal observations in the past, about 25 species of amphibians are reported from this region (Table 3.15).

The species commonly seen in the study area were Amboli bush frog, *Pseudophilautus amboli* and Netravali leaping frog, *Indirana salelkari*. Both these species were seen in the forest. Amboli bush frog was one of the commonest amphibians seen among dry leaf litter during the daytime also. The juveniles were also observed in the similar habitat. A few males were heard calling during the night. The other species frequently encountered during the survey period were *Indosylvirana* cf. *caeseri* and *Minervarya cepfi*. Other species were sighted ones or twice during the survey.

Most of the species encountered during this survey were known to occur in forest habitats with a few exceptions. The species like Amboli bush frog, Netravali leaping frog mostly seen in the forest and

close to human habitation as well. These frogs breed during the early monsoon months. Bush frogs mostly lay their eggs among moss on trees and leaping frogs lay terrestrial eggs on the forest floor or among open rocks. In bush frogs, free living tadpole stage is missing and babies hatch from eggs. In leaping frog tadpoles are also terrestrial and seen in damp places, many a times away from water sources as well.

The forest streams are abode to endemic lineages of frogs like Night frogs, *Nyctibatrachus*. In one of the cascades close to transmission line, many smaller sized *Nyctibatrachus* were observed. These appear to be an undescribed species based on their smaller size. Further studies in this regard is warranted. The other species, *Nyctibatrachus patreaus* was also observed in the other stream. This species is endemic to the northern Karnataka, Goa and southern Maharashtra.

The other endemic and uncommon species, *Indosylvirana* cf. *caesiri* was also observed near Tambdi Surla. These frogs also breed in forest streams. Interestingly, a few adults were observed among leaf litter in the forest away from the streams during the day. The common species like Indian bull frog *Hoplobatrachus tigerinus*, Ornate narrow-mouthed frog *Microhyla ornata*, cricket frogs *Minervarya* spp., Common Indian toad *Duttaphrynus melanostictus* are seen in less numbers. Most of these are terrestrial anurans and their poor encounter rate can be attributed to late monsoon season.

All the 25 species enlisted in the *Table 3.15* may not occur along the transmission line but are reported from this landscape. Species observed are presented in *Figure 3.8.*

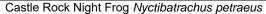
SN	Family	Full taxon	English Name	IWPA	IUCN. V2018-2
1.	Bufonidae	Duttaphrynus melanostictus	Common Indian Toad*	Schedule IV	LC
2.	Bufonidae	Pedostibes tuberculosus	Malabar Tree Toad	Schedule IV	EN
3.	Dicroglossidae	Euphlyctis cyanophlyctus	Five-fingered Frogs*	Schedule IV	LC
4.	Dicroglossidae	Fejervarya cepfi	CEPF Burrowing Frog*	Schedule IV	NA
5.	Dicroglossidae	Minervarya gomantaki	Goan Cricket Frog*	Schedule IV	NA
6.	Dicroglossidae	Minervarya goemchi	Goan Cricket Frog	Schedule IV	NA
7.	Dicroglossidae	Hoplobatrachus tigerinus	Indian Bull Frog*	Schedule IV	LC
8.	Dicroglossidae	Sphaerotheca breviceps	Indian Burrowing Frog	Schedule IV	LC
9.	Microhylidae	Microhyla ornata	Ornate Narrow-mouthed Frog*	Schedule IV	LC
10.	Microhylidae	Microhyla rubra	Reddish Narrow-mouthed Frog	Schedule IV	LC
11.	Microhylidae	Uperodon globulosus	Indian Balloon Frog	Schedule IV	LC
12.	Microhylidae	Uperodon mormorata	Marbled Ramanella	Schedule IV	EN
13.	Nyctibatrachidae	Nyctibatrachus petraeus	Castle Rock Night Frog	Schedule IV	LC
14.	Nyctibatrachidae	Nyctibatrachus sp.	Not identified		
15.	Ranidae	Hydrophylax bahuvistara	Wide-spread Fungoid Frog	Schedule IV	NA
16.	Ranidae	Indosylvirana cf. caesari	Maharashtra Golden- backed Frog	Schedule IV	NA
17.	Ranixalidae	Indirana chiravasi	Amboli Leaping Frog	Schedule IV	NA
18.	Ranixalidae	Indirana salelkari	Netravali Leaping Frog*	Schedule IV	NA

Table 3.15	Amphibians reported & recorded from the Transmission Line
	Route

SN	Family	amily Full taxon English Name		IWPA	IUCN. V2018-2
19.	Rhacophoridae	Polypedates maculatus	Common Indian Tree Frog*	Schedule IV	LC
20.	Rhacophoridae	Pseudophilautus amboli	Amboli Bush Frog	Schedule IV	CR
21.	Rhacophoridae	Raorchestes bombayensis	Maharashtra Bush Frog	Schedule IV	VU
22.	Rhacophoridae	Rhacophorus malabaricus	Malabar Gliding Frog	Schedule IV	LC
23.	Ichthyophiidae	Ichthyophis bombayensis	Bombay Caecilian	Schedule IV	LC
24.	Ichthyophiidae	Ichthyophis davidi	Chorla giant striped caecilian	Schedule IV	NA
25.	Indotyphlidae	Gegeneophis danieli	Daniel's Caecilian	Schedule IV	DD

* Species encountered during the survey

LC - Least Concerned, EN - Endangered, CR - Critically Endangered, NA - Not assessed


Figure 3.8 Amphibians recoded from the Study Area

Common Indian Toad Duttaphrynus melanostictus

Netravali Leaping Frog* Indirana salelkari

Chorla giant striped caecilian Ichthyophis davidi

Status of Reptiles

Reptiles are also poikilothermic vertebrates, but they are known to occur in varied habitats. Although there is no seasonality in many reptiles, a few species are active during the monsoon. In view of the rich diversity of flora and availability of good micro-habitats, there is rich diversity of reptiles in the study area.

The commonest species of reptile encountered during this study was Sahyadri Forest Lizard *Monilesaurus rouxii*. The juveniles and adults of this agamid lizards were encountered in most of the study sites. Interestingly only a few juvenile individuals of Common garden lizard *Calotes versicolor* were encountered during this survey. Other lizards commonly encountered during the study is Asian house gecko *Hemidactylus frenatus*. This landscape also harbours a good population of Prashad's geko *Hemidactyus prashadi*. Earlier considered as Endangered by IUCN due to its restricted range, t in recent years the range of this species was revised based on fresh reports from Maharashtra and Goa and now is considered as Least Concerned. This species was seen on trees in the forest and in the human settlement as well. The dwarf gecko *Cnemaspis* sp. is considerably common but a single individual was recorded in the study site during this survey. Three species of skinks and a species of gecko was recorded on the plateau. Among skinks, three specimens of Gunther's supple skink *Lygosoma guentheri* were seen under the rocks on the plateau. Seven individuals of gecko, *Hemidactylus murrayi* were also encountered under rocks on the plateau. This species is commonly seen in the forest, disturbed habitats and human settlement.

Among snakes, Green vine snake *Ahaetulla nasuta* was a common species encountered during the study period. This arboreal species prefers bushes and trees and seen in pristine and disturbed habitats and seen in Tambdi Surla and plateau as well. A juvenile inidvidual of Indian rock python was seen near the Tambdi Surla temple during one of the night surveys. This region has a good population of this species and juveniles are often seen during the monsoon. The other uncommon species observed during this survey was Hump-nosed pit viper *Hypnale hypnale*. Unlike other pit vipers, this species is terrestrial and seen among the leaf litter in the forest. two adult individuals of Common wolf snake *Lycodon aulicus* was seen close to a stream near Tambdi Surla. In the same stream a juvenile Cheqered keelback *Xenochorphis piscator* was also recorded.

Although not a single individual of Malabar pit viper *Trimeresurus malabaricus* was recorded during the study period, this place has a good population of this species. The King cobra, *Ophiophagus hannah* is also reported from this forest and they are frequently seen close to the forest streams during monsoon. Previously, other endemic species of snakes like Aquatic *Rhabdops Rhabdops aquaticus* and Khaire's black shieldtail *Melanophidium khairei* were also reported from this habitat.

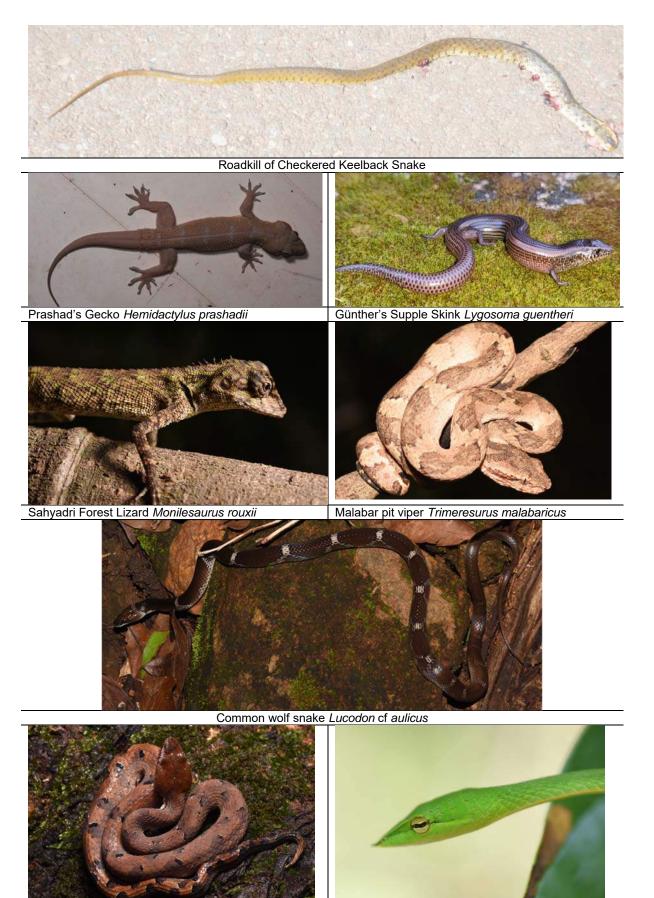
The species description is provided in *Table 3.16* and pictorial representation is given in *Figure 3.9*.

Sn	Family	Full taxon	English Name	IWPA,1971	IUCN v2018-2	
1.	Geomydidae	Melanochelys trijuga	Indian black turtle	Schedule IV	NT	
2.	Trionychidae	Lissemys punctata	Indian flapshell turtle Schedule I Part II		LC	
3.	Agamidae	Monilisaurus rouxii	Sahyadri Forest Lizard*	Schedule IV	LC	
4.	Agamidae	Calotes versicolor	Indian Garden Lizard*	Schedule IV	LC	
5.	Agamidae	Draco dussumieri	South Indian Flying Lizard	Schedule IV	LC	
6.	Gekkonidae	Cnemaspis cf. indraneildasii	Indraneil's Day Gecko*	Schedule IV	VU	
7.	Gekkonidae	Cyrtodactylus albofasciatus	Boulenger's Indian Gecko	Schedule IV	LC	
8.	Gekkonidae	Hemidactylus flaviviridis	Yellow Green House Gecko*	Schedule IV	LC	
9.	Gekkonidae	Hemidactylus frenatus	Asian House Gecko*	Schedule IV	LC	
10.	Gekkonidae	Hemidactylus leschenaultii	Bark Gecko	Schedule IV	LC	
11.	Gekkonidae	Hemidactylus murrayi	Murray's Gecko*	Schedule IV	LC	
12.	Gekkonidae	Hemidactylus prashadi	Prashad's Gecko*	Schedule IV	LC	
13.	Gekkonidae	Hemidactylus triedrus	Termite Hill Gecko	Schedule IV	LC	
14.	Lacertidae	Ophisops beddomei	Beddome's Lacerta	Schedule IV	LC	
15.	Mabuyidae	Eutropis carinata	Common Keeled Skink*	Schedule IV	LC	
16.	Mabuyidae	Eutropis macularia	Bronze Grass Skink*	Schedule IV	LC	
17.	Lygosomidae	Lygosoma goaensis	Goan Supple Skink	Schedule IV	DD	
18.	Lygosomidae	Lygosoma guentheri	Günther's Supple Skink*	Schedule IV	LC	
19.	Lygosomidae	Lygosoma lineata	Lined Supple Skink	Schedule IV	LC	
20.	Lygosomidae	Lygosoma punctata	Spotted Supple Skink	Schedule IV	LC	
21.	Ristellidae	Ristella beddomii	Beddome's Cat Skink	Schedule IV	LC	
22.	Varanidae	Varanus bengalensis	Bengal Monitor Lizard	Schedule I Part II	LC	
23.	Uropeltidae	Melanophidium khairei	Khaire's Black shieldtail	Schedule IV	NA	
24.	Uropeltidae	Uropeltis macrolepis	Large-scaled shieldtail	Schedule IV	LC	
25.	Pythonidae	Python molurus	Indian rock python*	Schedule I Part II	VU	
26.	Erycidae	Eryx conicus	Common sand boa	Schedule IV	NA	
27.	Erycidae	Eryx johnii	Red sand boa	Schedule IV	NA	
28.	Erycidae	Eryx whitakeri	Whitaker's boa	Schedule IV	NA	
29.	Colubridae	Ahaetulla nasuta	Green vine snake*	Schedule IV	LC	
30.	Colubridae	Ahaetulla pulverulenta	Brown vine snake	Schedule IV	LC	
31.	Colubridae	Chrysopelea ornata	Ornate flying snake	Schedule IV	LC	
32.	Colubridae	Dendrelaphis girii	Giri's bronzeback tree snake	Schedule IV	LC	
33.	Colubridae	Dendrelaphis tristis	Common bronzeback tree snake	Schedule IV	LC	
34.	Colubridae	Argyrogena fasciolata	Banded racer	Schedule IV	LC	
35.	Colubridae	Boiga beddomei	Beddome's Cat snake	Schedule IV	LC	
36.	Colubridae	Boiga ceylonensis	Ceylon Cat snake	Schedule IV	LC	
37.	Colubridae	Boiga forsteni	Forsten's Cat snake	Schedule IV	LC	
38.	Colubridae	Boiga trigonata	Common Cat snake	Schedule IV	LC	

Table 3.16 Reptiles recorded from the Study Area

Sn	Family	Full taxon	taxon English Name		IUCN v2018-2
39.	Colubridae	Coelognathus helena monticollaris	Montane trinket snake Schedule IV		LC
40.	Colubridae	Lycodon cf. aulicus	Common wolf snake*	Schedule IV	LC
41.	Colubridae	Lycodon striatus	White-banded wolf snake	Schedule IV	LC
42.	Colubridae	Lycodon travancoricus	Travancore wolf snake	Schedule IV	LC
43.	Colubridae	Oligodon arnensis	Banded kukri snake	Schedule IV	LC
44.	Colubridae	Oligodon taeniolatus	Variegated kukri snake	Schedule IV	LC
45.	Colubridae	Ptyas mucosa	Oriental rat snake	Schedule II Part II	LC
46.	Colubridae	Rhabdops aquaticus	Aquatic rhabdops	Schedule IV	NA
47.	Colubridae	Sibynophis subpunctatus	Dumeril's black-headed snake	Dumeril's black-headed Schedule IV	
48.	Colubridae	Amphiesma stolatum	Striped keelback	Schedule IV	LC
49.	Colubridae	Hebius beddomei	Beddome's keelback	Schedule IV	LC
50.	Colubridae	Macropisthodon plumbicolor	Green keelback	Schedule IV	LC
51.	Colubridae	Xenochrophis piscator	Checkered keelback*	Schedule II Part II	LC
52.	Elapidae	Bungarus caeruleus	Common Indian krait	Schedule IV	LC
53.	Elapidae	Calliophis castoe	Castoe's coral snake	Schedule IV	DD
54.	Elapidae	Calliophis nigrescens	Striped coral snake	Schedule IV	LC
55.	Elapidae	Naja naja	Spectacled cobra	Schedule II Part II	LC
56.	Elapidae	Ophiophagus hannah	King cobra	Schedule II Part II	LC
57.	Viperidae	Hypnale hypnale	Hump-nosed pit viper*	Schedule IV	LC
58.	Viperidae	Trimeresurus gramineus	Bamboo pit viper	Schedule IV	LC
59.	Viperidae	Trimeresurus malabaricus	Malabar pit viper	Schedule IV	LC
60.	Viperidae	Daboia russelii	Russell's viper Schedule II Part II		LC
61.	Viperidae	Echis carinatus	Indian saw-scaled viper	Schedule IV	LC
62.	Typhlopidae	Grypotyphlops acutus	Beaked Worm snake	Schedule IV	LC
63.	Typhlopidae	Indotyphlops braminus	Brahminy Worm snake	Schedule IV	LC
			1	1	

* Species encountered during the survey LC - Least Concerned, EN - Endangered, CR - Critically Endangered, NA - Not assessed


Reptiles recoded from the Study Area Figure 3.9

Common Keeled Skink Eutropis carinata

Asian House Gecko Hemidactylus frenatus

Hump-nosed pit viper Hypnale hypnale

Green vine snake Ahaetulla nasuta

South Indian Flying Lizard Draco dussumieri

Threatened Species

This region is known to inhabit 88 species of amphibians and reptiles of which seven species are in the threatened category of IUCN and remaining are either Least Concerned or Dada Deficient. There are a few species which are not yet assessed as they are recently described. These threatened species are listed in *Table 3.17*.

Sn	Family Full taxon		English Name	IUCN v2018-2
1.	Rhacophoridae	Pseudophilautus amboli	Amboli Bush Frog	CR
2.	Bufonidae	Pedostibes tuberculosus	Malabar Tree Toad	EN
3.	Microhylidae	Uperodon mormorata	Marbled Ramanella	EN
4.	Rhacophoridae	Raorchestes bombayensis	MaharashtraBush Frog	VU
5.	Geomydidae	Melanochelys trijuga	Indian Black Turtle	NT
6.	Gekkonidae	Cnemaspis cf. indraneildasii	Indraneil's Day Gecko	VU
7.	Pythonidae	Python molurus	Indian rock python	VU

Table 3.17 Threatened Species

Endemic Species

None of the listed species of amphibian and reptile is endemic to this part of the Western Ghats of Goa.

3.9.2 Avifauna

Avifaunal surveys were undertaken along the 5 transects within a study area. Point counts were made in 50 m radius plots at

Species Richness

Total bird species richness, i.e. total number of species recorded from the transects recorded were Twenty Five (25), representing Twenty Four (22) genus from Seventeen families (16). Out of twenty five species, ten species were recorded from transects located at the edge of forest and grasslands and rest fifteen species were recorded from transects located in forested habitats.

Pompadour green pegion (*Treron pompadora*), White rumped shama (*Copsychus malabaricus*), redwhiskered bulbul (*Pycnonotus jocosus*), Malabar Pied Hornbill (*Anthracoceros coronatus*) etc. were recorded from the mosaic of grassland and forest habitat at the edge of forest. Species like Malabar Trogon (*Harpactes fasciatus*), Malabar grey Hornbill (*Ocyceros griseus*), Asian Paradise flycatcher (*Terpsiphone paradise*), Crimson Backed sunbird (*Leptocoma minima*), Malabar woodshrike (*Tephrodornis sylvicola*) etc. were recorded from forested habitat. Most of the species were recorded during diurnal survey, but Jungle Owlet (Glaucidium radiatum) and Sri Lanka frogmouth (Batrachostomus moniliger) were recorded during night survey.

Details of all the species recorded during the transect survey is provided in Table3.18 and pictorial representation is provided in *Figure 3.10*.

SNo.	Family	Scientific Name	Common Name	Food Habit	Numbers Recorded	Transect Recorde d from	Sch. of IWPA, 1972	IUCN (v201 8-1)
1	Phasianidae	Gallus sonneratti	Grey Junglefowl	GR	2	GT3	II	LC
2	Columbidae	Streptopelia chinensis	Spotted Dove	GR	3	GT1, GT2	IV	LC
3		Treron pompadora	Pompadour green pegion	FR	4	GT1, GT2	IV	LC
4	Cuculidae	Surniculus lugubris	Drongo Cuckoo	I	1	GT2	IV	LC
5	Cuculidae	Eudynamys scolopacea	Asian Koel	FR	2	GT1	IV	LC
6	Dicruidae	Dicrurus paradiseus	Greater Racket- tailed drongo	1	2	GT3	IV	LC
7	Strigidae	Glaucidium radiatum	Jungle Owlet	CR	2	GT5	IV	LC
8	Trogonidae	Harpactes fasciatus	Malabar Trogon	1	4	GT3, GT5	IV	LC
9	Alcedinidae	Alcedo atthis	Small blue kingfisher	CR	1	GT3	IV	LC
10		Ceyx erillzacus	Oriental dwarf kingfisher	CR	1	GT2	IV	LC
11	Bucerotidae	Ocyceros griseus	Malabar grey Hornbill	FR	3	GT4, GT5	IV	LC
12		Anthracoceros coronatus	Malabar Pied Hornbill	ОМ	1	GT2	1	NT
13	CapitonIdae	Psilopogon viridis	White checked Barbet	FR	1	GT4	IV	LC
14		Dinopium javanense	Common golden backed woodpecker	I	1	GT4	IV	LC
15	Vabgidae	Tephrodornis sylvicola	Malabar woodshrike	1	11	GT3, GT4	IV	LC
16	Pycnonotidae	lole indica	Yellow browed bulbul	FR	2	GT3, GT5	IV	LC
17		Pycnonotus gularis	flame-throated bulbul	FR	5	GT3, GT4	IV	LC
18		Pycnonotus jocosus	red-whiskered bulbul	FR	1	GT1	IV	LC
19	Muscicapidae	Copsychus saularis	oriental magpie- robin	I	1	GT1	IV	LC
20		Copsychus malabaricus	White rumped shama	I	2	GT1	IV	LC
21	Monarchidae	Terpsiphone paradisi	Asian Paradise flycatcher	I	1	GT3	IV	LC
22	Nectariniidae	Leptocoma zeylonica	Purple rumped sunbird	N	2	GT4	IV	LC

Details of Species Recorded from the Study Area Table 3.18

23		Leptocoma minima	Crimson Backed sunbird	N	7	GT4, GT5	IV	LC
24		Cinnyris asiaticus	Purple Sunbird	Ν	1	GT2	IV	LC
25	Podargidae	Batrachostomus moniliger	Sri Lanka frogmouth	I	1	GT5	I (part III)	LC

Source – ERM Primary Survey

Food Habit: Aq A- Aquatic Animals, GR– Granivorous, FR- Frugivorous, CR- Carnivorous, I- Insectivorous, N- Nectar eater, OM- Omnivorous.

IUCN Status: LC- Least Concern, NT- Near Threatened

Figure 3.10 Avifauna Recorded During Survey

Red-whiskered bulbul

Flame-throated bulbul

Grey Junglefowl

Common golden backed woodpecker

Crimson backed Sunbird

Purple Sunbird

Black Hooded Oriole

Malabar Woodshrike

Magpie Robin

Grey Wagtail

Overall Species Richness

To overcome the limitations of this particular survey and to have an understanding of the overall species richness of the study area, a cumulative list of all the species found in the study area was prepared based on Zoological Survey of India archive¹. Based on this secondary information, overall species richness i.e. total number of species that can be found in the study area is one hundred and four (104). Secondary information was found to complement the primary survey, as all 25 species recorded were reported to be present in the study area. The details are presented in *Table 3.19*.

Table 3.19 Potential Species List likely to be observed from the Study Area

SNo.	Family	Scientific name	Common name	Residentia I status	Endemic to Western Ghats	Food habits	Breeding season	Numbers Recorded	Schedule of WPA, 1972	IUCN status (v2018-1)
1.	Ardeidae	Ardeolo grayii	Indian Pond Heron	R/LM	No	Aq A	November to February	0	IV	LC
2.		Gorsacllius melanoloplzus	Malayan Night Heron	R	No	Aq A	May to August	0	IV	LC
3.	Ciconlidae	Ciconia episcopus	Wooly-necked stork	R	No	Aq A, I	December to March	0	IV	VU
4.		Ciconia cicollia	White stork	WV	No	AqA, CR	Extralimital	0	IV	LC
5.	Thresklorni thidae	Pseudibis papillosa	Red Naped Ibis	R	No	OM	March to October	0	IV	LC
6.		Platalea leucorodia	Eurasian Spoonbill	WV/R (Partly Nomadic)	No	Aq A & Vg M	Extralimital/No vember to January	0	l (part III)	LC
7.	Accipitridae	Ariceda leuphotes	Black Baza	R [′]	No	CR	February to July	0	I (part III)	LC
8.		Penlis ptilorhyncus	Oriental Honey Buzzard	R/LM	No	CR	February to June	0	I (part III)	LC
9.		Elanus careleus	Black shouldered Kite	R	No	1 &CR	Entire year	0	I (part III)	LC
10.		Spilornis cheela	Crested Serpent eagle	R	No	CR	December to March	1	I (part III)	LC
11.		Accipiter trivirgatus	Crested Goshawk	R	No	CR	March to May	0	l (part III)	LC
12.		Accipiter badius	Shikra	R	No	CR	March to June	0	I (part III)	LC
13.		Accipiter virgatus	Besra Sparrow Hawk	R	No	CR	March to May	0	I (part III)	LC

1 Fauna of Goa, State Fauna Series 16, Zoological Survey of India; January, 2008

SNo.	Family	Scientific name	Common name	Residentia I status	Endemic to Western Ghats	Food habits	Breeding season	Numbers Recorded	Schedule of WPA, 1972	IUCN status (v2018-1)
14.		Accipiter nisus	Eurasian Sparrowhawk	WV	No	CR	Extralimital	0	I (part III)	LC
15.		Butastur teesa	White eyed Buzzard	R	No	CR	February to May	0	I (part III)	LC
16.		lcrillaellts malyanensis	Black Eagle	R	No	CR, I	November to March	1	I (part III)	LC
17.		Aquila rapax	Tawny Eagle	R	No	CR	November to April	0	I (part III)	LC
18.	Falconidae	Falco tinunculus	Common Krestel	WV, R (Breeding)	No	CR, I	January to March (W. Ghats)	0	IV	LC
19.		Falco peregrillus	Peregrine falcon	WV, R	No	CR	Extralimital, March to May in Himalayas	0	l (part III)	LC
20.	Phasianida e	Perdicula argoondah	Rock Bush-Quail	R	No	GR	March to November	0	IV	LC
21.	C C	Galloperdix .spadicea	Red spurfowl	R	No	GR	January to June	0	IV	LC
22.		Galoperdix lunulata	Painted spurfowl	R	No	OM	January to June	0	IV	LC
23.		Gallus sonneratti Temminck	Grey Junglefowl	R	No	GR	February to May	2	IV	LC
24.	Rallidae	Amaurornis phoenicurus	White Breasted Waterhen	R	No	OM	April to October	0	IV	LC
25.	Charadriida e	•	Red-Wattled Lapwing	R	No	Vg M, I	March to September	0	IV	LC
26.	Scolopacid ae	Gallinago gallinago	Common Snipe	WV	No	Aq A	Extralimital	0	IV	LC
27.	40	Lymnocryptesminimus	Jack Snipe	WV	No	Aq A, I	Extralimital	0	IV	LC
28.		Tringa stagnatilis	Marsh Sandpiper	WV	No	Aq A	Extralimital	0	IV	LC
29.		Tringa nebularia	Commom Greenshank	WV	No	Aq A	Extralimital	0	IV	LC
30.		Tringa ochropus Linnaeus	Green Sandpiper	WV	No	AQ A	Extralimital	0	IV	LC
31.		Actitis hypoleucos Linnaeus	Commom sandpiper	WV	No	AQ A	Extralimital	0	IV	LC
32.	Columbida e	Columba eiphinstonii	Nilgiri wood pegion	R/LM	Yes	FR	April to June	0	IV	VU
33.	-	Streplopelia orienlalis	Oriental turtle dove	SM (wintering)	No	GR	May to July	0	IV	LC

SNo.	Family	Scientific name	Common name	Residentia I status	Endemic to Western Ghats	Food habits	Breeding season	Numbers Recorded	Schedule of WPA, 1972	IUCN status (v2018-1)
34.		Streptopelia chinensis	Spotted Dove	R/LM	No	GR	All over the year	3	IV	LC
35.		Chalcophapsindica	Emerald Dove	R	No	GR	All over the year	0	IV	LC
36.		Treron bicincta	Orange breasted green pigeon	R/SM/LM	No	FR	March to September	0	IV	LC
37.		Treron pompadora	Pompadour green pegion	R/LM	No	FR	December to March	4	IV	LC
38.		Ducula aenea	Greem Imperial Pegion	R/LM	No	FR	February to June	0	IV	LC
39.		Ducula badia	Mountain Imperial Pegion	R/SM/LM	No	FR	January to May	0	IV	LC
40.	Psittacidae	Psinacula cyanocephala	Plum Headed Parakeet	R/LM	No	FR, N	December to April	0	IV	LC
41.		Psittacula columboides		R (Nomadic)	Yes	FR & GR	January to March	0	IV	LC
42.	Cuculidae	Clamator jacobinus	Pied Crested Cuckoo	MV	No	I	June to September	0	IV	LC
43.		Cuculus poliocephalus	Lesser Cuckoo	Wintering/P M	No	I	May to July	0	IV	LC
44.		Cacomantis sonneratii	Banded Bay Cuckoo	R/SM/LM	No	I	February to August	0	IV	LC
45.		Cacomantis passerinus	Indian Plainitive cuckoo	R/LM/Nom adic	No	I	June to September	0	IV	LC
46.		Surniculus lugubris	Drongo Cuckoo	R/LM/Nom adic	No	I	March to October	1	IV	LC
47.		Eudynamys scolopacea	Asian Koel	R/LM/Nom adic	No	FR	March to August	2	IV	LC
48.	Dicruidae	Dicrurus paradiseus	Greater Racket- tailed drongo	R	No	I	April to August	2	IV	LC
49.	Strigidae	Otus sunia	Oriental scops owl	R	No	I & CR	February to May	0	IV	LC
50.		Otus bakkamoena	Collard Scops Owl	R	No	I & CR	January and February	0	IV	LC
51.		Glaucidium radiatum	Jungle Owlet	R	No	I & CR	March to May	2	IV	LC
52.	Apodidae	Collocalia unicolor	Indian edible nest swiftlet	R	Yes	Ι	March to June		l (part III)	LC
53.		Apus affinis	House Swift	R/LM	No	I	All year except November to February	0	IV	LC

SNo.	Family	Scientific name	Common name	Residentia I status	Endemic to Western Ghats	Food habits	Breeding season	Numbers Recorded	Schedule of WPA, 1972	IUCN status (v2018-1)
54.	Hemiprocni dae	Hemiprocne coronata	Crested Tee swift	R/SM/LM	No	I	December to July	0	IV	LC
55.	Trogonidae	Harpactes fasciatus	Malabar Trogon	R	Yes	I	February to May	4	IV	LC
6.	Alcedinidae	Alcedo atthis	Small blue kingfisher	R	No	Aq A	February to September	1	IV	LC
57.		Alcedo meninting	Blue eared Kingfisher	R	No	Aq A	May to June	0	IV	LC
8.		Ceyx erillzacus	Oriental dwarf kingfisher	R/MV	No	Aq A	July to September	1	IV	LC
59.		Halcyon smyrnensis	White breasted kingfisher	R/LM	No	OM	January to August	0	IV	LC
60.	Meropidae	Nyctyornis athertoni	Blue beared bee eater	R	No	I	February to August	0	IV	LC
51.		Merops leschenaulti	Chestnut headed bee eater	R/SM	No	I	February to June	0	IV	LC
2.	Coraciidae	Coracias garrulus	European Roller	PM	No	I	Extralimital	0	IV	LC
3.	Upupidae	Upupa epops	Common Hoopoe	R/WV	No	I	January to April	0	IV	LC
64.	Bucerotida e	Ocyceros griseus	Malabar grey Hornbill	R	Yes	FR	January to March	3	IV	LC
65.	-	Ocyceros biroslris	Indian grey hornbill	R/LM	No	OM	March to June	0	IV	LC
6.		Anlhracoceros coronatus	Malabar Pied Hornbill	R/LM	Yes	FR, CR	March and April	1	l (part III)	NT
67.		Buceros bicornis	Great pied Hornbill	R/LM	No	FR	February to April	0	l (part III)	NT
68.	CapitonIda e	A1egalaima virdis	White checked Barbet	R	Yes	FR	December to March	1	IV	LC
9.		Picunmus innominatus	Spekled Piculet	R	No	I	January to March	0	IV	LC
0.		Dendrocopos nanus	Brown capped pygmy wood pecker	R	No	I	February to July	0	IV	LC
71.		Celeus brachyurus	Rufous woodpecker	R	No	I	February to April	0	IV	LC
72.		Dryocopus javensis	White Bellied woodpecker	R	No	I	January to March	0	IV	LC

SNo.	Family	Scientific name	Common name	Residentia I status	Endemic to Western Ghats	Food habits	Breeding season	Numbers Recorded	Schedule of WPA, 1972	IUCN status (v2018-1)
73.		Picus cholorolophus	Small yellow napped woodpecker	R	No	I	January to May	0	IV	LC
74.		Dinopium javanense	Common golden backed woodpecker	R	No	I	January to May	1	IV	LC
75.	Vabgidae	Tephrodornis sylvicola	Malabar woodshrike	R	Yes	I	-	11	IV	LC
76.	Alaudidae	Calandrella brachydactyla	Greater short toed lark	WV	No	GR,I	Extralimital	0	IV	LC
77.	Hirundinida e	Riparia riparia	Sand martin	wintering	No	I	October to March	0	IV	LC
78.		Riparia paludicola	Plain martin	Wintering	No	I	October to May (in N. India)	0	IV	LC
79.		Hirundo fluvicola	Streak throated swallow	wintering	No	I	All year	0	IV	LC
80.		Delichon urbica	Northern house martin	WV	No	I	Extralimital	0	IV	LC
81.	Motacillida e	Dendronanthus indius	Forest wagtail	WV	No	I	Extralimital	0	IV	LC
82.		Anthus richardi	Richard's Pipit	WV	No	I	Extralimital	0	IV	LC
83.		Anthus godlewskii	Blyth's Pipit	WV	No	I	Extralimital	0	IV	LC
84.	Campepha gidae	Coracina macei	Large cuckoo shrike	R/LM	No	I	January to October	0	IV	LC
85.	Pycnonotid ae	Pycnonotu. priocephalus	Grey-headed Bulbul	R	Yes	FR	March to july	0	IV	NT
86.		lole indica	Yellow browed bulbul	R	Yes	FR	February to May	2	IV	LC
87.		Pycnonotus gularis	flame-throated bulbul	R	Yes	FR	February to April	5	IV	LC
88.		Pycnonotus jocosus	red-whiskered bulbul	R	No	FR	March to October	1	IV	LC
89.	Laniidae	Lanius cristatus	Brown shrike	WV	No	I	Extralimital	0	IV	LC
90.		Lanius schach	Long Tailed shrike	R/SM	No	OM	March to June	0	IV	LC
91.	Muscicapid ae	Monticola cinclorhynchus	Blue headed Rock thrush	Wintering	No	OM	May to July	0	IV	LC
92.		Luscinia brunnea	Indian blue robin	WV	No	I	extralimital	0	IV	LC

SNo.	Family	Scientific name	Common name	Residentia I status	Endemic to Western Ghats	Food habits	Breeding season	Numbers Recorded	Schedule of WPA, 1972	IUCN status (v2018-1)
93.		Copsychus saularis	oriental magpie- robin	R	No	I	March to July	1	IV	LC
94.		Copsychus malabaricus	White rumped shama	R	No	I	April to June	2	IV	LC
95.	Timaliinae	Garrulax delesserti	Wynaad Laughingthrush	R	Yes	I	July to September	0	IV	LC
96.		Pellomeum ruficeps	Spotted babbler	R	No	I	April to September	0	IV	LC
97.		Rhopociclrla alriceps	Dark Fronted babbler	R	Yes	I	March to July	0	IV	LC
98.		Turdoides subrufus	Indian rufous babbler	R	Yes	I	February to November	0	IV	LC
99.		Alcippe poioicephala	Brown cheeked fulvetta	R	No	I	January to May	0	IV	LC
100.	Monarchid ae	Terpsiphone paradisi	Asian Paradise flycatcher	R	No	I	-	1	IV	LC
101.	Nectariniid ae	Leptocoma zeylonica	Purple rumped sunbird	R	No	Ν	February to April	2	IV	LC
102.		Leptocoma minima	Crimson Backed	R	Yes	Ν	September to April	7	IV	LC
103.		Cinnyris asiaticus	Purple Sunbird	R	No	Ν	February to April	1	IV	LC
104.	Podargidae	Batrachostomus moniliger	Sri Lanka frogmouth	R	Yes	I	-	1	l (part III)	LC
105	Oriolidae	Oriolus xanthornus	Black-Hooded oriole	R	No	I, FR	February to April	1	IV	LC

Notes: Food Habit: Aq A- Aquatic Animals, GR– Granivorous, FR- Frugivorous, CR- Carnivorous, I- Insectivorous, N- Nectar eater, OM- Omnivorous. IUCN Status: LC- Least Concern, NT- Near Threatened, VU- Vulnerable

Endemism

Out of all the 104 recorded and reported species, sixteen (16) species are endemic to Western Ghats. Nine (9) endemic avian species were recorded during primary survey. Details of endemic species recorded and reported from the study are provided below in *Table 3.20*

SNo.	Scientific name	Common name	Recorded during Primary survey	Schedule of WPA, 1972	IUCN status (v2018-1)
1.	Columba eiphinstonii	Nilgiri wood pegion	No	IV	VU
2.	Psittacula columboides	Blue winged Parakeet	No	IV	LC
3.	Collocalia unicolor	Indian edible nest swiftlet	No	I	LC
4.	Harpactes fasciatus	Malabar Trogon	Yes	IV	LC
5.	Ocyceros griseus	Malabar grey Hornbill	Yes	IV	LC
6.	Anlhracoceros coronatus	Malabar Pied Hornbill	Yes	I	NT
7.	A1egalaima virdis	White checked Barbet	Yes	IV	LC
8.	Tephrodornis sylvicola	Malabar woodshrike	Yes	IV	LC
9.	Pycnonotu.· priocephalu s	Grey-headed Bulbul	No	IV	NT
10.	lole indica	Yellow browed bulbul	Yes	IV	LC
11.	Pycnonotus gularis	flame-throated bulbul	Yes	IV	LC
12.	Garrulax delesserti	Wynaad Laughingthrush	No	IV	LC
13.	Rhopociclrla alriceps	Dark Fronted babbler	No	IV	LC
14.	Turdoides subrufus	Indian rufous babbler	No	IV	LC
15.	Leptocoma minima	Crimson Backed sunbird	Yes	IV	LC
16.	Batrachostomus moniliger	Sri Lanka frogmouth	Yes	I	LC

Table 3.20 Endemic Avian Species of the Study Area

Status of Bird Migration

All 25 species of birds recorded from the study area are residential birds, no migratory birds were recorded during the primary survey. However of a total 104 species reported from the study area, Twenty six (26) migratory species can be found in the study area, viz. White stork, Eurasian Sparrowhawk, Common Snipe, Jack Snipe, Marsh Sandpiper, Commom Greenshank, Green Sandpiper, Commom sandpiper, Lesser Cuckoo, Greater short toed lark, Sand martin, Plain martin Streak throated swallow, Northern house martin, Forest wagtail, Richard's Pipit, Blyth's Pipit, Brown shrike, Blue headed Rock thrush, Indian blue robin.

Status of Foraging Guild

The foraging guide is derived from what the bird species predominantly feeds on. Out of thwenty five species recorded from primary survey, maximum nine species were found to be Insectivorous (36%). Seven species were frugivorous (28%). Three species were found to be carnivorous (12%). Three species were nectar eater (12%). Two are granivorous (8%) and one Omnivorous (4%).

3.9.3 Mammals

Species Richness

In the Goa section of the study area, a total eight (8) species of eight (8) different genera were recorded through direct sightings and signs of species presence. The species recorded through direct sighting include Gaur (*Bos gaurus*), Grey Mongoose (*Herpestes edwardsii*), Bonnet Macaque (*Macaca radiate*), Malabar Giant Squirrel (*Ratifa indica*), Southern Plains Langur (*Semnopithecus entellus*). Signs such as pellet of Sambar (*Rusa unicolor*), quills of Indian Porcupine (*Hystrix indica*), and resting places of Wild Pig (*Sus scrofa*) were also recorded during transects. All the eight species recorded from Goa section belong to seven (7) families namely, *Herpestidae*, *Bovidae*, *Cercopithecidae*, *Sciuridae*, *Cervidae*, *Hystricidae*, and *Suidae*. Malabar Giant Squirrel (*Ratifa indica*) and Bonnet Macaque (*Macaca radiate*) were the species sighted most frequently across the study area.

SNo.	Common Name	Scientific Name	Number Recorded	Recorded from Transect	IUCN Status	WPA Status	Type of Sighting/Sign
1	Gaur	Bos gaurus	1		VU	Sch I (Part I)	Direct
2	Grey Mongoose	Herpestes edwardsii	1	GT3	LC	Sch II (Part I)	Direct
3	Bonnet Macaque	Macaca radiate	8	GT1, GT3, GT4	LC	Sch II (Part I)	Direct
4	Indian/Malabar Giant Squirrel	Ratufa indica	5	GT1, GT2, GT5	LC	Sch II (Part I)	Direct
5	Southern Plains Langur	Semnopithecus entellus	4	GT2	LC	Sch II (Part I)	Direct
6	Sambar	Rusa unicolor	1	GT3	VU	Sch III	Pellets
7	Indian Porcupine	Hystrix indica	1	GT5	LC	Sch IV	Quills
8	Wild Boar	Sus scrofa	3	GT1, GT5	LC	Sch III	Resting Place

 Table 3.21
 Details of Sightings in Transmission Line Corridor

Source: ERM Primary Survey

Figure 3.11 Mammal Species recorded in Transmission Line Corridor

Malabar Giant Squirrel

Bonnet Macaque

Black-faced Langur

Indian Porcupine (Quill)

Overall Species Richness of Mammals

Secondary information collected from forest department and previous studies /reports in the study area were used for preparing the complete checklist of the mammals. In the Goa, a total 41 species of mammals belonging to 35 genera of 20 families have been reported. The details are presented in *Table 3.22* and *Table 3.23*.

Taxonomic group	Goa Section D/ID Sighting	Goa Section Overall
Species	8	41
Genus	8	35
Family	7	20

Table 3.22Taxonomic Status of Mammals

Threatened Species

Out of which 41 species recorded from Bhagwan Mahaveer Wildlife Sanctuary, 8 species are protected under Schedule I of Wildlife (Protection) Act 1972 and are of conservation significance. These species include Leopard (*Panthera pardus*), Gaur (*Bos gaurus*), Slender Loris (*Loris tardigradus*), Indian Pangolin (*Manis crassicaudata*), Sloth Bear (*Melursus ursinus*), Mouse Deer (*Moschiola indica*), Leopard Cat (*Prionailurus bengalensis*) and Fishing Cat (*Prionailurus viverrinus*).

Slender Loris (*Loris tardigradus*) and Indian Pangolin (*Manis crassicaudata*) are EN (IUCN Red-List V2018-2)" while other species viz. Gaur (*Bos gaurus*), Common Leopard (*Panthera pardus*), Sloth Bear (*Melursus ursinus*) and Fishing Cat (*Prionailurus viverrinus*) are listed as "VU in the IUCN Red List. Mouse Deer (*Moschiola indica*) and Leopard Cat (*Prionailurus bengalensis*) are listed as LC.

Table 3.23	Checklist of Mammals in Bhagwan Mahaveer Wildlife Sanctuary, Goa
------------	--

SNo	Family	Common Name	Scientific Name	Preferred Habitat	Recorded in T/L Route	IUCN Status	WPA Status
1	Cervidae	Spotted Deer/Chital	Axis axis	Dense moist evergreen forest, deciduous forest	N	LC	Sch III
2	Cervidae	Sambar	Cervus unicolor	Moist and dry deciduous forest	Y	VU	Sch III
3	Cervidae	Indian Muntjac/Barking Deer	Muntiacus muntjak	Dense/open, deciduous/evergreen forest	N	LC	Sch III
4	Bovidae	Gaur	Bos gaurus	Evergreen and moist deciduous	Y	VU	Sch I (Part I)
5	Canidae	Golden Jackal	Canis aureus	Scrubland, Grassland/Savannah	N	LC	Sch II (Part I)
6	Canidae	Dhole	Cuon alpinus	Dry/moist deciduous forest, evergreen/semi evergreen forest	N	EN	Sch II (Part I)
7	Ursidae	Sloth Bear	Melursus ursinus	Subtropical/tropical forest, scrubland	N	VU	Sch I (Part I)
8	Felidae	Leopard Cat	Prionailurus bengalensis	Tropical forest, scrubland	N	LC	Sch I (Part I)
9	Felidae	Fishing Cat	Prionailurus viverrinus	Marshland, lowland areas	N	VU	Sch I (Part I)
10	Felidae	Leopard	Panthera pardus	Wide range of forest types, scrubland, grassland, rocky areas	Y	VU	Sch I (Part I)
11	Felidae	Jungle Cat	Felis chaus	Grassland, Scrubland, desert	N	LC	Sch II (Part I)
12	Cercopithecidae	Bonnet Macaque	Macaca radiate	All forest types, plantation, agricultural lands	Y	LC	Sch II (Part I)
13	Cercopithecidae	Hanuman/Black-faced Langur	Semnopithecus entellus	Urban environment, near human habitations	Y	LC	Sch II (Part I)
14	Herpestidae	Grey Mongoose	Herpestes edwardsii	Subtropical/tropical dry forest, Scrubland, grassland	Y	LC	Sch II (Part I)
15	Herpestidae	Ruddy Mongoose	Herpestes smithii	Subtropical/tropical dry forest, Scrubland	N	LC	Sch II (Part I)
16	Herpestidae	Stripe-necked Mongoose	Herpestes vitticollis	Deciduous/evergreen forest, scrubland	N	LC	Sch II (Part I)
17	Hystricidae	Indian Porcupine	Hystrix indica	Tropical/temperate scrubland, forest, grassland	Y	LC	Sch IV

SNo	Family	Common Name	Scientific Name	Preferred Habitat	Recorded in T/L Route	IUCN Status	WPA Status
18	Suidae	Wild Boar	Sus scrofa	Tropical , temperate forest, scrubland, grassland, agricultural landscape	N	LC	Sch III
19	Tragulidae	Mouse Deer	Moschiola meminna	Tropical deciduous and moist evergreen forest	N	LC	Sch I (Part I)
20	Viverridae	Common Palm Civet	Paradoxurus hermaphroditus	Deciduous/ evergreen forest, village/urban environments	N	LC	Sch II (Part I)
21	Leporidae	Indian/Black-naped Hare	Lepus nigricollis	Subtropical/tropical scrubland, forest	Ν	LC	Sch IV
22	Lorisidae	Slender Loris	Loris tardigradus	Subtropical/tropical forest, artificial plantations	N	EN	Sch I
23	Manidae	Indian Pangolin	Manis crassicaudata	Subtropical/tropical forest, scrubland, grassland	N	EN	Sch I (Part I)
24	Muridae	Lesser Bandicoot Rat	Bandicota bengalensis	Agricultural landscape, dry deciduous forest	N	LC	Sch IV
25	Muridae	Large Bandicoot Rat	Bandicota indica	Agricultural landscape, grassland dry deciduous forest	N	LC	Sch IV
26	Muridae	White-tailed Wood Rat	Cremnomys blanfordi	Tropical/sub-tropical dry deciduous scrub	N	LC	Sch V
27	Muridae	Indian Gerbil	Tatera indica	Dry deciduous, scrub forest, grassland	N	LC	Sch IV
28	Muridae	Long-tailed Tree Mouse	Vandeleuria oleracea	Dry, moist deciduous forest, grassland, scrubland	N	LC	Sch V
29	Muridae	Little Indian Field Mouse	Mus booduga	Croplands, dry and deciduous forest	Ν	LC	Sch IV
30	Muridae	Spiny Field Mouse	Mus platythrix	Dry deciduous, scrub forest, cropland	N	LC	Sch IV
31	Muridae	House Rat	Rattus rattus	Grassland, scrubland, natural/semi- natural habitat	N	LC	Sch IV
32	Vespertilionidae	Indian Pipistrelle	Pipistrellus coromandra	Forest, agricultural landscape, subterranean habitat	N	LC	-
33	Vespertilionida	Indian Pygmy Bat	Pipistrellus tenuis	Wet/humid forest, urban environment	N	LC	-
34	Pteropodidae	Lesser Dog-faced Fruit Bat	Cynopterus brachyotis	Rural/urban landscape, forested areas	N	LC	Sch IV
35	Tupaiidae	South Indian Tree Shrew	Ananthana elliotti	Scrubland, dry and moist deciduous forest	N	LC	-

SNo	Family	Common Name	Scientific Name	Preferred Habitat	Recorded in T/L Route	IUCN Status	WPA Status
36	Megadermatidae	Lesser False Vampire	Megaderma spasma	Forest, rocky areas, caves, subterranean habitat	N	LC	-
37	Sciuridae	Indian Giant Flying Squirrel	Petaurista philippensis	Dry deciduous and evergreen forest	N	LC	Sch II (Part I)
38	Sciuridae	Indian/Malabar Giant Squirrel	Ratufa indica	Tropical evergreen, semi evergreen, deciduous forest	Y	LC	Sch II (Part I)
39	Sciuridae	Three-striped Palm/Jungle Striped Squirrel	Funambulus palmarum	Forest, Scrubland, inland wetlands	N	LC	Sch IV
40	Pteropodidae	Fulvous Fruit Bat	Rousettus leschenaultia	Tropical moist forest, urban environment	N	LC	Sch IV
41	Soricidae	House Shrew	Suncus murinus	Scrubland, forest, grassland, cultivated fields	N	LC	Sch V

Source: India Biodiversity Portal, ENVIS Database, IUCN

IUCN Status: LC- Least Concern, NT- Near Threatened, VU- Vulnerable

4. IMPACT ASSESSMENT

4.1 Impacts on Biodiversity

The impacts on biodiversity of the proposed transmission line corridor passing through Bhagwan Mahaveer Wildlife Sanctuary has been categorized into the following categories

- Impacts during Construction Phase
- Impacts during Operation Phase

4.2 Impacts during Construction Stage

Following impacts are envisaged during the construction stage on the biodiversity of the Transmission Line route

- Impacts during route survey and planning
- Impacts during vegetation clearance on approach roads
- Impacts during vegetation clearance on tower locations
- Impacts during man and material transportation on each of the tower location
- Impacts during storage of construction material
- Impacts during construction activities
- Impacts during stringing of conductor

4.3 Impacts during operation Stage

Following impacts are envisaged during the operation Phase

- Mortality due to Electrocution and Collision of Avifaunal species
- Mortality due to Electrocution and Collision of arboreal mammalian species

4.4 Impact Assessment Criteria

ERM Impact Assessment Standards defines sensitivity of ecological receptors by determining the significance of effects on species and habitats separately. The significance tables for species and habitats are given in and Table 4.2 respectively.

Table 4.1 Habitat Impact Assessment Criteria

	Habitat Sensitivity/ Value		Magnitude of Effect	ct on Baseline Habitats	
		Negligible	Small	Medium	Large
		Effect is within the normal	Affects only a small	Affects part of the habitat	Affects the entire habitat,
		range of variation	area of habitat, such that there is no loss of	but does not threaten the long-term viability/ function	or a significant portion of it, and the long-term
			viability/ function of the	of the habitat	viability/ function of the
			habitat		habitat is threatened.
Negligible	Habitats with negligible interest for	Not significant	Not significant	Not significant	Not significant
	biodiversity.	Not significant	Not significant	Not significant	Not significant
Low	Habitats with no, or only a local designation /				
	recognition, habitats of significance for				
	species listed as of Least Concern (LC) on	Neteinsificant	Neteinstieent	Minor	Madavata
	IUCN Red List of Threatened Species, habitats which are common and widespread	Not significant	Not significant	Minor	Moderate
	within the region, or with low conservation				
	interest based on expert opinion.				
Medium	Habitats within nationally designated or				
	recognised areas, habitats of significant				
	importance to globally Vulnerable (VU), Near				
	Threatened (NT), or Data Deficient (DD)				
	species, habitats of significant importance for	Not significant	Minor	Moderate	Major
	nationally restricted range species, habitats			moderate	joi
	supporting nationally significant				
	concentrations of migratory species and / or congregatory species, and low value habitats				
	used by species of medium value.				
High	Habitats within internationally designated or				
	recognised areas; habitats of significant				
	importance to globally Critically Endangered				
	(CR) or Endangered (EN) species, habitats of				
	significant importance to endemic and/or				
	globally restricted-range species, habitats	Not significant	Moderate	Major	Critical
	supporting globally significant concentrations	iter eighneant		inajoi	ontrodi
	of migratory species and / or congregatory				
	species, highly threatened and/or unique				
	ecosystems, areas associated with key evolutionary species, and low or medium				
	value habitats used by high value species.				
	I value hasilate used by high value species.				

	Habitat Sensitivity/ Value	Magnitude of Effect on Baseline Species						
	-	Negligible	Small	Medium	Large			
		Effect is within	Effect does not	Effect causes a substantial	Affects entire population, or a significant part of it			
		the normal	cause a	change in abundance and/or	causing a substantial decline in abundance and/or			
		range of	substantial	reduction in distribution of a	change in and recovery of the population (or			
		variation for	change in the	population over one, or more	another dependent on it) is not possible either at			
		the population	population of	generations, but does not	all, or within several generations due to natural			
		of the species	the species or	threatened the long term	recruitment (reproduction, immigration from			
			other species dependent on it	viability/ function of that population dependent on it.	unaffected areas).			
Nealia	Species with no specific value or	Not						
ible	importance attached to them.	significant	Not significant	Not significant	Not significant			
Low	Species and sub-species of Least							
	Concern (LC) on the IUCN Red List, or	Not	Not significant	Minor	Moderate			
	not meeting criteria for medium or high	significant	Not significant		moderate			
	value.							
	Species on IUCN Red List as Vulnerable							
m	(VU), Near Threatened (NT), or Data							
	Deficient (DD), species protected under							
	national legislation, nationally restricted	Not	Minor	Moderate	Meior			
	range species, nationally important numbers of migratory, or congregatory	significant	winor	Moderate	Major			
	species, species not meeting criteria for							
	high value, and species vital to the							
	survival of a medium value species.							
High	Species on IUCN Red List as Critically							
riigii	Endangered (CR), or Endangered (EN).							
	Species having a globally restricted							
	range (ie plants endemic to a site, or							
	found globally at fewer than 10 sites,							
	fauna having a distribution range (or	Not	Moderate	Major	Critical			
	globally breeding range for bird species)	significant	Wouerate	Major	Chucai			
	less than 50,000 km2), internationally							
	important numbers of migratory, or							
	congregatory species, key evolutionary							
	species, and species vital to the survival							
	of a high value species.							

Table 4.2 Species impact assessment criteria

4.5 Impact Assessment

4.5.1 Impacts during Construction Phase

Context

Context for impacts of various activities are provided as per Table 4.3

Table 4.3 Context of various impacts during construction phase

Impacts during construction phase	Context
Impacts during Route Survey and Planning	Route survey and planning involves surveying the transmission line route and identifying transmission tower location. Survey identifies the probable approach route to tower locations, feasibility for tower erection, soil testing etc. This will involve vegetation clearance enroute and at tower locations
Impacts during vegetation clearance on approach roads	Approach roads will be required to reach at the tower locations, where possible through tractor trolley with limited vegetation clearance and minimal levelling and where not, on foot by making a small 3-4 m wide forest trail to get access the tower location.
Impacts during vegetation clearance at Tower locations	The tower erection area will need to be cleared for construction activities. An area of 10 m radius will be required to be cleared at each of the tower locations and levelled.
Impacts during man and material transportation on each of the tower location	The transportation of construction workers and construction material at the tower location will be required during the construction phase. While workers transportation facility will be provided till the nearest road end, material transportation will be made through tractor and trolley till the place it is feasible with minimum requirement of vegetation clearance and levelling, it will be further transported on head load by workers to the construction site. Locations which involve larger vegetation clearance, alternate arrangements such as material transportation through rope ways will be explored.
Impacts during storage of construction material	The civil work for foundation and erection of each transmission tower will require the storage of tower components and foundation materials at tower location. This will lead to additional clearance of vegetation in the construction area.
Impacts during construction activities	Foundation and Erection of transmission tower will involve deployment of manpower, excavation of foundation, civil works. This will create temporary habitat disturbance.
Impacts during stringing of conductor	Once the transmission tower erection is completed, conductor stringing will be undertaken. During the stringing all tall trees and branches will be loped and pruned where minimum ground clearance to conductor will be maintained.

Receptors

The receptors in the transmission line route are 45 species of floral species, 25 species of herpetofauna, 105 species of avifauna and 41 species of mammals.

Out of forty five (45) floral species six (06) species are listed as threatened as per IUCN Red list v1.2018, eight (08) species of medicinal importance having commercial value and twelve (12) endemic species from the Western Ghats region.

Faunal species comprised twenty five (25) species of amphibians, sixty three (63) species of reptiles, one hundred and five (105) species of avifauna and forty one (41) species of mammalsin the study area.

Of the above listed species the following IUCN Red- Listed threatened species were recorded: such amphibians; Amboli Bush Frog *Pseudophilautus amboli* (IUCN CR v2018-2), Malabar Tree Toad

www.erm.com Version: 2.0 Project No.: 0476969 Client: M/s. Goa Tamnar Transmission Project Limited (GTTPL) 7 March 2019 Page 69

Pedostibes tuberculosus and Marbled Ramanella *Uperodon mormorata* (IUCN EN v2018-2.) and Maharashtra Bush Frog *Raorchestes bombayensis* (IUCN VU v2018-2).

In reptiles, Indraneil's Day Gecko (*Cnemaspis cf. indraneildasii*) and Indian rock python (*Python molurus*) are listed as IUCN VU v2018-2 and are either observed or reported from the study area.

There is significant presence of Sch. I species OF Indian Wildlife Protection Act, 1971 in each faunal group (Refer **Section 3.9**)

In avifauna, species such as Nilgiri wood pegion (*Columba eiphinstonii*) (IUCN VU v2018-2) is reported from the study area. Out of total 105 species, 16 avifaunal species are endemic to Western Ghats.

A total of 41 mammals' species reported from the study area, Slender Loris (*Loris tardigradus*) and Indian Pangolin (*Manis crassicaudata*) are listed as IUCN EN v.2018.2, while species such as Gaur (*Bos gaurus*), Common Leopard (*Panthera pardus*), Sloth Bear (*Melursus ursinus*) and Fishing Cat (*Prionailurus viverrinus*) are listed as IUCN VU v2018-2. These species can be potentially impacted.

Impact Significance

Vegetation clearance along the access road and transmission tower locations for the various construction activities as described in *Table 4.3* will lead to habitat loss, habitat disturbance to faunal species. It will also lead to loss of natural vegetation which will lead to reduced vegetal cover, shrinkage in natural forest cover, loss of nesting and foraging for avifaunal species, arboreal amphibians, reptiles and movement pattern of mammal species in the study area.

The excavation, levelling and removal of vegetation will also result in soil erosion which will be washed and drained and with the occurrence of rains, will run into the natural streams and change the stream characteristics, impacting the aquatic habitat associated amphibians and reptile and mammalian species.

The study area falls within the Bhagwan Mahaveer Wildlife Sanctuary with presence of significant number of Sch. I species along with presence of IUCN listed CR, EN and VU species, the resource sensitivity is **High** for habitats and species. The impacts described above will not cause a significant change in the population of these species and therefore the impact magnitude has been deemed **Small.** The construction period is suggested is of 6 months hence the impact duration suggested is **Short term.** (Refer *Table 4.4*). The Overall impact significance is **Moderate** for habitats and species.

Residual Impacts

Removal of vegetation, development of approach roads and construction activities can have a direct and indirect impact on the local ecology. The impact is limited to the construction phase of the Project, following which the vegetation can recover, however, recovery as back to original stage will require significant duration of undisturbed state. The significance of the residual impacts is **Minor** for habitats and species. (Refer **Table 4.4**)

Table 4.4	Impact significance of Overall Construction Activities

Impact	During Construction Phase									
Impact Nature	Negative			Positive Neut			ral			
Impact Type	Direct			Indirect			Induc	Induced		
Impact Duration	Temporary		Short	t-term		Long-tern	n	Pe		nent
Impact Extent	Local			Regional				Intern	ational	
Impact Scale	Limited to tov	wer loc	ation,	approach i	oad	s and imm	edia	te surr	ounding	js
Frequency	Construction	phase	•							
Likelihood	Likely									
Impact Magnitude	Positive Negligit		ple	Sm	Small Med		edium		Large	
Resource Sensitivity (Agricultural lands)	Low			Medium H			High	High		
Resource Sensitivity (Species)	Low			Medium			High			
Impact Cignificance	Not Significant		Minor	Moderate		te		Major	Major	
Impact Significance	Significance of impact is considered Moderate for habitat and species.									
	Residual Impact Significance									
Residual Impact Magnitude	Positive	Neglig	jible	Small		Medium	۱		Large	
Residual Impact	Not Significa	nt	Mino	r		Moderate	;		Major	
Significance	Significance of impact is considered Minor for habitats and species.									

4.5.2 Impacts during operation Phase

The context to the operation phase impacts are

Context

Context for impacts of various activities are provided as per Table 4.3

Table 4.5 Context of various impacts during operation phase

Impacts during operation phase	Context
Impacts due to electrocution and collision of avifaunal species with	Mortality by Electrocution: Electrocution may happen if the avifaunal species sitting on the conductor and touching two phase
conductor	Mortality by collision Mortality by collision may happen if the avifauna flying near the conductor did not spot the conductor and collides with it in full force, leading to physical injury (Like broken wings etc) resulting into death.
Disturbance to vegetation during maintenance of required ground clearance	Preventive and Corrective Maintenance of the transmission line and for maintenance of the mandatory vertical clearance between vegetation and lowest point of conductor sag. This will involve lopping and pruning of existing tree species leading to loss of nesting and perching sites
Electrocution of Arboreal mammals	The arboreal mammals in the study area may face changes in the movement within traditional corridors and mortality due to electrocution while moving from one canopy to another canopy with transmission line as barrier in between.

Receptors

The avifaunal species reportedly present within the study area and in the larger landscape of the wildlife sanctuary such as White stork (*Ciconia cicollia*), Eurasian Spoonbill (*Platalea leucorodia*), Malabar grey Hornbill (*Ocyceros griseus*)* Western Ghats endemic, Indian grey hornbill (*Ocyceros biroslris*) and Malabar Pied Hornbill (*Anlhracoceros coronatus*) and Great pied Hornbill (*Buceros bicornis*) have larger wingspan and face risk of electrocution while perching on the conductor and mortality due to collision while flying into conductor and getting injured.

Raptor species listed in Sch.I of the Indian Wildlife Protection Act, 1972 such as Black Baza (*Ariceda leuphotes*), Oriental Honey Buzzard (*Pernis ptilorhyncus*), Black winged Kite (*Elanus careleus*), Crested Serpent eagle (*Spilornis cheela*), Crested Goshawk (*Accipiter trivirgatus*), Shikra (Accipiter badius), Besra Sparrow Hawk (*Accipiter virgatus*), Eurasian Sparrowhawk (*Accipiter nisus*), White eyed Buzzard (*Butastur teesa*), Black Eagle (*Icrillaellts malyanensis*), Tawny Eagle(*Aquila rapax*) from the study area and larger landscape have a perching behaviour on the transmission line and may nest in transmission line tower. These are also under potential risk of mortality due to electrocution and collision with conductors.

Arboreal (Tree Dwelling) mammals such as Slender Loris (*Loris tardigradus*) Indian Giant Flying Squirrel (*Petaurista philippensis*), Indian/Malabar Giant Squirrel (*Ratufa indica*), Bonnet Macaque (*Macaca radiate*), Hanuman /Black-faced Langur (*Semnopithecus entellus*) may face barrier in movement due to transmission line.

Aerial mammalian species such as Fulvous Fruit Bat (*Rousettus leschenaultia*), Lesser False Vampire (*Megaderma spasma*), Indian Pipistrelle (*Pipistrellus coromandra*), Indian Pygmy Bat (*Pipistrellus tenuis*) and Lesser Dog-faced Fruit Bat (*Cynopterus brachyotis*) are also likely to get impacted due to collision with transmission line conductor.

Few IUCN listed species such as Dhole (*Cuon alpinus*), Slender Loris (*Loris tardigradus*), Indian Pangolin (*Manis crassicaudata*), listed as EN v2018-2 and Gaur (Bos gaurus), Sloth Bear (*Melursus ursinus*), Fishing Cat (*Prionailurus viverrinus*), Leopard (Panthera pardus) are listed as VU as per v2018-2 may be impacted for habitat disturbance due to routine and corrective maintenance.

Impact Significance

There is a potential of impacts on IUCN listed EN and VU species, Schedule I species of Indian Wildlife Protection Act, 1971 and endemic species from Western Ghats. The study area falls within the Bhagwan Mahaveer Wildlife Sanctuary with presence of significant number of Sch. I species, IUCN listed CR, EN and VU species, the resource sensitivity is **High** for habitats and species. The impacts described above will not cause a significant change in the population of these species as sufficient habitat is present in the study area and the larger landscape. The impact duration is **Long term** as the impacts will be applicable for entire project cycle. Hence the impact magnitude is deemed **medium** as effect may causes a substantial change in abundance and/or reduction in distribution of a population over one, or more generations, but does not threatened the long term viability/ function of that population dependent on it. Overall impact assessed for the operational phase is **Major** for habitat and species.

Residual Impacts

The residual impacts for the operational phase impacts are deemed as **Moderate** as the implementation of mitigation measures suggested will lower the impact magnitude from medium to **small**. (Refer **Table 4.6**)

Table 4.6 Impact significance of Operational Activities

Impact	During Operation Phase									
Impact Nature	Negative		Positive Ne			Neut	Neutral			
Impact Type	Direct			Indirect				Induc	ed	
Impact Duration	Temporary		Short	-term		Long-term		Perma		nent
Impact Extent	Local			Regional				Intern	ational	
Impact Scale	Routine and	Correc	ctive M	aintenance	e					
Frequency	Operation ph	nase								
Likelihood	Likely									
Impact Magnitude	Positive	1	Vegligil	ole	Small Med		dium		Large	
Resource Sensitivity (Agricultural lands)	Low			Medium		High				
Resource Sensitivity (Species)	Low			Medium		High				
Import Cirrificance	Not Significant Mino		Minor	r Moderate			Major			
Impact Significance	Significance of impact is considered Major for habitat and species.									
	Residual Impact Significance									
Residual Impact Magnitude	Positive	Neglię	gible	Small		Medium	۱		Large	
Residual Impact	Not Significa	nt	Mino	ſ		Moderate	;		Major	
Significance	Significance	of imp	act is c	onsidered	Мос	lerate for l	habi	tats an	nd speci	es.

www.erm.com Version: 2.0 Project No.: 0476969 Client: M/s. Goa Tammar Transmission Project Limited (GTTPL) 7 March 2019 Page 73

5. MITIGATION MEASURES

5.1 INTRODUCTION

"Mitigation Measures," refer to the actions that can be implemented to minimize the magnitude of the project related detrimental impacts on different physical, biological and social environments of the project area. Mitigation can carry on along three possible courses of actions, either by changing (1) at source, (2) path (3) and at the receiving end.

Overall impact statement identified impacts in construction and operation phase. The impact summary prom the previous chapter is provided in *Table 5.1.*

Impact Description Impact Nature		Impact Significance					
		Without Mitigation	Residual (With Mitigation)				
Construction Phase	Negative	Moderate	Minor				
Operation Phase	Negative	Major	Moderate				

The mitigation measures for the construction phase and operation phase as discussed hereunder;

5.2 Construction Phase Mitigation Measures

The proposed transmission line project is estimated to acquire a total of 11.54 ha. area of Bhagwan Mahaveer Wildlife Sanctuary which would result in the loss of forest habitat, change in species composition and change in abundance of faunal groups of the overall project area.

Section 1 of Transmission line (Refer **Figure 2.1**) falls in the lateritic plateaus habitat with west coast semi evergreen forest areas in fringes. The transmission tower locations are in the forest habitat. This section requires 2.53 ha. of forest land to be diverted.

Section 2 of the transmission line project (Refer **Figure 2.2**) falls in west coast semi evergreen forest and west coast tropical evergreen and moist deciduous forest area. The tower locations are in the dense to very dense forest area. This section required diversion of 9.01 ha of forest land area.

Mitigation measures suggested in the construction phase are discussed below;

- Habitat disturbances to be kept at minimum by using existing trails for transportation of man material and machinery;
- Any vegetation clearance required should be limited to the minimum area required for such passages;
- Compensatory afforestation in the area as instructed by the Forest department as per forest clearance conditions should be undertaken
- Alternate mode of transportation such as Rope-ways should be considered were ever feasible to the maximum extent;
- Tree enumeration for clearance should be undertaken in presence of trained botanist in order to seek guidance to avoid, restore and replant species of conservation significance such as IUCN listed threatened species, endemic species and medicinal plants as per *section 3.8*;
- Construction activity, man and material movement should be limited to the day time and early morning, late evening and night activity should be completely avoided to allow the unrestricted wildlife movement;
- No night stay at the construction site should be planned, proper planning of day work should be done;

- Movement within the wildlife area should be entirely regulated, each work force should be trained in do's and don't's and how to deal in a situation of wildlife encounter before entering the wildlife area,
- Tree felling should be in compliance of all the statutory requirements, tree felling in the nesting season (Refer *Table 3.19*) should carefully examine the active nest on trees before felling, relocation of active nest should be undertaken with the help of State Forest Department and/or wildlife NGO;
- Hunting, trapping and poaching by the employed work force should be completely banned and no poaching tolerance strategy should be covered under contractual obligations;
- On the approach road to the road end (Tambdi Surla Temple End) from the Sancordem to Mollem road, the driving speed of vehicle should be kept below 30km/hr as there are chances of road kills in this stretch;
- The vegetation clearance along the RoW of the transmission line will create a canopy break for the arboreal mammals (Tree dwelling) construction of canopy bridges at key locations (where such canopy breaks are very evident) are suggested. (Figure 5.1 b.)
- Proper housekeeping of the construction areas should be followed during and after construction phase is completed.
- Slope protection and soil conservation measures such as working in non rainly season, contour ploughing and mulching should be undertaken so that contamination of natural streams in the vicinity are not impacted;
- Construction noise from working of man and machine should be regulated. Working hours within the sanctuary area should be from morning 8 am to evening 5 pm.
- Independent monitoring agency (preferably a local wildlife NGO) should be appointed to oversee and guide the mitigation measure implementation during the construction phase and should periodically update the higher official of GTTPL.

5.3 Mitigation for Operational Phase

Operational Phase impacts will be associated to the routine and corrective maintenance, potential risk of electrocution and collision for avifaunal species and electrocution for arboreal mammalian species. In the routine maintenance, in order to require the mandatory vertical clearance, pruning and lopping of trees may be required within the RoW.

Mitigation measures suggested in the operation phase are discussed below;

- Any routine and corrective maintenance schedule planned should be undertaken only after prior information to the forest department;
- GTTPL should make arrangements for dedicated personal from forest department, trained in dealing situations of wildlife encounters, movement, rescue and rehabilitation (preferably reptiles and mammalians) while under taking such routine visits;
- Pre nest search before commencing any pruning and lopping to be undertaken;
- Artificial nest boxes along the transmission line route to mitigate the loss of nesting sites along the transmission line route;(Figure 5.1 a.)
- Periodic review of condition of canopy bridges and undertake required maintenance;
- Installation of bird diverters on the conductor and perch rejecters on transmission tower along the transmission line corridor; (Figure 5.1 c &d.)
- In addition to the above artificial nesting platform for raptor species to be built along the transmission line at a distance of 200 m;

- Structures to climb transmission towers should have a restriction guards (to avoid access to for arboreal species (Maccaques, Langurs, Loris, Giant Squirrels etc.)
- Rapid carcass search along the transmission line corridor for possible victims of collision and electrocution

Mitigation Structures for Transmission Line

The suggested mitigation structures are depicted in *Figure 5.1.*

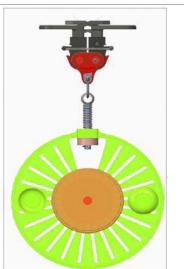


Figure 5.1

a. Artificial nesting platforms reduce electrical hazards and enhance habitat for breeding and roosting

b. Canopy bridge construction for arboreal mammals movement in canopy break area

c. Power line Bird Diverters

d. High temperature Power line Markers

6. BIODIVERSITY MANAGEMENT PLAN

6.1 Introduction

Where biodiversity values of importance to conservation are associated with a project site or its area of influence, the preparation of a Biodiversity Management Plan (BMP) provides a useful means to focus a project's mitigation and management strategy. The development of a BMP for transmission line project is a requirement for regulatory clearances as it documents the process, actions, responsibilities and budget allocation. It also gives the opportunities to investigate the effectiveness of the mitigation measures suggested and provides as chance to revisit them and make timely changes to update/upgrade the mitigation actions for better management of biodiversity.

6.2 BIODIVERSITY MANAGEMENT PLAN

The biodiversity management plan has been devised on the following aspects;

- Ecological Sensitivities along the transmission line corridor;
- Species of conservational significance along the transmission line corridor;
- Impacts during the construction and operation phase;
- Proposed mitigation measures;
- Parameters to be monitored;
- Measurement and frequency;
- Institutional responsibility;
- Implementation schedule

6.2.1 Ecological Sensitivity

The ecological sensitivities along the transmission line are;

Habitats: The transmission line passes through protected area, "**Bhagwan Mahaveer Wildlife Sanctuary**". This sanctuary contains pristine vegetation classified as West Coast tropical evergreen forests, West Coast semi-evergreen forests and moist deciduous forests. The evergreen forests are mainly seen at higher altitudes and along the river banks.

Species of Conservational Significance: The species of conservational significance (IUCN listed Critically Endangered, Endangered and Vulnerable species, Indian Wildlife Protection Act, 1971 listed Schedule I species observed and reported from the transmission line corridor are listed in *Table 6.1.*

The threatened species observed in the transmission line corridor and the buffer area are given as per *Table 6.1*;

Common Name	Scientific Name	IUCN v.2018.1	IWPA,1971	Observed /Reported
Plants				
Tree	Diospyros paniculata Dalzell	VU		Observed
Climber	Hopea ponga (Dennst.) Mabb.	EN		Observed
Amphibian				
Malabar Tree Toad	Pedostibes tuberculosus	EN	IV	Observed
Marbled Ramanella	Uperodon mormorata	EN	IV	Reported
Amboli Bush Frog	Pseudophilautus amboli	CR	IV	Observed
Maharashtra Bush Frog	Raorchestes bombayensis	VU	IV	Observed

Table 6.1Threatened Species

Common Name	Scientific Name	IUCN v.2018.1	IWPA,1971	Observed /Reported
Reptiles				
Indian flapshell turtle	Lissemys punctata	LC	I	Reported
Indraneil's Day Gecko	Cnemaspis cf. indraneildasii	VU	IV	Observed
Bengal Monitor Lizard	Varanus bengalensis	LC	1	Reported
Indian rock python	Python molurus	VU	1	Observed
Avifauna				
Wooly-necked stork	Ciconia episcopus	VU	IV	Reported
Eurasian Spoonbill	Platalea leucorodia	LC	1	Reported
Black Baza	Ariceda leuphotes	LC	I (part III)	Reported
Oriental Honey Buzzard	Penlis ptilorhyncus	LC	I (part III)	Reported
Black shouldered Kite	Elanus careleus	LC	I (part III)	Reported
Crested Serpent eagle	Spilornis cheela	LC	I (part III)	Reported
Crested Goshawk	Accipiter trivirgatus	LC	I (part III)	Reported
Shikra	Accipiter badius	LC	I (part III)	Reported
Besra Sparrow Hawk	Accipiter virgatus	LC	I (part III)	Reported
Eurasian Sparrowhawk	Accipiter nisus	LC	I (part III)	Reported
White eyed Buzzard	Butastur teesa	LC	I (part III)	Reported
Black Eagle	Icrillaellts malyanensis	LC	I (part III)	Reported
Tawny Eagle	Aquila rapax	LC	I (part III)	Reported
Peregrine falcon	Falco peregrillus	LC	I (part III)	Reported
Nilgiri wood pegion	Columba eiphinstonii	VU	IV	Reported
Indian edible nest swiftlet	Collocalia unicolor	LC	I (part III)	Reported
Malabar Pied Hornbill	Anlhracoceros coronatus	NT	I (part III)	Observed
Great pied Hornbill	Buceros bicornis	NT	I (part III)	Reported
Sri Lanka frogmouth	Batrachostomus moniliger	LC	I (part III)	Observed
Mammals				
Sambar	Cervus unicolor	VU	III	Observed
Gaur	Bos gaurus	VU	I (Part I)	Observed
Dhole	Cuon alpinus	EN	II (Part I)	Reported
Sloth Bear	Melursus ursinus	VU	Sch I (Part I)	Reported
Leopard Cat	Prionailurus bengalensis	LC	Sch I (Part I)	Reported
Fishing Cat	Prionailurus viverrinus	VU	Sch I (Part I)	Reported
Leopard	Panthera pardus	VU	Sch I (Part I)	Reported
Mouse Deer	Moschiola meminna	LC	Sch I (Part I)	Reported
Slender Loris	Loris tardigradus	EN	Sch I	Reported
Indian Pangolin	Manis crassicaudata	EN	Sch I (Part I)	Reported

The plan is described in *Table 6.2* below

Activity	Impact	Target species groups	Phase (Construction/ Operation)	Proposed mitigation measures	Parameters to be monitored	Measurement and frequency	Institutional responsibility
Route Survey and Planning	Habitat disturbance due to clearance of bushes while new	Faunal groups (Herpetofauna, Avifauna and Mammals)	Construction Phase	 Habitat disturbances to be kept at minimum by using existing trails for transportation of man material and machinery; Any vegetation clearance required should be limited to the minimum area required for such passages; Alternate mode of transportation such as Ropeways should be considered were ever feasible to the maximum extent 	Physical demarcation of the Right of Way before the vegetation clearance	Visual inspection on monthly basis during the construction phase	Third Party Inspection report to GTTPL
Impacts during vegetation clearance on approach roads and RoW	Habitat Loss and habitat disturbance, loss of nesting sites	Flora and Faunal groups	Construction Phase	 Tree cutting for the approach roads and RoW should be undertaken where it is only absolute necessary, Tree enumeration for clearance should be undertaken in presence of trained botanist/forest department in order to seek guidance to avoid, restore and replant species of conservation significance such as IUCN listed threatened species, endemic species and medicinal plants as per section 3.8; Tree felling should be in compliance of all the statutory requirements, tree felling in the nesting season (Refer Table 3.19) should carefully examine the active nests on trees before felling, relocation of active nest should be undertaken with the help of State Forest Department and/or wildlife NGO; Cleared wood material removal should be undertaken as per guidance of the state forest department; The ground dwelling fauna in the area should be approached carefully and removed from the direct path under trained experts, no direct attendance of the wildlife encounters 	Physical demarcation of the vegetation in approach roads before clearance	Visual inspection on weekly basis during the construction phase	Third Party Inspection report to GTTPL, GTTPL to prepare a clearance schedule based on tree enumeration survey

Activity	Impact	Target species groups	Phase (Construction/ Operation)	Proposed mitigation measures	Parameters to be monitored	Measurement and frequency	Institutional responsibility
Impacts during vegetation clearance on Tower locations	Habitat loss and Habitat disturbance	Floral and faunal groups	Construction phase	 The tower location needs 10 m radius working area for tower erection, vegetation clearance will be required. Clearance should be confinedwithin the designated area The various components of tower will be stored in the tower locations resulting in additional areas for clearance, the site manager will ensure that minimum area disturbance is made during tower erection; No night stays should be made inside the Sanctuary area, entire day activities should be planned in a way, early morning, night and late evening time is avoided. No blasting within the sanctuary area should be made for excavation of rocks for foundation, alternative less disruptive methods should be avaoided; The cleared vegetation should be removed from the construction area, a designated place for the storage of the cleared wood as per direction of forest department should be made; No wildlife should be harmed by the work force in the forest and sanctuary area. 	Third party verification during construction period	Visual inspection on weekly basis during the construction phase	Third Party Inspection report to GTTPL
Impacts during man and material transportation on each of the tower location	Habitat disturbances	Fauna group	Construction phase	 Material movement will be through trucks till the road end and further on tractor trolleys In case the last location is not approachable then material will be transported either on foot by labourers or through rope way lokely to be erected for transporation which required minimum disturbances; Man movement will be on foot, damage to flora and fauna should be avoided to maximum extent, Contractual obligations should clearly define zero tolearance to hunting, trapping and poaching. 	Material movement at each tower location	Visual inspection on weekly basis during the construction phase	Third Party Inspection report to GTTPL
Impacts during	Habitat disturbances	Fauna group	Construction phase	 Stringing on conductor will involve vegetation clearance for any construction during stringing and trees will be chopped, lopped and pruned as per 	Stringing the towers	Visual inspection	Third Party Inspection

Activity	Impact	Target species groups	Phase (Construction/ Operation)	Proposed mitigation measures	Parameters to be monitored	Measurement and frequency	Institutional responsibility
stringing of conductor				 requirement. Before undertakeing such activity, it is to be ensured that the remaing tree left will grow further; Nesting sites of avifaunal species to be avoided to the extent possible, if not then the nest translocation should be undertaken by trained wildlife personels, pre identification of nesting site should be under taken; 		during stringing	report to GTTPL
Risk of mortality due to electrocution and collision	mortality in Species of conservational significance	Avifauna and Arboreal mammals	Operation Phase	 Any routine and corrective maintenance schedule planned should be undertaken only after pre informing the forest department; GTTPL should make an arrangement for dedicated personal from forest department, trained in dealing situations of wildlife encounters, movement, rescue and rehabilitation (preferably reptiles and mammalians) while under taking such routine visits; Structures to climb transmission towers should have a restriction guards (to avoid access to for arboreal species (Maccaques, Langurs, Loris, Giant Squirrels etc.) Rapid carcass search along the transmission line corridor for possible victims of collision and electrocution Installation of canopy bridges in the canopy break areas for zero hinderance movement of arboreal mammals. Periodic review of condition of canopy bridges and undertake required maintenance; Installation of bird diverters on the conductor and perch rejecters on transmission tower along the transmission line corridor; In addition to the above artificial nesting platform for raptor species to be built along the transmission line at a distance of 200 m; 	Species mortality and effectiveness to mitigation measures	Quaterly during first two years of energization and then six monthly during next two years	External Consultant and GTTPL
Vegetation removal for maintaining mandatory	Habitat loss and habitat disturbances	Floral and faunal groups	Operation Phase	 Pre nest search before commencing any pruning and lopping to be undertaken; 	Nesting frequency of avifaunal species	Quarterly during first two years of energization	External Consultant and GTTPL

Activity	Impact	Target species groups	Phase (Construction/ Operation)	Proposed mitigation measures	Parameters to be monitored	Measurement and frequency	Institutional responsibility
electrical safety vegetation clearance				 Suggesting artificial nest boxes along the transmission line route to mitigate the loss of nesting sites along the transmission line route; 		and then six monthly during next two years	

6.3 Cost of the Biodiversity Management Plan

The cost for the implementation of the conservation plan is provided in *Table 6.3* below. There cost are indicative and will be updated in consultation of the state forest and wildlife department.

Sn.	Activity	Budget in Rupees
1.	Professional and administrative support from Forest Department for vegetation clearance, monitoring and implementation and overall guidance	Rs. 20 Lakhs
2.	Biodiversity Monitoring during construction and operation phase	Rs.15.0 Lakhs
3.	Creation of Nest boxes nesting platforms and canopy bridges	Rs. 2.5 Lakhs
4.	Bird diverters along the transmission line	Rs. 15 .0 Lakhs
	Total	Rs. 52.5 Lakhs

Table 6.3 Cost of Implementation of BMP

APPENDIX A TOWER DESIGN DETAILS

To.

Mr. Rajiv Ranjan, M/s Larsen & Toubro Ltd. Power Transmission & Distribution, Mount Poonamallee Road, Manapakkam, P.B. No. 979, Chennai -600089

Ref No: SPGVL/GTTPL/ENGG/L&T/22 Dated: 10th August²018

PROJECT: 765 kV, 400 kV & 220 kV Transmission lines associated with Goa Tamnar **Transmission Project Limited** LOA No: SPGVL/17-18/LOA/009 Dated: 29-12-2017.

Subject: Issuance of Final Approved Tower Spotting data for 400kV D/C Quad AAAC Moose T/L (WZ-1 & WZ-2) including additional family of Towers.

Dear Sir,

This is with reference to 400kV D/C Quad AAAC Moose T/L (WZ-1 & WZ-2) for GTTPL Project. We are hereby releasing the below mentioned approved documents for your reference and use in same: -

Sr.No	Description	Document No.	Rev. No.
Tower	Spotting Data for WZ-1		
1.	400kV D/C Quad AAAC Moose T/L	DS-1003	1
Tower	Spotting Data for WZ-2		
1.	400kV D/C Quad AAAC Moose T/L	DS-1008	1

Approval conveyed herein neither relieve M/s L&T of his contractual obligation & his responsibilities for correctness of dimension, materials of construction, weights, designed details, assembly fits, performance particulars & conformity of the supplies with the Indian statutory laws as may be applicable, nor does it limit the SPGVL rights under the contract.

Regards

Dr. Deepak Lakhapati Chief Design Officer

Encl: As Above Copy to: 1. Mr. Amitanshu along with Encl

	////S	ter	rlite Power		
<u>Project :</u>	<u>400 K</u>	<u>V D/</u>	C TRANSMISSION LINE	L	
<u>Line :</u>	<u>Xelda</u> <u>Line w</u> 1)	<u>im- </u> /ith (Narendra 400 KV D/C Quad AAAC Moose C	<u>Trans</u> ondue	<u>mission</u> ctor (WZ-
<u>Wind Zone :</u>	l (33 n	n/s)			
<u>Owner :</u>	Sterlite	e Po	wer Grid Ventures Lim	ited	
<u>Description :</u>	TOWEI	R SP(OTTING DATA (Upto +9	PM)	
	Ar En the	ELEAS	E POWER GRID VENTURES LTI SED FOR CONSTRUCTION DLLED COPY d Vide Ref. Letter No.S.PGVL/GT /14T/22Date: 10/08/2 ring Deptt. does not relieve the contractor from their I obligations	018	
Document	Date	Rev	Remarks	Desn	CT A TUC
DS-1003	10-08-2018	01	if any Additional Tower Families Included	by AM	STATUS

Q	SP NO IDECORDION		(QUAD AAA	(QUA)	DAACA	(QUAD AAAC MOOSE CONDUCTOR)	UCTOR)	C MOOSE CONDUCTOR)							
	AAX ANOLE OF DEVATION	DA (0-2	DA (0-2 DEGREE)	DBN (0-8 D)	EGREE)	DB (0-15 DEGREE)	EGREE]	DC (15-30 DEGREE)	EGREE)	DDN (30-45 DECREE)	DECREE	DD (30-60 DFCREE)	DEGREEI	DF (0.15 DEC PEE)	CC DEE!
			7	α,						45		09	1	24 14-13 64	
1	SPAN	ANNAOG			UPWARD		UPWARD	ģ	UPWARD	UPWARD DOWNWARD	UPWARD	DOWNWARD	UPWARD	DOWNWARD	DPWARD
2.1	GROUNDWIRE EFFECT	YAM	NIM	MAX	NIW	MAX	MM	MAX	MIN	MAX	MIN	MAX	NIM	MAX	MIW
	(I) ON BOTH SPAN (M)	VUV	000	1007	000	1007									
	III ONE SPAN (M)	340	100	070	32-	000	-200	000	-200	800	-200	909	-200	909	-200
2.2	CONDICTOR FFFECT	000	0	300	- 100	360	-100	360	-18	360	-100	360	-100	360	-100
	I) ON BOTH SPAN (M)	009	200	400	~~~	500	000	140							
	III) ONE SPAN (M)	SKO SKO	100	076	1001	000	007-	009	-200	¢00	-200	909	-200	009	-200
6	WEIGHTS		~	700	mi-	300	3	360	87	360	-100	360	-100	360	-100
31	GROUNDWIRE EFFECT														
	(I) ON BOTH SPAN (KG)	290	97	UQC	07	000	07	000	-						
	(II) ONE SPAN (KG)	174	40	174	OF OF	721	14-	0.67	14-	290	-97	290	-97	290	26-
3.2	CONDUCTOR EFFECT				Ì	+/1	44-	4/1	-49	174	-49	174	-49	174	-49
	I) ON BOTH SPAN (KG)	1000	334	1000	-334	1000	1 152-	1000	A D D	1000	100				
	(II) ONE SPAN (KG)	909	167	600	-147	7007	117	000	132	nni-	400-	000	-334	1000	-334
4	PERMISSIBLE SUM OF ADJACENT SPANS IN	EVN ANG	Ļ	DEVN ANGLE	L	DEVN ANGLE	SPAN		-10/ SPAN		-167	600 600	-167	909	-167
	M FOR VARIOUS DEVIATION ANGLES.	7		80		15	800	30		AE AE	or Alv		SPAN	DEVN ANGLE	SPAN
	PERMISSIBLE ONE SPAN FOR VARIOUS		850	2		14	860	56		A P	000	8 5	000	- -	3
	DEVIATION ANGLES SHOULD NOT EXCEED	0	900	\$	922	13	Г	28		F 64	100	ĥ	500	2	₿
	60% OF THE VALUE SHOWN FOR THE SUM			5	984	12		27		¢₹	41/	84	200		
	OF ADJACENT SPANS SUBJECTED TO			4	1044	=		36		11	1/10	10	404		
	AVAILABILITY OF GROUND CLERANCES			en	1105	10		25	Ľ	0	1084	8	7101		
				2	1166	0		24	1158	30	1711	30	1110		
				-	1227	æ		23	Ľ	89	1198	5 5 5	1171		
				0	1288	7		22	Ľ	37	1254	3 62	7661		
						6		21	ſ-	98	1311	15	1278		
						ŝ		20	1393	35	1367	3	1330		
						4		19	111	34	1425	49	1384		
						m		18	1512	ĸ	1482	48	1438		
						64		17	1.0	32	1540	47	1493		
						Woled &	1651	16	1631	31	1598	4	1548		
5	DESIGN I OAD TENSION							15	1691	30	1656	45 & below	1603		
	OPGW -(32C AND Fill Wind)														
Г	OPGW -1300 AND 75% of End Winds							2374.	2374.00 Kg						
ľ	OPGW - (OC AND 3X% of Full Wind)							2045.	2045.00 Kg						
5 2								1748.	1748.00 Kg						
Т	CONDUCTOR (32C AND FUL MILE)							5694.	5694.00 Kg						
T	CONDUCTOR OC AND 73% OF FUIL WIND							5024.	5024.00 Kg						
Τ	CONDUCTOR-INC AIND 36% OF FUIL WIND!							5035.	00 Ka						
0	BROKEN WIKE CONDITION (BROKEN ON THE)	GW/ANY ONE	ONE	GW+AD	GW+ANY ONE CC	CONDUCTOR OR ANY TWO CONDUCTORS	ANY TWO	CONDUCTORS		GW+A	NY TWO C	GW+ANY TWO CONDUCTORS OR ALL THREE CONDUCTORS	P ALL THORE C		
1										: *				- CINDUM JUDIES	

PROJECT DETAILS : 400 KV D/C TRANS. LINE WITH QUAD AAAC MOOSE CONDUCTOR (WZ-7) OWNER: STERLITE POWER GRID VENTURES LIMITED - NEW DELHI

	SAG TENSION CALC	ULATIONS		
Ruling span: (L)	400.00 m]		
Design Wind Pressure: (Pd) :	346.00 N/Sq.mt 35.30 kg/Sq.mt			
Gust response factor (for wire) : Gc:	2.22	2.30		
Final wind pressure (for wire) :	79.00 kg/\$q.mt 2.52 kg/m	98.00 kg/ 1.18 kg/m		
Final wind pressure (for Insulator) :	106.00 kg/Sq.mt			
<u>Particulars</u>	Conductor	<u>Eartl</u>	<u>n-wire</u>	
Code :	AAAC Moose	OPG	N (24F)	
Area, (A) :	6.040 sq.cm	0.773	⁷ sq.cm	
Unit Wt :	1.666 kg/m	0.483	kg/m	
Diameter : (D)	3.195 cms	1.20	0 cms	
Tensile strength: (T)	17130.00 kgs	8410.	00 kgs	
Elast. Mod : (E)	.5508E+06 kg/sq.cm	.1417E+07	kg/sq.cm	
Expns. Coef : (∞)	.2300E-04 /Deg.Cnt	.1380E-04	/Deg.Cnt	
BASIC EQUATION OF SAG TENSION CA $F^2 [F - {K - \infty^*t^*E}] = Z$ STARTING CASE - (CASE : 1) TEMP	ALCULATIONS :-)	
F^2 [F - {K**†*E}] = Z STARTING CASE - (CASE : 1) IEMP WIND))	
F^2 [F - {K**†*E}] = Z STARTING CASE - (CASE : 1) IEMP	32)	
F^2 [F - {K-+++E}] = Z STARTING CASE - (CASE : 1) TEMP WIND < CAL BY FOS OR SAG	32 0 FOS 4.55	()	
F^2 [F - {K-+++E}] = Z STARTING CASE - (CASE : 1) TEMP WIND < CAL BY FOS OR SAG	32 0 FOS 4.55 C	SA G) .G .99	% OF UTS
FA2 [F - {K-+++E}] = Z STARTING CASE - {CASE : 1 } TEMP WIND < CAL BY FOS OR SAG FOS OR SAG REQ.	32 0 FOS 4.55 C	SA SA Conductor Ult. % OF UTS) .G <u>Earth-wire</u> sag Utt.	
F^2 [F - {K++*E}] = Z STARTING CASE - (CASE : 1) TEMP WIND < CAL BY FOS OR SAG FOS OR SAG REQ. Loading Conditions	32 0 FOS 4.55 C Sag (m) No - Wind 7.110	SA Sonductor Ult. % OF UTS Tension) G <u>Earth-wire</u> sag Utt. (m) Tension	UTS
FA2 [F- {K*++E}] = Z STARTING CASE - (CASE : 1) TEMP WIND K CAL BY FOS OR SAG FOS OR SAG REQ. Loading Conditions D - Dgr.	32 0 FOS 4.55 C Sag (m) No - Wind 7.110 36% - Wind -	SA SA Sonductor Ult. % OF UTS Tension 4686.07 27.36 %) G <u>V2</u> Earth-wire sag (m) Utt. Tension 6.399 1509.52	UTS 17.95 %
FA2 [F- {K*++E}] = Z STARTING CASE - (CASE : 1) TEMP WIND (CAL BY FOS OR SAG FOS OR SAG REQ. Loading Conditions D - Dgr. D - Dgr.	32 0 FOS 4.55	SA Sonductor Ult. % OF UTS Tension 4686.07 27.36 % 5034.25 29.39 %) G <u>Earth-wire</u> sag Utt. (m) Tension 6.399 1509.52 - 1747.99	UTS 17.95 % 20.78 %
FA2 [F - {K*t*E}] = Z STARTING CASE - {CASE : 1 } TEMP WIND < CAL BY FOS OR SAG =OS OR SAG REQ. Loading Conditions D - Dgr. 2 - Dgr. 2 - Dgr.	32 0 FOS 4.55 C Sag (m) No - Wind 7.110 36% - Wind - No - Wind 8.841 No - Wind 8.841	SA Sonductor Ult. % OF UTS Tension 4686.07 27.36 % 5034.25 29.39 % 3768.60 22.00 %) G <u>Earth-wire</u> sag Utt. (m) Tension 6.399 1509.52 - 1747.99 7.462 1294.54	UTS 17.95 % 20.78 % 15.39 %
FA2 [F - {K****E}] = Z STARTING CASE - (CASE : 1) TEMP WIND < CAL BY FOS OR SAG FOS OR SAG REQ. Loading Conditions D - Dgr. 2 - Dgr. 2 - Dgr.	32 0 FOS 4.55 C Sag (m) No - Wind 7.110 36% - Wind - No - Wind 8.841 No - Wind 8.841	SA SA Sonductor Ult. % OF UTS Tension 4686.07 27.36 % 5034.25 29.39 % 3768.60 22.00 % 5023.37 29.32 %) G <u>Earth-wire</u> sag Utt. (m) Tension 6.399 1509.52 - 1747.99 7.462 1294.54 - 2044.76	UTS 17.95 % 20.78 % 15.39 % 24.31 %

TOWER SPOTTING DATA FOR XELDAM- NARENDA 400 KV D/C TRANSMISSION LINE (WZ-1) (QUAD AAAC MOOSE CONDUCTOR)

(I) GENERAL DETAILS:

Normal Span (M) =400

Design Wind Span (M) =

Type of Condition	DA	DBN	DB	DC	DDN	DD	DE
NC	400	400	400	400	400	400	260
BWC	240	240	240	240	240	240	156

(II) TOWER TYPES:

a) Tower type "DA" Shall be used as Tangent tower with Double Suspension Insulator String.

b) Tower type "DBN/DB/DC/DDN/DD" Shall be used as Tension tower with Quad Tension Insulator String.

c) Tower type "DBN/DB" Shall also be used as Section tower.

d) Dead End tower shall have provision of 0 to 15 Degree deviation on line side as well as slack side.

e) Suitable Pilot String Shall be Used for Tower type "DC". DC Tower shall not use as section tower.

(III) ELECTRICAL CLERANCES FOR RAILWAY CROSSING

a) Crossing should be done with DDN/DD type tower with Quad tension insulator string with limiting span as 300m.

b) The crossing shall normally be at right angle to the railway track.

Minimum Clerance between lowest point of 400 KV line conductor & Rail level shall be as below.

(1) For Existing Power Line Crossings :-	17.90 m
(2) For New Power Line Crossings or Alteration to Existing Power Line Crossing in Electrified Sections :-	18.26 m (Clearance at OHE structures in mm) 15.434 m (Clearance at Mid OHE span in mm)
(3) For Power Line Crossings in Non-Electrified Sections :-	14.46 m (Line is not anticipated to be electrified) 18.26 m (Line to be electrified in future)
(4) For Highest Traction Conductor & Lowest crossing conductor :-	5.49 m

However, approval of Railway Crossing from railway authority has to be obtained in each case.

(IV) MINIMUM CLERANCE FOR POWER LINE CROSSING WHEN CROSSING EACH OTHER

For	Sysi	tem	400	KV	
-----	------	-----	-----	----	--

For 11KV to 66 KV	5.49 m
For 110KV to 132 KV	5.49 m
For 220 KV	5.49 m
For 400 KV	5.49 m
For 765 KV	7.94 m
For 1200 KV	10.44 m
For 500 KV HVDC	6.79 m
For 800 KV HVDC	9.04 m

(V) TELECOMMUNICATION LINE CROSSING

The angle of crossing shall be as near to 90 deg as possible. However deviation to the extent of 30 deg may be permitted under exceptional difficult situation.

For 400 KV 4.48 m

(VI) SECTION TOWER

The No. of consective spans between the section points shall not exceed 15 or 5kms in plain terrain & 10 spans or 3kms in hilly terrain. A section point shall comprise of tension point with DBN/DB type tower.

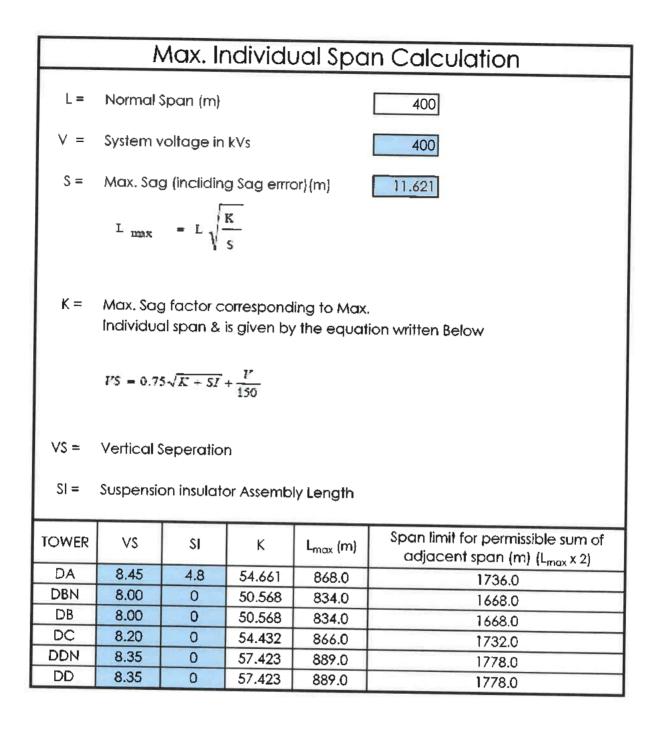
(VII) Minimum ground clerance required = 8840 mm.

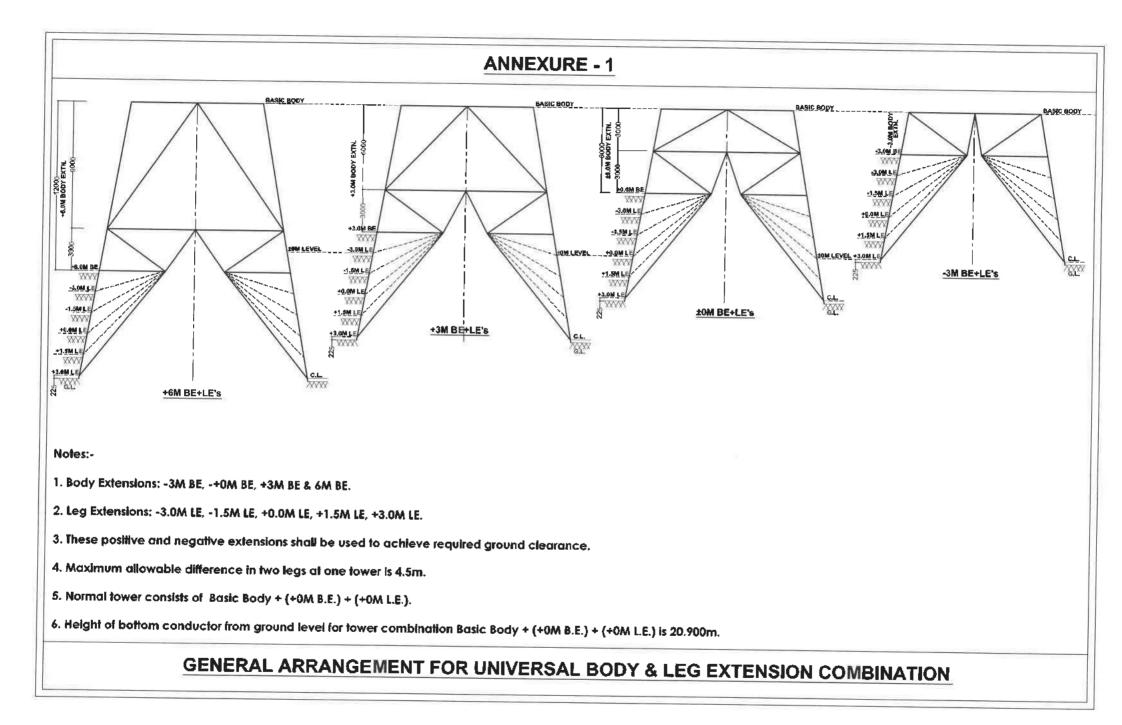
(VIII) For all national highways crossings, tension towers is to be used and crossing span is not to exceed 250 m

(IX) Way leave clerance: 26 m from the cl of tower on either side of tower.

(X) Maximum span of adjucent spans for various angle of deviation are subjected to the condition that minimum specified live metal clerances and minimum around clerances are available.

(XI) suspension towers shall be spotted such that vertical load of individual spans shall be acting downwards only. no uplift is permitted in suspension towers.


(XII) tower type "DC" shall be used for transposition with 0 deg. deviation with modification of cross arms.


(XIII) Intermediate spans in a section shall be as near as possible to the normal span.

(XIV) For Body & Leg Extensions Arrangement - Refer attached Annexture - 1 Body Extensions : - -3MBE, +0M BE, +3M BE & +6M BE Leg Extensions : - -3.0M LE, -1.5M LE, +0.0M LE, +1.5M LE, +3.0M LE These positive and negative extensions shall be used to achieve required ground clearance. Maximum allowable difference in two legs at one fower is 4,5m.

(XV) Normal tower consists of Basic Body + (+OM B.E.) + (+OM L.E.).

(XVI) Height of bottom conductor from ground level for fower combination Basic Body + (+0M B.E.) + (+0M L.E.) is 20.900m.

		-			
	////S	tei	rlite Power		
<u>Project :</u>	<u>400 K</u>	V D/	C TRANSMISSION LINE	L	
<u>Line :</u>	<u>Xelda</u> <u>Line w</u> 2)	<u>ım- /</u> /ith (<u>Mapusha 400 KV D/C</u> Quad AAAC Moose C	<u>Trans</u> ondu	<u>mission</u> ctor (WZ-
<u>Wind Zone :</u>	li (39 i	m/s)			
<u>Owner :</u>	Sterlite	e Po	wer Grid Ventures Lim	ited	
Description :	TOWE	R SPO	OTTING DATA (Upto +9	PM)	
	A E th		TE POWER GRID VENTURES LT SED FOR CONSTRUCTION ROLLED COPY ed Vide Ref. Letter No.SPANL/G. 6/L4T/22 Date: 10/08 ering Deptt. e does not relieve the contractor from the al obligations	12018	
Document no.	Date	Rev no.	Remarks if any	Desn by	STATUS
DS-1008	10-08-2018	01	Additional Tower Families Included	АМ	

				IGUAD AA	AL MOUS	SE CONDUCTO	0								
R. NO.	DESCRIPTION	DA (0-2 DE	GREE)	D6N (0-8 D		D8 (0-15 D		DC (15-30)	DEGREEI	DDN (30-45	DEGREE!	DD (30-60	DEGREE!	DE (0-15 D	FGREE
1	MAX ANGLE OF DEVIATION	2			β		15			45		60		15	
2	VERTICAL LOAD LIMITATION ON WEIGHT SPAN	DOWNWARE MAX	DS ONLY MIN	DOWNWARD MAX	UPWARD	DOWNWARD MAX	UPWARD MIN	DOWNWARD		DOWNWARD		DOWNWARD	UPWARD	DOWNWARD	UPWAR
2.1	GROUNDWIRE EFFECT	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
	I) ON BOTH SPAN (M)	600	200	600	0	600	0	600	0	600	0	600	0	300	
	II) ONE SPAN (M)	360	100	360	-200	360	-200	360	-200	360	-300	360	-300	300	0
22	CONDUCTOR EFFECT	500	100	000	-200	300	-200	000	-200	360	-300	300	-300	300	0
	I) ON BOTH SPAN (M)	600	200	600	0	600	0	600	0	600	0	600	0	300	0
	(II) ONE SPAN (M)	360	100	360	-200	360	-200	360	-200	360	-300	360	-300	300	0
3	WEIGHTS		100	1 000	1 .200	000	-200	1 000	-200	300		1 300	-500	300	0
3.1	GROUNDWIRE EFFECT														
0.1	II) ON BOTH SPAN (KG)	350	117	350	0	350	0	350	0	350	0	350	0	175	0
	(II) ONE SPAN (KG)	210	59	210	-117	210	-117	210	-117	210	-175	210	-175	175	0
3.2	CONDUCTOR EFFECT	210		1 210		210		210	-117	210	-175	210	-175	17.9	
÷	I) ON BOTH SPAN (KG)	1000	334	1000	0	1000	0	1000	0	1000	0	1000	0	500	0
	(II) ONE SPAN (KG)	600	167	600	-334	600	-334	600	-334	600	-500	600	-500	500	0
4	PERMISSIBLE SUM OF ADJACENT SPANS IN M FOR VARIOUS DEVIATION ANGLES.	DEVN ANGLE	SPAN	DEVN ANGLE	SPAN	DEVN ANGLE	SPAN	DEVN ANGLE		DEVN ANGLE	SPAN	DEVN ANGLE	SPAN	DEVN ANGLE	SPAN
-	PERMISSIBLE ONE SPAN FOR VARIOUS DEVIATION ANGLES SHOULD NOT EXCEED	2	800	8	800	15	800	30	800	45	800	60	800	0	800
	40% OF THE VALUE SHOWN FOR THE SUM OF ADJACENT SPANS SUBJECTED TO	1	840	7	851	14	851	29	850	44	848	59	844	15	800
	AVAILABILITY OF GROUND CLERANCES.	0	881	6	902	13	902	28	901	43	896	58	889	1.0	000
	AVAILABILIT OF OROUND CLERANCES.	-		5	954	12	953	27	95	42	943	57	933		
				4	1004	11	1003	26	1001	42	991	56	977		
		-		3	1056	10	1055	25	1050	40	1038	55	1021		
		-	-	2	1107	9	1105	23	1100	39	1036	54	1021		
				-	1158	8	1156	23	1149	38	1133	53	1110		
		-	1	0	1209	2	1207	22	1199	37	1180	52	1154		
					1207	6	1258	21	1248	3/	1228	51	1199		
						5	1309	20	1240	35	1220	50	1243		
						4	1360	19	1346	34	1322	49	1243		
		-				3	1411	18	1396	33	1322	47	1333		
				-		2	1462	17	1446	32	418	40	1333		
						1 & below	1513	16	1496	31	1410	47 46	13/8		
		-				100000	1010	15	1546	30	146/	45 & below	1424		
5	DESIGN LOAD TENSION							10	1040		1010	45 & 0800	1470		
	7/3.66 -{32C AND Full Wind}							3014.0	0 Ka					L	
	7/3.66 -(32C AND 75% of Full Wind)	-	-					2588.0							
	7/3.66 -(0C AND 36% of Full Wind)		_					2147.0							
	OPGW - (32C AND Full Wind)		-				-	2880.0							
	OPGW - (32C AND 75% of Full Wind)						_	2442.0							
	OPGW - IOC AND 36% of Full Wind)	7	_					1921.0							
5.2	CONDUCTOR-(32C AND Full Wind)				_			6766.0							
	CONDUCTOR-(32C AND 75% of Full Wind)							5814.0							
	CONDUCTOR-(0C AND 36% of Full Wind)		_				_	5317.0							
6	BROKEN WIRE CONDITION (BROKEN ON THE SAME SIDE ON THE SAME SPAN)	GW/ANY CONDUC		GW	ANY ONE	CONDUCTOR O	R ANY TWO			GW			or all three	CONDUCTORS	

Xeldam- Mapusha 400 KV D/C Transmission Line with Quad AAAC Moose Conductor (WZ-2) OWNER: STERLITE POWER GRID VENTURES LIMITED - NEW DELHI

SAG TENSION CALCULATIONS												
R∪ling span: (L)	400.00 m]									
Design Wind Pressure: (Pd)	483.00 N/Sq.mt 49.20 kg/Sq.mt]									
Gust response factor (for wire) : Gc:	2.22]	2.30								
Final wind pressure (for wire) :	110.00 kg/Sq.m 3.51 kg/m	t]	136.00 kg/ 1.49 kg/m	Sq.mt]						
Final wind pressure (for Insulator) :	148.00 kg/Sq.m	†]									
<u>Particulars</u>	Conduc	tor		Earth	-wire							
Code :	AAAC Mo	oose]	7/3	3.66							
Area, (A) :	6.040 sq.	cm]	0.7365	sq.cm]						
Unit Wt :	1.666 kg	/m]	0.583	kg/m]						
Diameter : (D)	3.195 cr	ns]	1.098	3 cms]						
Tensile strength: (T)	17130.00	kgs]	6973.	00 kgs]						
Elast. Mod : (E)	.5508E+06 kg	/sq.cm]	.1936E+07	kg/sq.cm							
Expns. Coef : (∞)	.2300E-04 /D	eg.Cnt]	.1150E-04	/Deg.Cnt]						
BASIC EQUATION OF SAG TENSION CA FA2 [F- (K-****E)] = Z STARTING CASE - (CASE : 1) TEMP	32											
WIND	0			(0							
K CAL BY FOS OR SAG FOS OR SAG REQ.	FOS 4.55]	SA	\G							
		ĩ	Conducto	r	<u>Eart</u> i	<u>n-wire</u>						
Loading Conditions		sag (m)	Ult. Tension	% OF UTS	sag (m)	Ult. Tension	% OF UTS					
0 - Dgr.	No - Wind	7.110	4686.07	27.36 %	6.399	1822.05	26.13 %					
0 - Dgr.	36% - Wind	-	5316.60	31.04 %	-	2146.42	30.78 %					
32 - Dgr.	No - Wind	8.841	3768.60	22.00 %	7.312	1594.66	22.87 %					
32 - Dgr.			6414.00	00.04.07								
	75% - Wind	•	5814.00	33.94 %		2587.54	37.11 %					
32 - Dgr.	75% - Wind Full - Wind	-	6765.07	39.49 %	•	2587.54 3013.72	37.11 % 43.22 %					
32 - Dgr. 53 - Dgr.												

Xeldam- Mapusha 400 KV D/C Transmission Line with Quad AAAC Moose Conductor (WZ-2) OWNER: STERLITE POWER GRID VENTURES LIMITED - NEW DELHI

SAG TENSION CALCULATIONS												
Ruling span: (L)	400.00 m		l									
Design Wind Pressure: (Pd)	483.00 N/Sq.m 49.20 kg/Sq.mt											
Gust response factor (for wire) : Gc:	2.22			2.30]						
Final wind pressure (for wire) :	110.00 kg/Sq.n 3.51 kg/m	nt		136.00 kg/: 1.66 kg/m	Sq.mf]						
Final wind pressure (for Insulator) :	148.00 kg/Sq.m	nt	l									
<u>Particulars</u>	Conduc	<u>ctor</u>		<u>Earth</u>	-wire							
Code :	AAAC Me	oose		ÓPGW	/ (24F)							
Area, (A) :	6.040 sq	.cm	I	0.7565	sq.cm]						
Unit Wt :	1.666 kg	j/m	l	0.483	kg/m]						
Diameter : (D)	3.195 c	ms	1	1.220	cms]						
Tensile strength: (T)	17130.00	kgs	l	9032.0)0 kgs]						
Elast. Mod : (E)	.5508E+06 kg	g/sq.cm	l	.1417E+07	kg/sq.cm]						
Expns. Coef : (∞)	.2300E-04 /E	eg.Cnt]	.1380E-04	/Deg.Cnt]						
BASIC EQUATION OF SAG TENSION CA F^2 [F - (K-**t*E)] = Z STARTING CASE - (CASE : 1) TEMP WIND	ALCULATIONS :- 32 0			(•							
K CAL BY FOS OR SAG FOS OR SAG REQ.	FOS 4.55			SA	G							
	4.55		J		201							
			Conducto	[Eartt	n-wire						
Loading Conditions												
		sag (m)	Ult. Tension	% OF UTS	sag (m)	Ult. Tension	% OF UTS					
0 - Dgr.	No - Wind	1.		% OF UTS								
0 - Dgr. 0 - Dgr.	No - Wind 36% - Wind	(m)	Tension		(m)	Tension 1509.52	UTS					
		(m) 7.110	Tension 4686.07	27.36 %	(m) 6.399	Tension 1509.52	UTS 16.71 %					
0 - Dgr.	36% - Wind	(m) 7.110 -	Tension 4686.07 5316.60	27.36 %	(m) 6.399 -	Tension 1509.52 1920.80 1296.43	UTS 16.71 % 21.27 %					
0 - Dgr. 32 - Dgr.	36% - Wind No - Wind	(m) 7.110 - 8.841	Tension 4686.07 5316.60 3768.60	27.36 % 31.04 % 22.00 %	(m) 6.399 - 7.451	Tension 1509.52 1920.80 1296.43	UTS 16.71 % 21.27 % 14.35 %					
0 - Dgr. 32 - Dgr. 32 - Dgr.	36% - Wind No - Wind 75% - Wind	(m) 7.110 - 8.841 -	Tension 4686.07 5316.60 3768.60 5814.00	27.36 % 31.04 % 22.00 % 33.94 %	(m) 6.399 - 7.451 -	Tension 1509.52 1920.80 1296.43 2441.18	UTS 16.71 % 21.27 % 14.35 % 27.03 %					

TOWER SPOTTING DATA FOR XELDAM- MAPUSHA 400 KV D/C TRANSMISSION LINE (WZ-2) (QUAD AAAC MOOSE CONDUCTOR)

(I) GENERAL DETAILS:

Normal Span (M) = 400

Design Wind Span (M) =

Type of Condition	DA	DBN	DB	DC	DDN	DD	DE
NC	400	400	400	400	400	400	260
BWC	240	240	240	240	240	240	156

(II) TOWER TYPES:

a) Tower type "DA" Shall be used as Tangent tower with Double Suspension Insulator String.

b) Tower type "DBN/DB/DC/DDN/DD" Shall be used as Tension tower with Quad Tension Insulator String.

c) Tower type "DBN/DB" Shall also be used as Section tower.

d) Dead End tower shall have provision of 0 to 15 Degree deviation on line side as well as slack side,

(III) ELECTRICAL CLERANCES FOR RAILWAY CROSSING

a) Crossing should be done with DDN/DD type tower with Quad tension insulator string with limiting span as 300m.

b) The crossing shall normally be at right angle to the railway track.

Minimum Clerance between lowest point of 400 KV line conductor & Rail level shall be as below.

(1) For Existing Power Line Crossings :-	1 7.9 0 m	
(2) For New Power Line Crossings or Alteration to Existing Power Line Crossing in Electrified Sections :-	18.26 m 15.434 m	(Clearance at OHE structures in mm) (Clearance at Mid OHE span in mm)
(3) For Power Line Crossings in Non-Electrified Sections :-		(Line is not anticipated to be electrified) (Line to be electrified in future)
(4) For Highest Traction Conductor & Lowest crossing conductor :-	5.49 m	

However, approval of Railway Crossing from railway authority has to be obtained in each case.

(IV) MINIMUM CLERANCE FOR POWER LINE CROSSING WHEN CROSSING EACH OTHER

For	2	yste	em,	400	KV	

For 11KV to 66 KV	5.49 m
For 110KV to 132 KV	5.49 m
For 220 KV	5,49 m
For 400 KV	5.49 m
For 765 KV	7.94 m
For 1200 KV	10.44 m
For 500 KV HVDC	6.79 m
For 800 KV HVDC	9,04 m

(V) TELECOMMUNICATION LINE CROSSING

The angle of crossing shall be as near to 90 deg as possible. However deviation to the extent of 30 deg may be permitted under exceptional difficult situation.

For 400 KV 4.48 m

(VI) SECTION TOWER

The No. of consective spans between the section points shall not exceed 15 or 5kms in plain terrain & 10 spans or 3kms in hilly terrain. A section point shall comprise of tension point with DBN/DB type tower.

(VII) Minimum ground clerance required = 8840 mm.

(VIII) For all national highways crossings, tension towers is to be used and crossing span is not to exceed 250 m

(IX) Way leave clerance: 26 m from the cl of tower on either side of tower.

(X) Maximum span of adjucent spans for various angle of deviation are subjected to the condition that minimum specified live metal clerances and minimum around clerances are available.

(XI) suspension towers shall be spotted such that vertical load of individual spans shall be acting downwards only. no uplift is permitted in suspension towers.

(XII) tower type "DC" shall be used for transposition with 0 deg. deviation with modification of cross arms,

(XIII) Intermediate spans in a section shall be as near as possible to the normal span.

Max. Individual Span Calculation

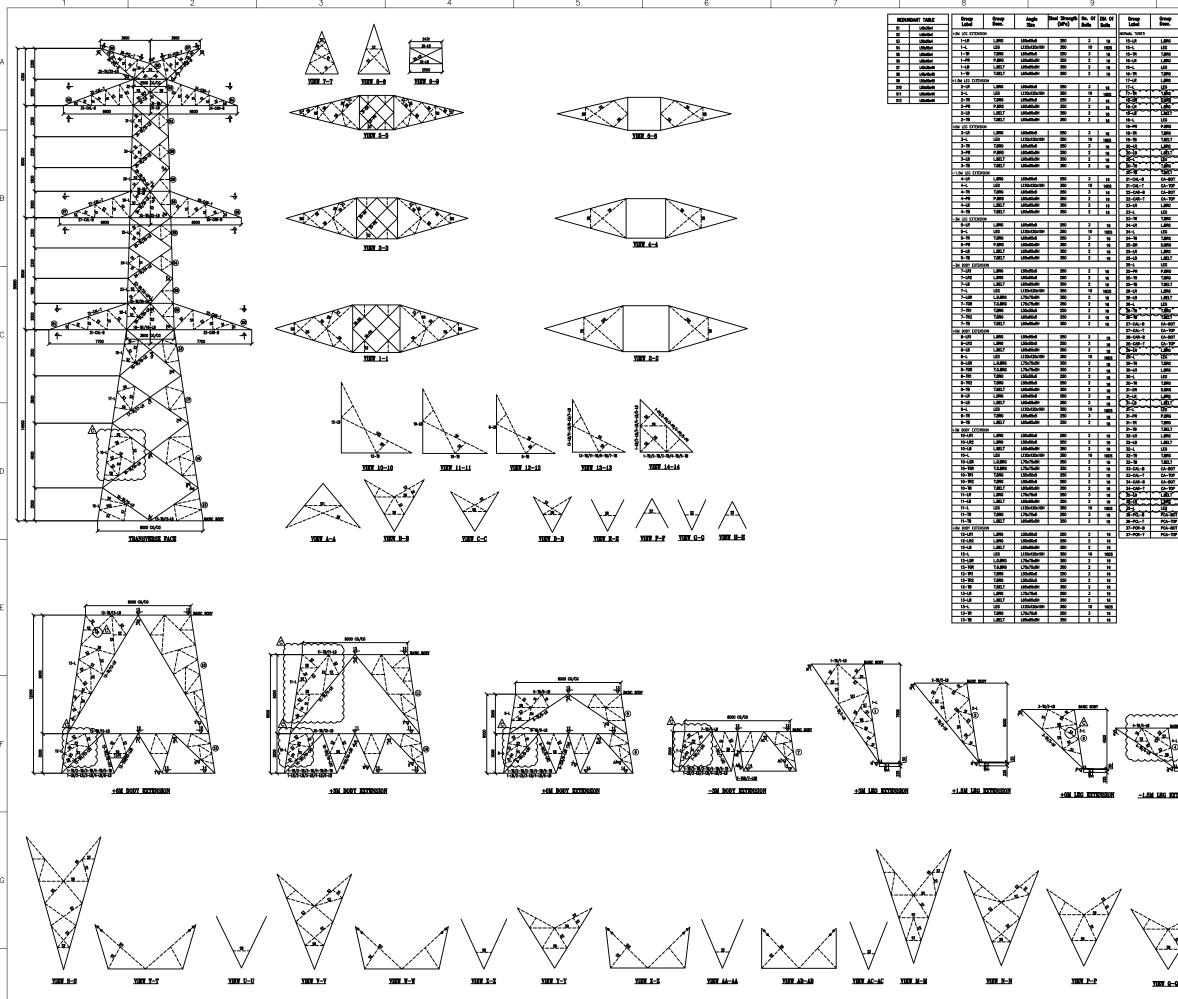
L = Normal Span (m)

400

11.621

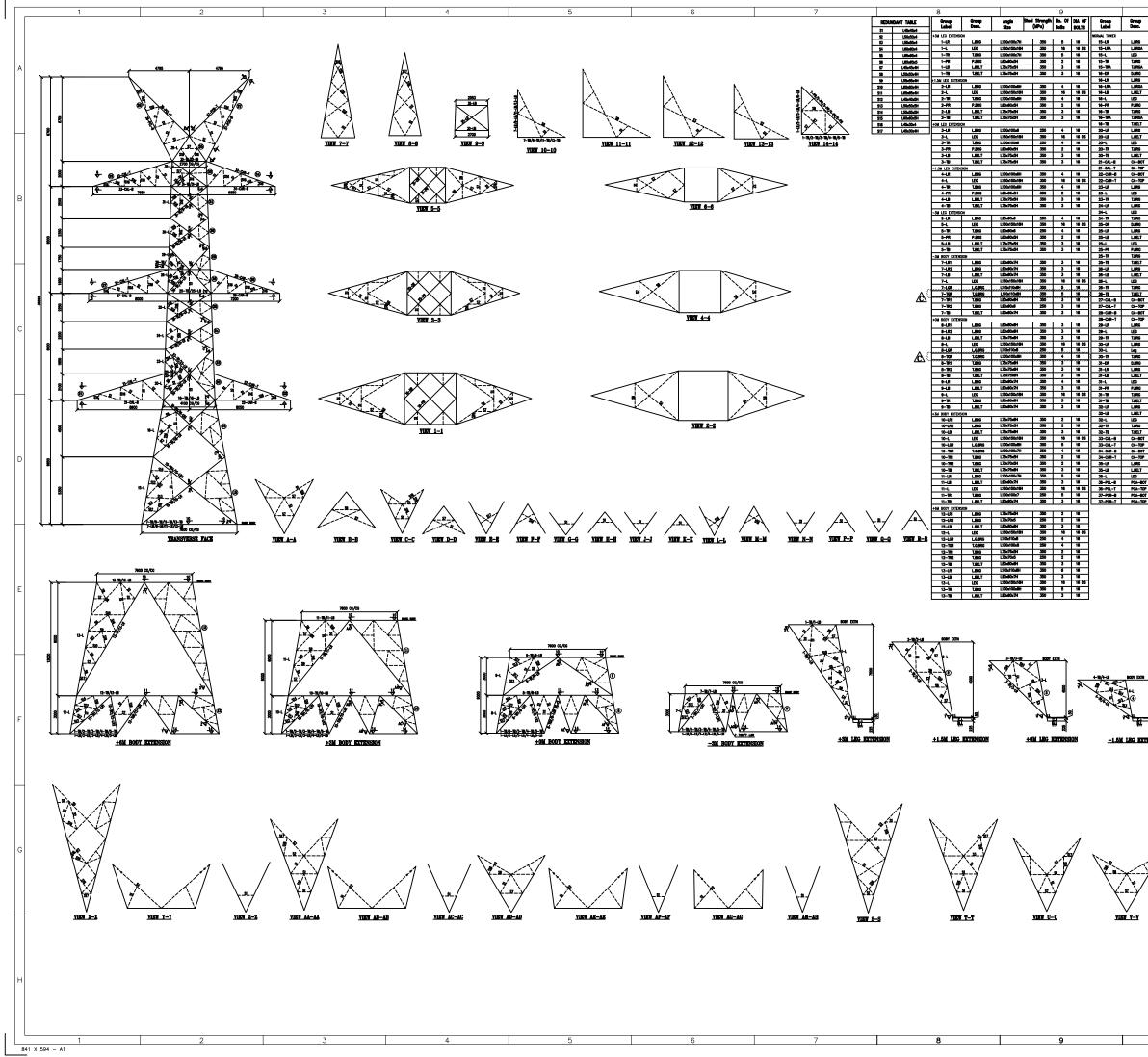
400

V = System voltage in kVs

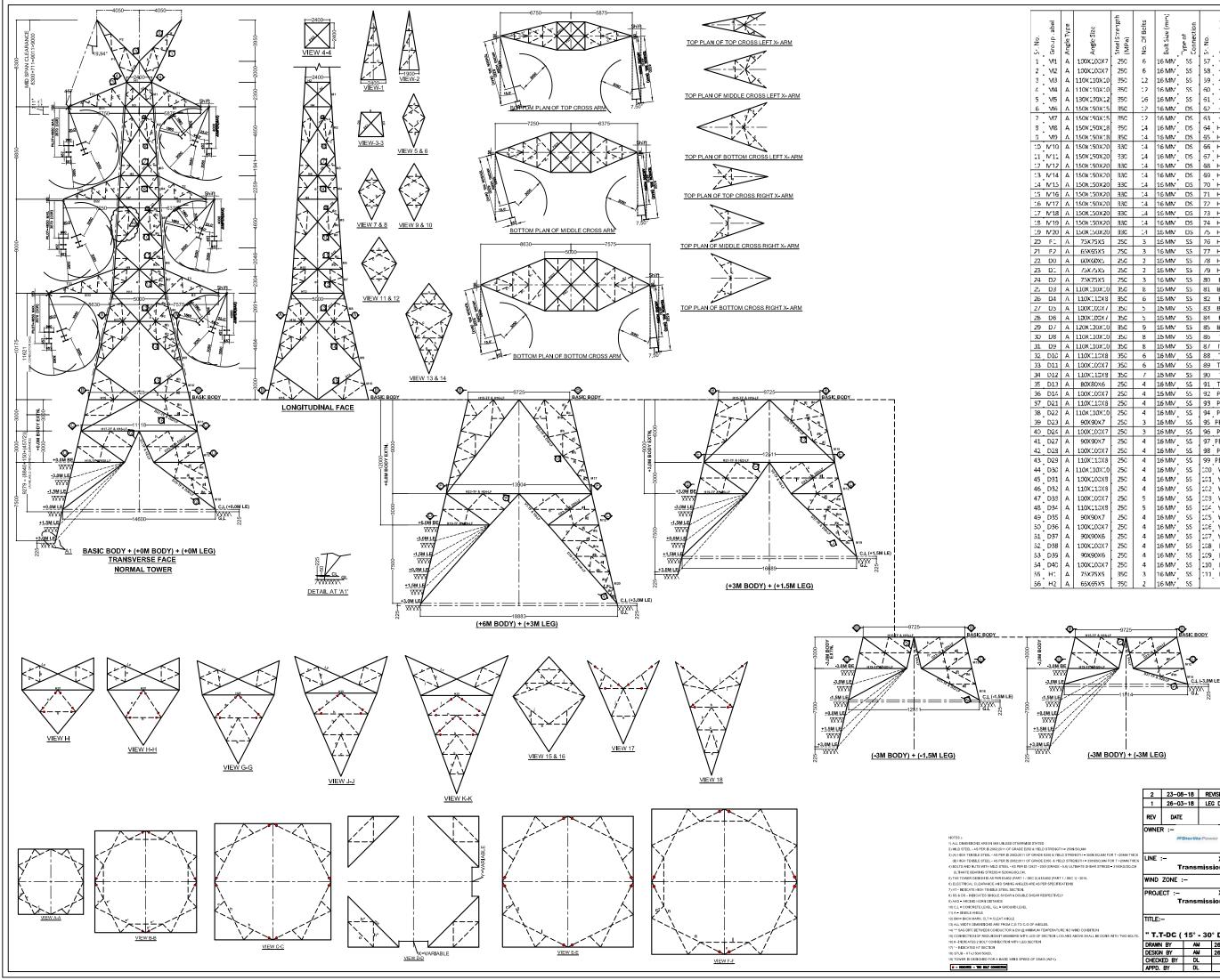

$$L_{\text{BESK}} = L \sqrt{\frac{K}{S}}$$

K = Max. Sag factor corresponding to Max. Individual span & is given by the equation written Below

$$VS = 0.75\sqrt{K+SI} + \frac{V}{150}$$

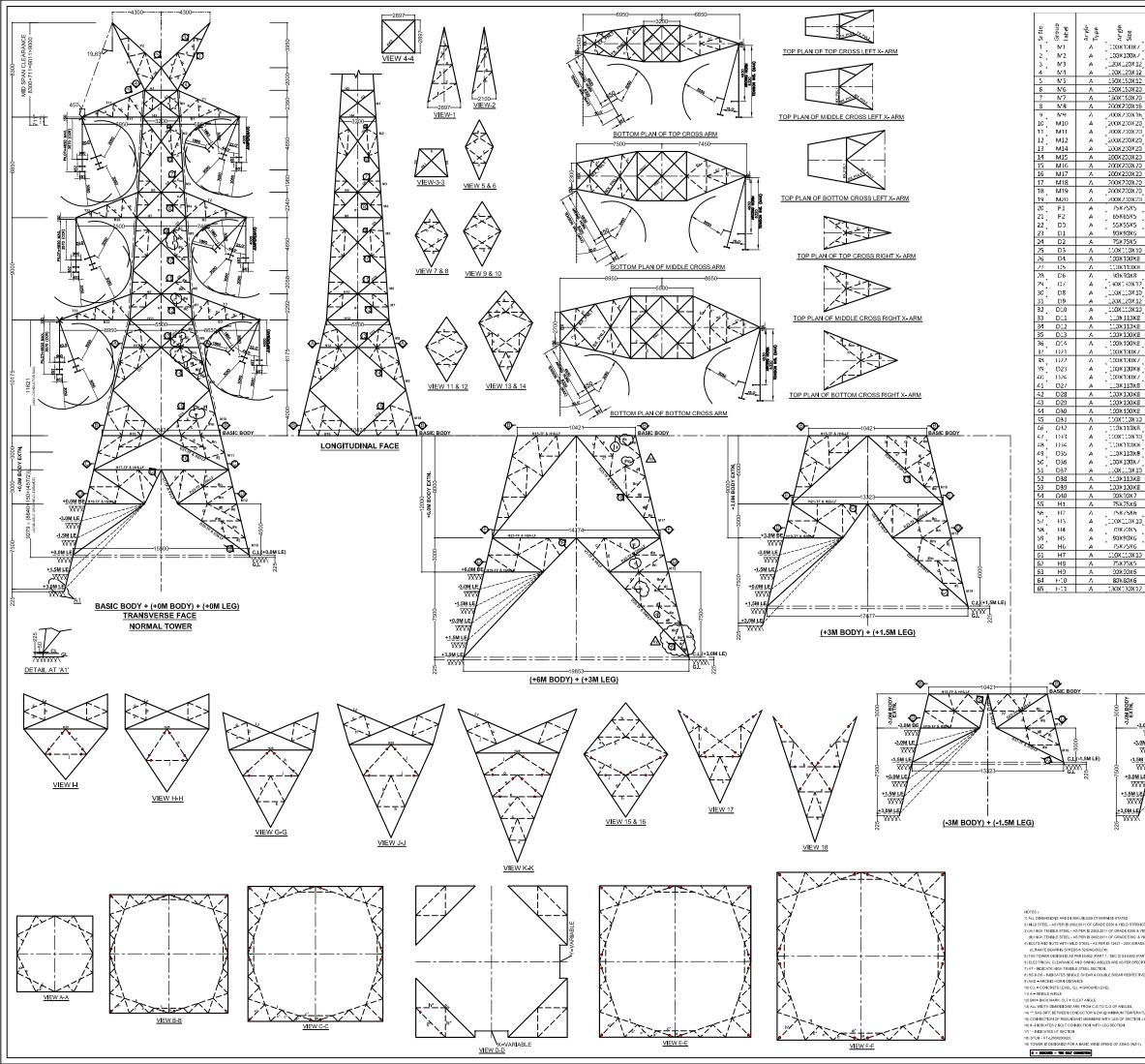

- VS = Vertical Seperation
- SI = Suspension insulator Assembly Length

TOWER	VS	SI	к	L _{max} (m)	Span limit for permissible sum of adjacent span (m) (L _{max} x 2)
DA	8.45	4.8	54.661	868.0	1736.0
DB	8.00	0	50.568	834.0	1668.0
DC	8.20	0	54.432	866.0	1732.0
DD	8.35	0	57.423	889.0	1778.0

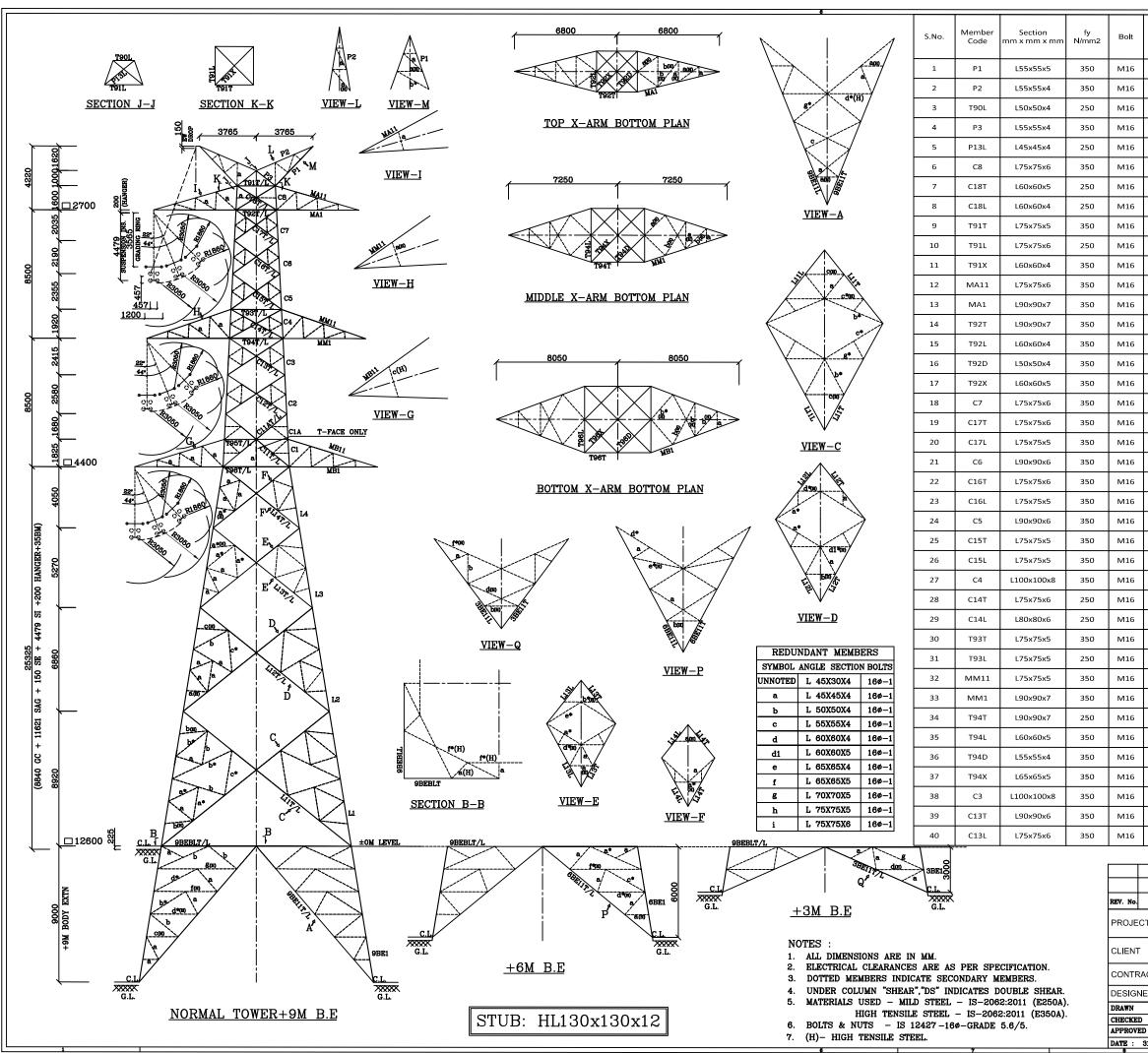


3 4 5 6

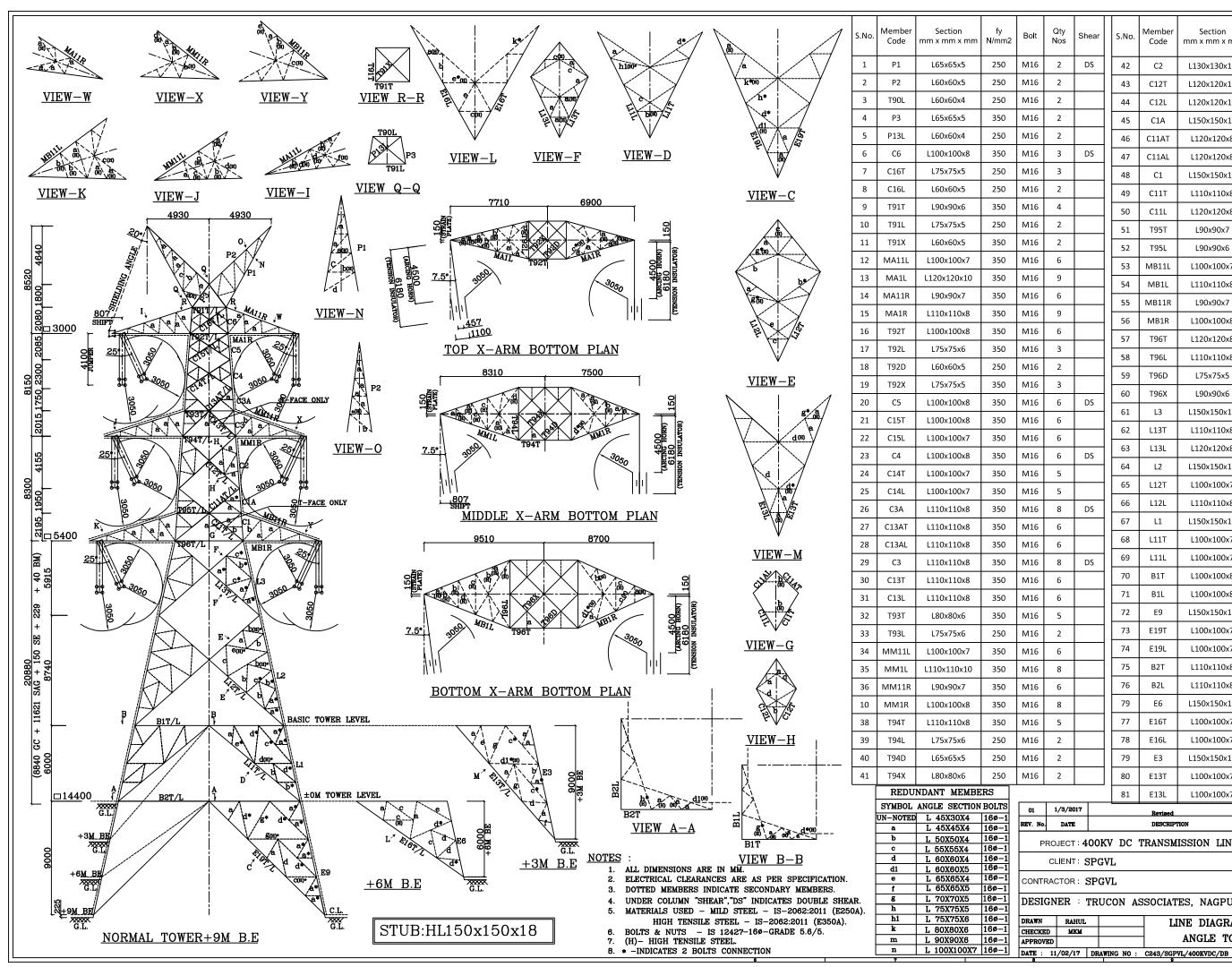
		10				11			1	12		
	Angle Size U70x70x5 U70x70x5 U70x70x6 U70x70x7 U70x70x6 U70x70x6 U70x70x70x7 U70x70x70x7 U70x70x7 U70x70x7 U70x70x7 U70x70x7 U70x	250 250 330 250 250 250 350 350 350	No. Of Bolts 2 10 2 3 10 2 3 10 2 3 10 3 2 10 10 2 2 10 10 2 2 10 10 2 3 1 10 10 2 3 10 10 10 10 10 10 10 10 10 10 10 10 10	DIA Of Bolts 16 1605 16 16 16 16 16 16 16 16 16 16 16 16 16	4). MLD STEEL SHUL CO 5). MON THREE STEEL 6). SECTION REPERED TO 7). BOLTS SHUL CONTROL 6). STEP DOLTS ARE PRO- 6). STEP DOLTS ARE PRO- 6). OULWINESHIG SHULL CO 110. CO. (2). (2) REPER 11). S1, S2, S3, RET 12). MINIMUM TRODRESS CHANGE BARED ON 14). ALL TRE CANTS ARE CHANGE BARED ON 14). ALL TRE CANTS ARE	E TO BE TAVEN AS ES LATICES LEVEL, NFORM TO IS 20122, NFORM TO IS 20122 MILL CONFORM TO MITH 'N' REFERS TO BUT DIS 10222001. ORFINE TO IS 2022 IS TO PAUE NAMED RS TO SUB BUACHES RS TO SUB BUACHES RS TO SUB BUACHES OF GUSSET FURE U MIBER SECTIONS IND MER ACTION. IEMBER	CO TO CE DIMENSIONS. CONCRETE LEVEL AND GROUNN ROTI PERTAINING TO GROUNE TO ISIS 2002-2011 PERTAINING TO INGHI TRUSILE STELL 3):2002 PERTAINING TO PROF Y OPPOSITE LEGS, 16 mm 6 1885.	250A. GRNDE E350A. ERTY CLASS 5.6. NOMMT TABLE. NETHIN TO IS 2002:: NET LIKELY SUBJECT OF (ML/R MATIO CRIT	LY. 0006. Ed to Ern).		0	A
	175:75:81 (Jackson) (Jacks	330 330 30 30 30 30 30 30 30 30 30 30 30	4 3 2 8 4 5 4 5 4 5 4 5 4 4 3 8 8 4 4 3 8 8 4 4 1 3 2	16 16 16 16 16 16 16 16 16 16								в
	U100100番目 U5050049 U5060049 U5060049 U7675641 U5060049 U50750541 U50750541 U5075541 U507541 U50754	300 300 300 300 300 300 300 300 300 300	8 2 4 3 3 2 6 4 3 6 4 1 2	1605 16 16 16 16 16 16 16 16 16 16								с
	(United and a second and a	350 360 200 300	8 2 4 2 6 2 6 2 6 3 5 4 2 3 2 3 2 3 2	1805 16	2							D
												E
		- 100-10 - 20 - 20 - 20 - 20 - 20 - 20		SC ROOY L SE L SE L SE RE RE NSJON	9							F
	*./.	X	×¥<	842	17.05.18 C 25.04.18 B 12.04.18 A DATE REV.NO. CLIENT :	MAIL REVIS MAIL ISSU	ED AS PER COMMENT DATED ON 15.05.2018 D) AS PART D) AS PART D) ON 15.04.2019 ED FOR APPROVAL DESCRIPTION	SA SA DESIGNED	ABS MP VG DRAWN	MTR/RK MTR/RK MTR/RK CHECKED	DK DK DK APPROVED	G
7 =9					MOOSE C		LE:	HNEERING : INAI ANSMISSION	PVT. LTI LINE W	D. ITH QUAD	E 1:100	H
		10			DEGN SA DRWN VG CHKD MTR/RK APPD DK	12.04.18 12.04.18 12.04.18 12.04.18 12.04.18 1 1	SINGLE LINI TOWER TYP:	5 DIAGRAM E "DA" (O"	-2")	SIZE REV.	-	


	10						11				1	2		
	Size L10x10x6 L110x10x6 L110x10x6 L100x100x7 L100x100x7 L100x100x7 L10x10x6 L120x120x6H L120x120x6H L120x120x6H L10x10x6H L10x10x6H L110x10x6H L110x10x6H L10x10x6H	d Strength (MPa) 250 250 250 250 250 250 250 350 350 350 350 350 350 350 350 350 3	Bolts 5 5 16 5 1 7 3 16 2 7 7 5 5	BOLTS 16 16 16 16 16 16 16 16 16 16	2). ALL TON 3). LL, CL A 4). MLD STR 5). HIGH TE 6). SECTION 7). BOLTS 3 6). STCP 40 AND SH 9). GALWAR 10). 1 . 2 . 11). S1, 52 12). MIRBULL 13). THE SL CONVOLUTION	ER WIDTHS ARE NIO GL DENOTE EEL SNULL CON- NEILES STELL S IS PREFORD WI SNULL CONFORM SNULL CONFORM	E TO BE TWEEN IS LATTICES LEA FORM TO IS 22 HULL CONFORM IN TO IS 12367(F MOED ON DWACO TO IS 10238220 ON DWACO TO IS 10238220 S TO FWMEL NU IS TO SUB BIN SF GUSSET PLO MER ACTUAL MEN ME ACTUAL MEN SUT JOINTS' U	INCRESS ONERWICES ONERWICES ON THE CONTRACT OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACT OF CONTRACT.	DIMENSIONS. LEVEL AND GROUND INNO TO GRUDE E2 I PERTAINING TO 4 ESTREL EXTAINING TO PROPI LEGS, 16 mm # DANCE WITH REDUN OWNER WITH REDUN THE GAL DWARTING SE LINE SWALL COM	SOA. Iriy Class 5.4. Damit Table. Fran to 15 20222 Me Likely Subject	0008. Ed to FWN).	LT IN OTHER EN	D	A
- TC	L084504 L19041001281 DL75x75449 DL75x75449 L004004 L1004100404 L1004100404 L10040040 L10040040 L10040040 L10040040 L10040040 L10040040 L100470404 L10040041 L10040041 L10040041 L100470404	350 380 350 350 350 350 350 350 350 350 350 35	3 12 5 7 7 5 7 5 5 12 5 5 12 5 5 12 5 5 11 5 5 1 1 5 5 1 1 5 5 5 12 5 5 5 5	16 16 DS 16 DS 16 16 16 16 16 16 05 16 DS 16 DS 16 16 DS 16 16 DS 16 16 DS 16 16 DS 16 16 DS 16 16 DS 16 16 16 16 16 16 16 16 16 16 16 16 16										в
r TTT P TTT P TTT P	L70/75/84H L80/450/8H L80/450/8H L110/150/15H L110/150/15H L110/150/15H L110/150/2H L110/150/2H L100/150/2H L100/150/2H L100/150/2H L100/150/2H L100/150/2H L100/150/2H L100/150/2H L100/150/2H	380 380 380 380 380 380 380 380 380 380	3 6 3 10 7 5 8 6 7 5 5 8 6 5 8 6 5 8 8 5 5 8 5 8 5 1 5 5 2 8 8 5 5 8 8 5 8 8 5 8 8 5 8 8 5 8 8 8 5 8	16 16 16 16 16 16 16 16 16 16 16 16 16 1										С
	LIORICOM LIORICAT LIORICAT LIORICAT LIORICOM LIORICAT LIORICOM LIORICAT LIORICOM LIO	360 360 220 360 350 350 350 350 350 350 250 250 250 350 350 350 350 350 350 350 350 350	• • <t< th=""><th>16 16 16 16 16 16 16 16 16 16 16 16 16 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>D</th></t<>	16 16 16 16 16 16 16 16 16 16 16 16 16 1										D
														E
25 X00	BION STON	-34 LEG												F
y				7	17.05.18 27.04.18 11.04.18 DATE CLIENT	C B A REV.NO.	Di REVI: Di	ISED AS PER ATED ON 15 SED AS PER ATED ON 19 ISSUED FOR DESCRIP	05.2018 COMMENTS 04.2018 APPROVAL	CK CK CK DESIGNED	MP MP VG DRAWN	MTR/RK MTR/RK CHECKED	DK DK APPROVED	G
		<u> 7167 ¥</u> -	T			Power	NARENDO ONDUCTO DATE 11.04.18 11.04.18 11.04.18	44 DES RA 400 B R (WZ-1)	E POWER G IGN & ENG CHEN V D/C TR/	INEERING NAI INSMISSION	PVT. LTE I LINE W		E 1:100	H
	10				APPD	DK	11.04.18 11	1			1	2 2]

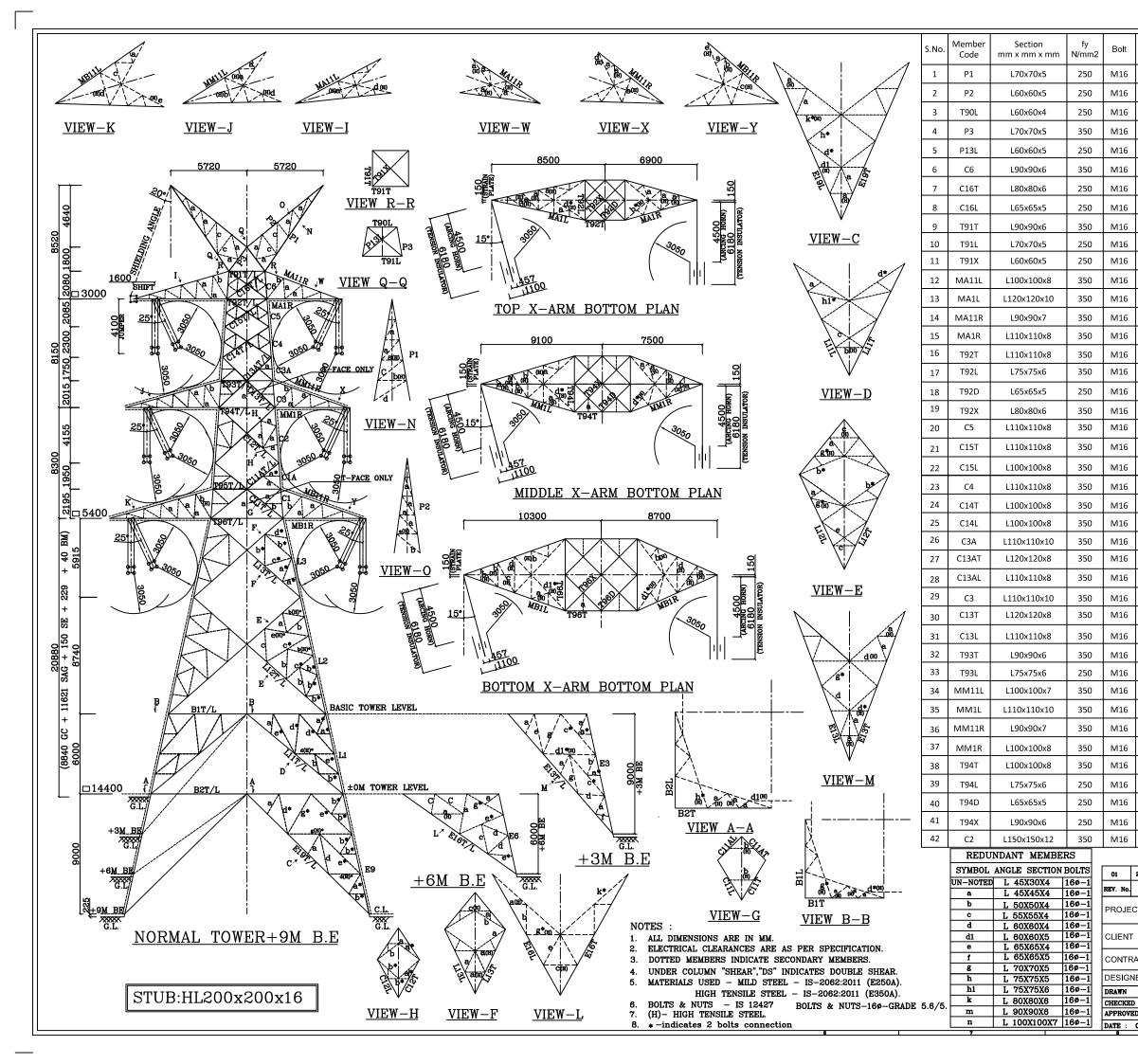
			ъ		2						£		2	
abel			цţ		Ē	Ę		le le	æ		ıßt	Bolts	Ē	Ξ
	Type	Angle Size	Steel Scrength (MPa)	Ë	Size (Type of Connection		Group Label	Tvpe	ıgle Size	lStrength aj) azis	Type of Connection
9	<u>.</u>	<u>्</u> र	el S Jaj	ă	5	ype of onnect	ŝ	9	÷.	12	el S Daj	5	is 1	'ype of Connect
G,	Angle.	Ang	Steel S (MPa)	ŝ	Bolt	2.5	5	8	Angle T	Ang	Steel S (MPa)	ŝ	bolt	2.3
V11	Ą	100X100X7	250	6	16 MM	55	57	⊣3	A	110X110X8	350	6	16 MM	\$5
VI2	A	100X100X7	250	6	16 MM	55	58	44	A	65X65X5	350	2	16 MM	55
V13	A	110X110X10	350	:2	16 MV	55	59	45	Å	75X75X5	350	4	16 MM	55
V14	Ā	110X110X10	350	:7	16 MM	55	60	HE.	Â	70X70X5	350	2	16 MM	55
V15	Ä	130X130X12	350		16 MIV	55	61 51	-17	Ā	100X100X8	350	5	16 MM	55
				16 12				. ''. ⊣8						
V16	۸.	150X150X15	350		16 MM	DS	62		Λ Δ	65X65X5	350	2	16 MM	55
V17	Α	150X150X15	350	:7	16 MM	DS	63	49	•••	75X75X5	350	4	16 MM	S5 57
V18	A	150X150X18	350	14	16 MM	DS	64	H10	A	75X75X5	350	2	16 MM	\$5
V19	٨	150X150X18	35C	14	15 MM	DS	-65	ни	Α	110X11CX10	350	7	16 MM	5.5
/10	А	150X150X20	330	14	¹⁶ MM.	DS	66,	нι2,	А	10CX10CX8	350	4	16 MM	55
/11	А	150X150X20	330	14	16 MM _	DS	67	н13	А	65X65X5	350	2	16 MM	\$5
/17	٨	150X150X20	33C	14	15 MM	DS	-68	H14	Α	65X65X5	350	2	16 MM	SS
/14	А	150X150X20	3.3C	14	16 MM.	DS	-69	н15	А	9CXSOX6	350	з	16 MM	55
/15	л	150X150X20	33C	14	15 MM	DS	70	H16	Α	100X100X7	350	3	16 MM	SS
/16	٨	150X150X20	330	14	15 MM	DS	71	H17	Α	90X50X6	350	3	16 MM	55
/17	٨	150X150X20	33C	14	16 MM	DS	72	H18	А	100X100X7	350	3	16 MM	55
/18	л	150X150X20	33C	14	15 MM	DS	73	H13	Α	75X75X6	35D	3	16 MM	55
/19	٨	150X150X20	33C	14	15 MM	DS	74	H20	Α	75X75X6	350	3	16 MM	SS
/20	A	150X150X20	33C	14	15 MM	DS	75	H21	A	90X30X7	35D	3	16 MM	SS
F1	Α	75X75X5	25C	3	15 MM	55	76	H22	A	LDCX10CX7	35D	3	16 MM	55
F2	Λ	65X65X5	25C	3	15 MM	55	77	H23	A	100X100X8	350	3	16 MM	55
20	A	GOXGDXS	25G	2	15 MM	55	/8	H24	A	110X110X8	350	3	16 MM	55
DC 10	A	75X75X5	250 250	2	15 MM	55	/0	H25	<u>л</u> Л	80X80X6	350 350	2	16 MM	55
D2	A	75X75X5	25C	3	15 MM	55	30	61	<u> </u>	100X100X8	350	9	16 MM	55
03	A	110X110X10	35/G	8	15 MM	SS	81	811	A	110X11GX10	350	9	16 MM	55
D4	Λ	110X110X8	35C	6	15 MM	55	82	62	A	LDCX10CX/	35D	1	16 MM	SS
05	A	100X100X7	350	5	15 MIV	5S	83	822	А	110X110X8	350	1	16 MM	55
D6	A	100X1DGX/	35G	5	15 MM	SS	84	83	А	LDCX10CX/	35D	1	16 MM	55
D7	A	120X120X10	35G	9	15 MM	55	85	833	A	110X110X8	35D	1	16 MM	SS
28	А	110X110X10	350	۶ ۲	15 MIV	SS	86	11	А	90X30X6	350	5	16 MM	55
09	А	110X110X10	35G	٤	15 MM	5S	87	111	А	80X80X6	35D	5	16 MM	SS
210	А	110X110X8	350	6	16 MIV	SS	88	T2	А	80X80X6	350	5	16 MM	SS
)11	А	100X100X7	350	6	15 MIV	55	89	T22	А	80X80X6	350	5	16 MM	SS
)12	А	110X115X8	350	7	15 MIV	55	90	13	А	90X90X6	35D	5	16 MM	55
>13	А	80X80X6	250	4	16 MV	SS	91	T33	А	80X90X6	350	5	16 MM	SS
>14	А	100X100X7	250	4	15 MIV	55	92	P(1	А	50X50X4	250	2	16 MM	SS
21	А	110X110X8	250	4	16 MIV	SS	93	Ρ≮2	А	55X55X5	350	2	16 MM	<u>\$5</u>
222	Α	110X110X10	250	4	16 MIV	SS	94	P31	A	60X60X5	350	2	16 MM	\$5
23	A	90X90X7	250	3	16 MIV	SS	95	PB11	A	55X55X5	350	2	16 MM	ss
24	A	100X100X7	250	3	16 MM	55	96	P82	A	70X70X5	350	2	16 MM	55
27	A	90X90X7	250	4	16 MIV	55	97	PB22	A	70X70X5	350	2	16 MM	SS
23	Ā	100X100X7	250	4	16 MIV	55	98	P33	A	90X30X6	350	2	16 MM	ss
	A	110X1103X7	250	4	16 MIV	55		PB33		75X75X5	350	2	16 MM	35
29				4 4										
30	A	110X110X10	250	· ·	16 MIV	SS .	100		A	80X80X6	250	4	16 MM	SS
)31	4	100X100X8	250	4	16 MM.	55	101		A	90X90X6	250	4	16 MM	S5 .
)32	A	110X110X8	250	4	16 MM	SS .	102		A	90X90X7	250	4	16 MM	\$5
>33	Α	100X100X7	250	5	16 MIV.	SS	103		Α	100X100X7	250	4	16 MM	SS
>34	Ą	110X110X8	250	5	¹⁶ M∨.	55	104,		А	90X90X6 ,	250	4	16 MM	S5
>35	А	90X90X7	250	4	16 MV.	SS	105		А	90X90X6	250	4	16 MM	- 55
36	A	100X100X7	250	4	16 MM	55	106	٧7	А	90X90X6	250	4	16 MM	S5
37	А	90X90X6	250	4	16 MV	55	107	V8	А	90X90X7	250	4	16 MM	S]
38	А	100X100X7	250	4	16 MV	55	108	L1	А	70X70X5	250	2	16 MM	55
39	А	90X90X6	250	4	16 MM	55	109	LZ	А	65X65X4	250	z	16 MM	- \$5
240	A	100X100X7	250	4	16 MV	55	:10		A	60X60X4	250	2	16 MM	55
н:	Δ	75X75X5	35C	3	16 MM	55	:11		A	60X60X4	250	2	16 MM	55
H2	A	65X65X5	350	2	16 MM	55	· · ·							
• =	-		170	4	1.0.004									


		REDUNTANT TABLE								
RED.		MAX LENT		MAX_LENTH IN mm						
MKD	SECTION	L/r MIN < 250		FOR 150 Kg Bend						
а	45x30x4	1575	2100	624						
a*	HT-45x30x4	1575	2100	864						
b	45x30x5	1575	2075	763						
b*	HT-45x30x5	1575	2075	1056						
С	45x45x4	2175	3425	1387						
C*	HT-45x45x4	2175	3425	1920						
d	45x45x5	2175	3400	1733						
е	50x50x4	2425	3825	1733						
e*	HT-50x50x4	2425	3825	2400						
f	50x50x5	2425	3800	2149						
9	50x50x6	2400	3775	N.C.						
h	55x55x4	2650	4175	2052						
h*	HT-55x55x4	2650	4175	2841						
1	55x55x5	2650	4175	2565						
1	60x60x4	2975	4625	2538						
i*	HT-60x60x4	2975	4625	3696						
k	60x60x5	2900	4550	N.C.						
1	65x65x4	3150	4975	2884						
1*	HT-65x65x4	3150	4975	3993						
m	65x65x5	3150	4975	N.C.						
n	70x70x5	3400	5375	N.C.						
0	75x75x5	3650	5775	N.C.						
р	75x75x6	3650	5750	N.C.						
q	80x80x6	3900	6150	N.C.						
r	90x90x6	4375	6925	N.C.						
s	100x100x6	4875	7725	N.C.						
t	110x110x8	5450	8500	N.C.						

	2	23-08-	-18 RE	vised as f	ER CLIENT	's comments	AM	DL	DL			
	1	26-03-	-18 LE	g differen	ce revise	D TO 4.5M	AM	DL	DL			
	REV	DATE		DES	CRIPTION		DRAWN	CHKED	APPD			
	OWNEF	OWNER :-										
ENGTH - 250N SQ.MM 8 YELD STRENGTH - 350N SQ.MM FOR T <20MM THICK 8 YELD STRENGTH - 330N SQ.MM FOR T <20MM THICK ADE - 5.6) ULTIMATE SHEAR STRESS - 3160KG/SQ.CM	LINE :- Xeldam - Narendra 400kV D/C Transmission Line with Quad AAAC Moose Conductor											
PART 1 / SEC 1) - 2015. CIFICATIONS	WIND	ZONE :-	-		I (3:	3 m/s)						
TIVELY	PROJE	CT:- Tr			with Qu	ndra 400k\ Jad AAAC N		onduct	or			
	TITLE:-	-		LINE		d Zone-1 RAM FOR						
RATURE NO WIND CONDITION IN L130 AND ABOVE SHALL BE DONE WITH TWO BOLTS.	" T.T-DC (15° - 30° DEV.)"(MEDIUM ANGLE TENSION TOWER)											
	DRAWN		AM	26.03.18	SCALE							
11.	DESIGN		AM	26.03.18		DESIGN NO .:	:- 1007	SHEE	T NO.:			
**	CHECK APPD.		DL DL					10	F1			
	APPU.	81	UL			REVISION	V 4 1					


VELY PROJECT: - Xeldam - Narendra 400kV D/C Transmission Line with Quad AAAC Moose Conductor For wind Zone-1 TITLE:- TITLE:- TITLE:- CLARGE ANGLE TENSION TOWER) DRAWN BY AM 06:04:18 DESIGN BY AM 06:04:18 DESIGN DY												
H - 250N/SQ.MM LD STRENGTH - 350N/SQ.MM FOR 1 LD STRENGTH - 330N/SQ.MM FOR 5.6) ULTIMATE SHEAR STRESS - 3 1 / SEC 1) - 2015. 'ATIONS	T >20MM THICK	LINE WIND					ith Qu			' D/C loose C	onduc	tor
		OWNE	R :-		Power ST			WER	GRID	VENTUI		
		1 REV		04-18	LEG DIFF		REVISE			AM	DL	DL
		2	03-0	8-18	REVISED	AS PER	100x10 110x1 CLIENT	10x8	4875 5450	7725 8500		.C.
			_			p q r	75x75 80x80 90x90	x6 x6 x6	3650 3900 4375	5750 6150 6925	N N	.C. .C.
<u>(-3M</u> B	 ODY) + (<u>-3M L</u> E	<u>G)</u>			m n	65x65 70x70 75x75	x5	3150 3400 3650	4975 5375 5775	N	.C.
						k *	60x60 65x65 HT-65x	x4 65x4	2900 3150 3150	4550 4975 4975	28	.C. 384 993
						j*	55x55 60x60 HT-60x	x4 60x4	2650 2975 2975	4175 4625 4625	25	565 538 596
F///				G	225	g h h*	50x50 55x55 HT-55x	x4 :55x4	2400 2650 2650	4175 4175	28)52 341
	== 12 5 98	===	& D28-LF	2-1-		e* f	HT-50x 50x50	50x4 x5	2425 2425	3825 3800 3775	24	100 149
	אין <i>א</i>		Y'	M 12	200	c* d	HT-45x 45x45 50x50	45x4 x5	2175 2175 2425	3425 3400 3825	19	20 733 733
₀/- <u>-</u> ¥-	-`}}		******	~ ~ ~		b b* c	45x30 HT-45x 45x45	30x5 x4	1575 1575 2175	2075 2075 3425	13)56 387
H15-TF & H16-L		<u>م</u> ر ا	1.		BODY	a a*	45x30 HT-45x	x4 30x4	MIN < 250 1575 1575	2100 2100	62	34
•				®		RED.	SECTIO		MAX LEN	ANT TABLE THIN mm	MAX LEN	
350 10	16 MM	55										
350 4 350 2	15 MM 16 MM	55 55		X_PUL2 X_PUL3	۸ ۸	60X60 50X50		250 250	1		MM MM	55 55
350 8 350 2	15 MM 15 MM	55 55	126 3) 127 3)	X_PNL2 X_PUL1	A A	90X90 60X60	XG	250 350	3	16	MM MM	55 55
350 4 350 2	16 MM 16 MM	55 55	124 M	X_PULA) X_PNL1	A A	45X45 90X90	X4	250 250	. 1 . 4	. 16	MM MM	55 55
350 7 350 2	16 MM 16 MM	55 55	122 M	X_PUL1 X_PUL2	A	55X55 50X50	X4	350 250	; 1 ; 1	16	MM MM	55 55
250 3 250 2	15 MM 15 MM	55 55	120 M	X PNLL X PNLL	<u>۸</u>	90X90 80X80	X6	350	1	16	MM MM	55 55
250 4 250 4	15 MM	55 55 55	118 🗆	X_PUL2 X_PUL2	A A	45X45 45X45	X4	250 250	1	. 16	MM MM	55 55 55
250 4 250 4	16 MM 15 MM	55	116 T	K_PNL2 X_PUL1	A A	75875 50X50	XG	250 350	<u> </u>	16	MM MM	55 55
250 4 250 4	16 MM 16 MM	55 55	114	BX K_PNL1	A2L A	65×65 90×90	X5	350 350	, 4 , 4	16	MM MM	D5 55
250 5 250 5	15 MM 15 MM	55	112	IX MX	A21 A21	65865	85	350 350 350	4	16	MM MM	05
250 4 250 4	15 MM 16 MM	\$\$ \$\$	110	13	Λ Λ	65X65 60X60	X4	250 250	2	16	MM MM	<u>\$5</u> 55
	15 MM 15 MM 15 MM	55 55 55	108 109 110	L1 12 13		90X90 75X75 65X65	XG XS X4	250 250 250	2	. 16 16 16	MM MM MM	55 55 55
250 4 250 4	15 MM	55	107	V8	A	00X9C	A/	250			MM	SS

~			-					_			
_ te -;;	ō,	20	Type et Larren Dn	ri	<u> </u>	υ.	5	Steel Strungti (MPa)	ŏ,	Bolt S 20 Irruu)	e of rocti
Sleet Strengt MPs/	No. O Bolts	Halt S. Imm)	Type : .arr	Nc.	Group Label	ArrElo Lytur	Argle Size	Steel Strung I MPa)	Nc. D Bolts	Bolt S.	lā 🖕 🗌
,				ۍ.				882,		1	F
. 50	8	15 MM	<u>.</u>	ĥò	1112	^	1108 110×10	3511		16 MM	55
350	8	16 MM	55	67	1413 .	A	65×65×5	250	2	16 MM	55
2, 350	16 16	16 MM 16 MM	55	68 69	H14 H15	A A	65×65X5 90×9CXC	250	2 3	16 MM 16 MM	55
2 350 2 350	20	15 MM	55 55	70	H16	<u>Α</u>	90X9CX6	350 350	3	16 MM	55 55
2 350 0 330	16	15 MM	 DS	70	H16 H17	A	90X9CX6	350	3	16 MM	55
0 330	16	15 MM	DS	72	H18	Â	90X90X6	350	3	16 VIM	55
5 350 5 350	18	15 MM	DS	73	H19	Λ	90X90X6	350	3	16 MM	SS
h_ 350	18	15 MM	DS	/4	H2G	Â	9009006	350	1	16 MM	55
دفغ ا	20	16 MM	DS .	15	1121	Ă	90X90X6	350	i.	16 MM	55
a) 40	20	15 MM	DS	76	107	A	9024026	350	-	16 MM	55
0 330	ZC	16 MM	DS	11	H23	A	100X100X7	350	э	16 MM	55
o 330	ZC	16 MM	DS	78	H24	A	100X1CCX/	350	э	16 MM	55
0 330	2C	15 MM	DS	79	H25	A	90X9CXG	250	2	16 MM	55
0 330	20	15 MM	DS	80	61	٨	110X J 10X I C	350	9	16 MM	SS
0 330	2C	15 MM	DS	81	B11	Λ	120X120X10	350	9	16 MM	SS
0 330	20	16 MM	DS	82	- 82	٨	100×100×10	350	8	16 MM	55
ວຸ 330	2G	16 MM	DS .	83	822 ,	٨	110X110X8	350	8	16 MM	SS
330	2C	16 MM	DS	84	83	Λ	100×100×8	3511	8	16 MM	- 55
, 250	3	16 MM	55	85	633 .	A	120×120×10	350 ,	8	16 MM	55
. 250	3	16 MM	55	80	1	A	90×90×6	350	5	16 MM	55
, 250	2	16 MM	SS .	87	-11 .	A.	75X75X5	350	4	16 MM	SS
250	3	15 MM	55	83	.5	A	90×90×6	350	5	16 MM	55
250	3	15 MM	55	89	-22	<u>A</u>	75X75X5	350	4	16 MM	SS
0 350	8	15 MM	SS	90	-3	<u>^</u>	90X90X6	350	5	16 MM	SS
350 350	6	15 MM 15 MM	<u>\$\$</u>	91 97		Λ Λ	7587585	350 250	4	16 MM 16 MM	- <u>55</u>
350	6 5	16 MM	55	93	PS1 PS2		55X55X4 60X60X5	350		16 MM	55
	- 11	15 MM	55	91	P81	^	6586585	350	÷.	16 MM	
	7	16 MM	ss	55	PB11	A	60X60X5	350	2	16 MM	55 55
	10	16 MM	55	96	P52	Â	/5×/5×5	350	2	16 MM	55
2 <u>350</u> 0 ₁ 350	7	10 MM	SS	50	PB22	Â	70X70X5	350	2	10 MM	55
350	Ğ	15 MM	SS	58	P33	Â	100X1CCX7	350	2	16 MM	55
350	<u></u> б	15 MM	SS	09	PB33	Λ	75X75X6	350	2	16 MM	SS
250	- 1	15 MM	SS	100	V1	Ä	90X9CX7	250	4	16 MM	55
250	4	16 MM	55	101	V2	Λ.	90X90X6	250	1	16 MM	55
250	4	15 MM	55	1112	v3 .	٨	100×100×7	250	4	16 MM	- 55
/ 250	4	15 MM	55	111.1	V4	٨	9039037	250	4	16 MM	55
250	J	16 MM	55	104	V5 ¹	A	90X9CX7	250	4	16 MM	- 55
250	4	15 MM	55	1115	Vh (А	9004006	250	4	16 MM	55
250	5	16 MM	SS	106	`	A	100X1CCX/	250	4	16 MM	55
250	- 4	15 MM	SS	107	V8	A	90X9CX7	250	- 4	16 MM	SS
250	- 4	15 MM	SS	108	LL	A	90X9CX6	250	2	16 MM	SS
2 50	- 4	15 MM	SS	109	12	Λ	75X75X5	250	2	16 MM	SS
0 250	- 4	15 MM	SS	110	13	٨	65X65X4	250	2	16 MM	SS
, 250	4	16 MM	55	111	14,	Λ	60X60X4	250 ,	>	16 MM	- 55
i, 250	5	16 MM	- 55	112	IX ,	A2I	65X65X5	350 ,	4	16 MM	- 05
, 250	5	15 MM	55	11.!	MX .	A2I	6586585	3511	4	16 MM	05
, 250	4	16 MM	55	114	3X .	A2L	65×65×5	350	4	16 MM	D5
250	4	16 MM	55	115	1X_PNL1	A	90×90×6	350	4	16 MM	55
0 250	4	10 MM	55	116	TX_PNL2	<u>A</u>	75X75X6	250	3	16 MM	55
250	1	LS MM	55	117	TX_2JL1	<u> </u>	50X5CX4	350	1 1	16 MM	55
250	1	15 MM	55	118 119	TX_PUL2 TX_PUL3	<u>A</u>	45X45X4 45X45X4	250 250	1	16 MM	55
250 250	- 4 	15 MM 15 MM	SS SS	1120		<u>۸</u>	90X90X6	350	1	16 MM 16 MM	SS SS
250		15 MM	55	120	MX PNL2		SUX SUX 6	250	4	16 MM	- 55 - 55
0 350	í,	16 MM	55		MX_PULL	Ä	5585584	350	1	16 MM	55
350	5	15 MM	55		MX_PUE2	Â	50X50X4	250	1	16 MM	55
350	4	16 MM	ss		MX_PUL3	Â	4584584	250	1	16 MM	55
350	2	16 MM	ŝŝ	125	BX PNLL	Â	90×90×6	250	4	16 MM	55
0 350	8	15 MM	SS	126	3X_PN_2	A	90X9CXG	250	3	16 MM	55
350	2	15 MM	SS	127	3X_2UL	Λ.	60X6CX4	350	1	16 MM	SS
350	4	15 MM	SS		BX_PUL2	Ä	60X6CX4	250	i	16 MM	SS
350	2	16 MM	55		3X 2UI3	٨	50X50X4	250	1	16 MM	55
2, 350	10	16 MM	55								


Qty Nos	Shear	S.No.	Member Code	fy N/mm2	Bolt	Qty Nos	Shear						
3		41	C2	L110x110x10	350	M16	6	DS					
2		42	С12Т	L80x80x6	350	M16	3						
1		43	C12L	L75x75x6	350	M16	3						
2		44	C1A	L110x110x10	350	M16	6	DS					
1		45	C11AT	L90x90x6	350	M16	3						
6		46	C11AL	L80x80x6	350	M16	3						
2		47	C1	L110x110x10	350	M16	6	DS					
2		48	С11Т	L90x90x6	350	M16	3						
3		49	C11L	L80x80x6	350	M16	3						
2		50	т95т	L75x75x6	350	M16	3						
1 51 T95L L75x75x5 250 M16 2													
4 52 MB11 L75x75x6 350 M16 4													
5 53 MB1 L90x90x7 350 M16 5													
4 54 T96T L90x90x7 250 M16 3													
4 54 1901 190307 230 M16 3 2 55 T96L L70x70x5 350 M16 3													
2 55 T96L L70x70x5 350 M16 3 1 56 T96D L60x60x4 350 M16 1													
2		57	т96Х	L75x75x5	350	M16	2						
6		58	L4	L130x130x10	350	M16	8	DS					
3		59	L14T	L75x75x6	250	M16	2						
3		60	L14L	L75x75x6	250	M16	2						
6		61	L3	L130x130x10	350	M16	10	DS					
3		62	L13T	L75x75x5	250	M16	2						
3		63	L13L	L75x75x5	250	M16	2						
6		64	L2	L130x130x12	350	M16	10	DS					
3		65	L12T	L75x75x6	250	M16	2						
2		66	L12L	L75x75x6	250	M16	2						
6	DS	67	L1	L130x130x12	350	M16	10	DS					
3		68	L11T	L75x75x6	250	M16	2						
2		69	L11L	L75x75x5	250	M16	2						
3		70	9BE1	L130x130x12	350	M16	10	DS					
2		71	9BE11T	L75x75x6	250	M16	2						
4		72	9BE11L	L75x75x6	250	M16	2						
5		73	9BEBLT	L100x100x6	250	M16	3						
3		74	9BEBLL	L100x100x6	250	M16	3						
2		75	6BE1	L130x130x12	350	M16	10	DS					
1		76	6BE11T	L75x75x6	250	M16	2						
2		77	6BE11L	L75x75x6	250	M16	2						
6	DS	78	3BE1	L130x130x12	350	M16	10	DS					
4		79	3BE11T	L75x75x6	250	M16	2						
3		80	3BE11L	L75x75x6	250	M16	2						
						_							
DATE	;		DESCRIPTIO	DN	DRAWN	CHECK	ED API	ROVED					
т:4	· : 400KV D/C TRANSMISSION LINE												
	: SPGVL												
CTOR	SPO	GVL											
R	TRU	CON ASSO	CIATES, NA			0.0171	D /0						

=1	R	rru	CON ASSOC	IATES, NAGPUR								
	RAHUL LINE DIAGRAM FOR 400KV D/C											
	MKM											
)				TANGENT TOWE	er type – "DA"							
31	/12/16	DR/	WING NO :	C243/SGPVL/400KVDC/DA	SHEET. NO. : 1/1 REV. : 0							
				9	10							

	ety os	Shear		S.No.	Member Code	Section mm x mm x mm	fy N/mm 2	в	olt	Qty Nos		Shear	
	2	DS		42	C2	L130x130x10	350	м	16	10		DS	
	2			43	C12T	L120x120x10	350	м	16	8			
	2			44	C12L	L120x120x10	350	М	16	8			
	2			45	C1A	L150x150x12	350	м	16	12		DS	
	2			46	C11AT	L120x120x8	350	м	16	7			
	3	DS		47	C11AL	L120x120x8	350	м	16	7			
	3			48	C1	L150x150x12	350	м	16	12		DS	
	2			49	C11T	L110x110x8	350	м	16	7			
	4			50	C11L	L120x120x8	350	м	16	7			
	2			51	Т95Т	L90x90x7	250	м	16	5			
	2			52	T95L	L90x90x6	250	м	16	2			
	6			53	MB11L	L100x100x7	350	м	16	6			
	9			54	MB1L	L110x110x8	350	м	16	7			
	6			55	MB11R	L90x90x7	350	м	16	6			
	9			56	MB1R	L100x100x8	350	м	16	7			
	6			57	Т96Т	L120x120x8	350	м	16	7	+		
	3			58	T96L	L110x110x8	250	м	16	4			
	2			59	T96D	L75x75x5	250		16	2			
	3			60	T96X	L90x90x6	250		16	2			
	6	DS		61	L3	L150x150x16	350		16	16	+	DS	
	6			62	L13T	L110x110x8	350		16	6			
	6			63	L13L	L120x120x8	350		16	6			
	6	DS		64	L13L	L150x150x18	350		16	16	+	DS	
	5			65	L12T	L100x100x7	250		16	4			
	5			66	L121	L110x110x7	250		16	5	+		
	8	DS		67	 	L150x150x18	350		16	16	+	DS	
	6			68	L11T	L100x100x7	250		16	4	+		
	6			69	L11L	L100x100x7	250		16	4			
	8	DS		70	B1T		250		16	4	+		
	6					L100x100x8							
	6			71	B1L	L100x100x8	250		16 16	5 16		DC	
	5			72	E9	L150x150x18	350		16	16	+	DS	
	2			73	E19T	L100x100x7	250		16	4			
	6			74	E19L	L100x100x7	250		16	4			
	8			75	B2T	L110x110x8	250		16	5			
	6			76	B2L	L110x110x8	250		16	5			
	8			79	E6	L150x150x18	350		16	16		DS	
	5			77	E16T	L100x100x7	250		16	4			
	2			78	E16L	L100x100x7	250		16	4			
	2			79	E3	L150x150x18	350	M	16	16		DS	
	2			80	E13T	L100x100x7	250	M	16	4			
	10 11 1			81	E13L	L100x100x7	250		16	4			
1	/3/201	17			Revised DESCRIP	TION	RAH	_		KM SCKED	AP	PROVED	
20	DATE DESCRIPTION DRAWN CHECKED APPROVED												
	CLIENT: SPGVL												
	ACTOR: SPGVL												
	ACTOR: SPGVL NER : TRUCON ASSOCIATES, NAGPUR												
T	RAHUL LINE DIAGRAM FOR 400KV D/C												
D SD	MK				- "	ANGLE TOWE							
					1						_		

SHEET. NO. : 1/1 REV. :01


١E	R :	TRU	JCON ASSOC	IATES, NAGPUR	G
	RAHUL			LINE DIAGE	RAM FOR 400KV DC
)	MKM			MEDIUM ANOL	
D				MEDIUM ANGL	LE TOWER TYPE "DC"
08	3/02/17	DR	AWING NO :	C243/SGPVL/400KVDC/DC	C SHEET. NO. : 1/1 REV. :00
				9	10

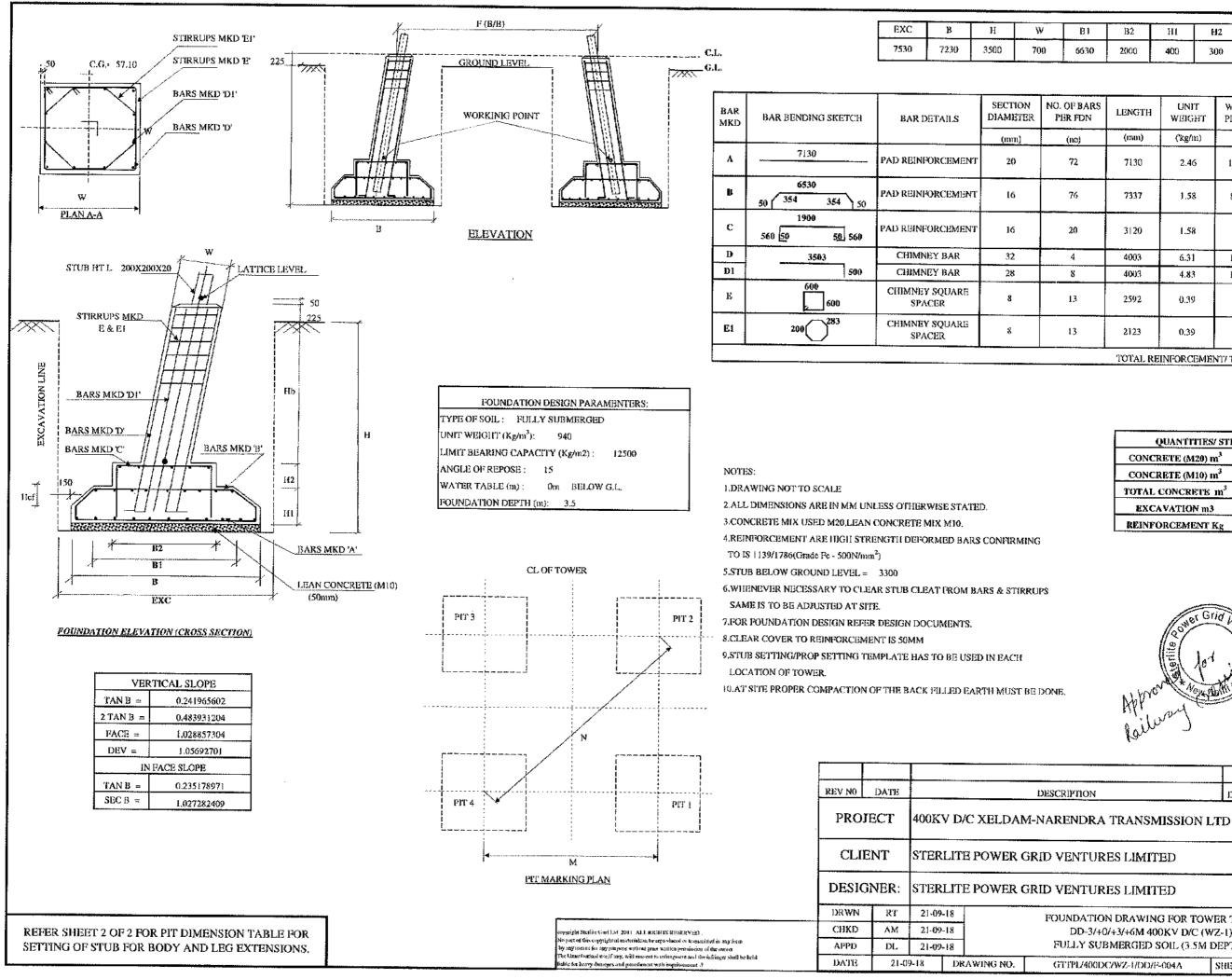
CONTRACTOR : SPGVL

SPGVL

PROJECT : 400KV DC TRANSMISSION LINE

	-								
	Qty Nos	Shear	S.No.	Member Code	Section mm x mm x mm	fy N/mm2	Bolt	Qty Nos	Shear
	2	DS	43	С12Т	L130x130x10	350	M16	10	
	2		44	C12L	L120x120x10	350	M16	9	
	2		45	C1A	L150x150x15	350	M16	14	DS
	2		46	C11AT	L110x110x10	350	M16	8	
	2		47	C11AL	L110x110x10	350	M16	8	
	4	DS	48	C1	L150x150x15	350	M16	14	DS
	3		49	C11T	L110x110x10	350	M16	8	
	2		50	C11L	L110x110x10	350	M16	8	
	4		51	т95т	L100x100x7	350	M16	5	
	2		52	T95L	L90x90x6	250	M16	2	
	7		53	MB11L	L100x100x7	350	M16	7	
	10		54	MB1L	L110x110x10	350	M16	9	
	7		55	MB11R	L90x90x7	350	M16	7	
	8		56	MB1R	L100x100x8	350	M16	8	
	5		57	т96т	L120x120x10	250	M16	8	
	3		58	T96L	L120x120x8	350	M16	4	
	2		59	T96D	L75x75x5	250	M16	2	
	2		60	т96Х	L90x90x7	250	M16	2	
	6	DS	61	L3	L200x200x16	350	M16	18	DS
	7		62	L13T	L120x120x8	350	M16	7	
	6		63	L13L	L110x110x10	350	M16	7	
	6	DS	64	L2	L200x200x16	350	M16	18	DS
	7		65	L12T	L100x100x8	250	M16	5	
	6 6	DS	66	L12L	L110x110x8	250	M16	5	
	6	03	67	L1	L200x200x16	350	M16	18	DS
	6		68	L11T	L100x100x8	250	M16	4	
	6	DS	69	L11L	L100x100x8	250	M16	4	
	6		70	B1T	L100x100x8	250	M16	5	
	6		71	B1L	L100x100x8	250	M16	5	
	6		72	E9	L200x200x16	350	M16	18	DS
	2		73	E19T	L100x100x8	250	M16	4	
	7		74	E19L	L100x100x8	250	M16	4	
	9		75	B2T	L110x110x8	250	M16	5	
	7		76	B2L	L110x110x8	250	M16	5	
	8		77	E6	L200x200x16	350	M16	18	DS
	6		78	E16T	L100x100x8	350	M16	4	
	2		79	E16L	L100x100x8	350	M16	4	
	2		80	E3	L200x200x16	350	M16	18	DS
	2 10	DS	81	E13T	L100x100x8	350	M16	4	
	10		82	E13L	L100x100x8	350	M16	4	
-	28/02/2	:017		Revised		RAH			<u> </u>
	DATE			DESCRI	PTION	DRAV	N CHEC	KED AF	PROVED
~	·т ·	10022	י חת י	TDANCM	ISSION LINE				

ΙEI	R :	rru	CON ASSOC	IATES, NAGPUR	G
	RAHUL			LINE DIAGRAM	I FOR 400KV D/C
)	MKM				, 11
ë				ANGLE / DEAD EN	D TOWER TYPE -"DD"
22	2/11/16	DR	AWING NO :	C243/SGPVL/400KVDC/DA	SHEET. NO. : 1/1 REV. :02
_				9	10


CONTRACTOR : SPGVL

SPGVL

PROJECT : 400KV D/C TRANSMISSION LINE

Qty	Shear	S.No.	Member	Section		fy	Bolt	Qt		Shear	
Nos			Code	mm x mm x mm		mm2		No			
12	DS	1	P1	L75x75x5		350	M16	2		DS	
9		2	P2	L70x70x5		350	M16	2			
8		3	T90L	L50x50x4		350	M16	1	_		
16 9	DS	4	P3 P13L	L55x55x5		350	M16	2			
9 7			C7	L55x55x5 L120x120x10		250 850	M16 M16	1		DS	
16	DS	6	C17T	L120X120X10		250	M10	3	_	03	
8	03	8	C17L	L75x75x5		250	M16				
7		9	T91T	L65x65x4		350	M16	3	_		
16	DS	10	T91L	L70x70x5		250	M16	2			
8		11	T91X	L65x65x4		350	M16	2			
7		12	MA11R	L80x80x6		50	M16	4	_		
4		13	MA1R	L110x110x10		50	M16	8			
3		14	MA11L	L80x80x6		50	M16	4			
6	\vdash	15	MA1L	L130x130x10		50	M16	10)		
6	\vdash	16	MABL	BL65x65x5		50	M16	5			
6		17	MAX11	L90x90x7		250	M16	3			
8		18	MAX12	L100x100x8	2	250	M16	4			
4		19	Т92Т	L110x110x10	3	50	M16	7			
3		20	T92L	L75x75x6	2	250	M16	3			
3		21	T92D	L55x55x4	3	350	M16	1			
9		22	т92Х	L75x75x6	2	250	M16	2			
6		23	C6	L120x120x10	9	350	M16	6		DS	
1		24	С16Т	L120x120x8	3	50	M16	8			
2		25	C16L	L100x100x7	3	50	M16	5			
10	DS	26	C5	L120x120x10	3	350	M16	6		DS	
8		27	C15T	L110x110x8	3	50	M16	6			
7		28	C15L	L100x100x7	3	50	M16	5			
10	DS	29	C4A	L150x150x12	3	350	M16	12	2	DS	
5		30	C14AT	L100x100x8	3	50	M16	5			
5		31	C14AL	L100x100x7	2	250	M16	4			
10	DS	32	C4	L150x150x12	3	350	M16	12	2	DS	
5		33	C14T	L100x100x8	3	350	M16	5			
5		34	C14L	L100x100x7		250	M16	4			
5		35	T93T	L80x80x6		350	M16	4			
5		36	T93L	L90x90x6		250	M16	3			
10	DS	37	MM11R	L90x90x7		350	M16	5			
5	\vdash	38 39	MM1R MM11L	L110x110x08		350 150	M16	7			
5		40	MM11L MM1L	L90x90x7 L120x120x10		350 350	M16 M16	5			
5		40	MMBL	BL65x65x5		350	M16	4	_		
10	DS	41	MMX11	L100x100x7		250	M16	3			
5		43	MMX11 MMX12	L100x100x7		250	M16	4			
5		44	T94T	L110x110x08		250	M16	5			
10	DS	45	T94L	L80x80x6		250	M16	3			
5		46	T94D	L65x65x4	350		M16	2	_		
5	\vdash	47	T94X	L90x90x6		250	M16	2			
		L			-		_				
27/12/20	-			COMMENTS		RAHUL					
DATE	+		DESCRIPT			DRAW	-	KED	APP	ROVED	

APPENDIX B FOUNDATION DESIGN DETAILS

	BI	B2	ĦI	H2	Ilcf	ЯЬ
}	6630	2000	40 0	300	300	2750

NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGRT PER TOWER
(no)	(mm)	('kg/m)	(kg)	(kg)
72	7130	2.46	1265.44	5061.76
76	7337	1.58	879.72	3518.86
20	3120	1.58	98.47	393,87
4	4003	6.31	101.04	404.17
8	4003	4.83	154.71	618.88
13	2592	0.39	13.29	53,18
13	2123	0,39	10,89	43.57
	TOTAL RE	INFORCEMEN	NIT TOWER=	10094,3

QUANTITIES/ STRU	CTURE
CONCRETE (M29) m ³	89.21
CONCRETE (M10) m ³	10.45
TOTAL CONCRETE m ³	99.66
EXCAVATION m3	793.81
REINFORCEMENT Kg	10094.3

DESCRIPTION

DRAWN CHKD APPD

FOUNDATION DRAWING FOR TOWER TYPE DD-3/+0/+3/+6M 400KV D/C (WZ-1) FULLY SUBMERGED SOIL (3.5M DEPTH)

GTTPL/400DC/WZ-1/DD/F-004A SHEET NO. 1/2 REV 0

Project		400 K	V D/C -	X-M & X-	N (WZ-1)	- TT "D	D" SOI		- FS (3.5	M DEPTH)		Client:	
GOA PIT DIMENSION TABLE SPGVL													
400 KV D/C-X-M & X-	N- TT "DD"	* F * 9/B of To 3MBE(+)-3M		" F * 8/8 of * 3M88(+)-	Tower at 3MLE (LF)	Stub Se	ction (HT)	Lattice Level to	cg	sec B1	2*Tan B1	S6C 82	2ºTan B2
	<u> </u>	1271	3	12	713	200X	200X200X20		\$7.1	1.028857	0.483931204	1.028857	0.483931
Tower Dotail	Extn from -3MBE(+)- 3MLE (mm)	cg-cg dim al CL (TF)	¢g∙cg dim al CL (LF)	Foundation Base Width	work pl	G.L. TO C.L.	A1	A2	B	E	F1	F2	н
3MBE (+) -3M LE	0	12623	12623	7230	2750	225	7031	7031	9944	7530	10796	10796	3500
9M8E (+) -1.5M LE	1500	13349	18349	7230	2750	225	7394	7394	10457	7530	11159	11159	3500
3MBE (+) +0M LE	3000	14074	14074	7230	2750	225	7757	7757	10970	7530	11522	11522	3500
3MBE (+) +1.5M LE	4500	14800	144100	7230	2750	225	8120	8120	11483	7530	11885	11865	3500
3M8E (+) +3M LE	6000	15526	15526	7230	2750	225	6463	6483	11997	7530	12248	12248	3500
OMBE (+) -3M LE	\$000	14074	14074	7230	2750	225	7757	7757	10970	7590	11522	1\$522	3500
1.5M LE	4500	14800	1/1800	7230	2750	225	B120	8120	11489	7530	11885	11885	3500
OMBE (+) +OM LE	6000	15526	15526	7230	2750	225	8483	8483	11997	7530	12248	12248	3500
OMBE (+) +1.5M LE	7500	16252	16252	7290	2750	225	8846	8846	12510	7530	12611	12611	3500
OMBE (+) +3M LE	9000	16978	16978	7230	2750	225	9209	9209	13023	7530	12974	12974	3500
3MBE (+) -3M LE	6000	15526	15526	7230	2750	225	8483	6483	11997	7530	12248	12248	3500
3MBE (+) -1.5M LE	7500	16252	16252	7230	2750	225	8846	8646	12510	7530	12611	12611	3500
3MBE (+) +0M LE	9000	16978	16978	7230	2750	225	9209	9209	13023	7530	12974	12974	3500
3MBE (+) +1.5M LE	10500	17704	17704	7230	2750	225	9572	9572	13537	7530	13337	13397	3500
3M8E (+) +3M LE	12000	18430	18430	7230	2750	225	9935	9935	14050	7530	13700	13700	3500
	9000	16978	16978	7230	2750	225	9209	9209	13023	7530	12974	12974	3500
6MBE (+) -1.SM LE	10500	17704	17704	7230	2750	225	9572	9572	13537	7530	13337	13337	3500
6MBE (+) +0M LE	12000	18430	18430	7230	2750	225	9935	9935	14050	7530	13700	13700	3500
6MBE (+) +1.5M LE 6MBE (+) +3M LE	13500 15000	19155 19882	19156 19882	7230 7230	2750 2750	225 225	10298	10298	14563	7530	14063	14063	3500
LONGITUDINAL FACE	pit C	B A	×	В		Working Point A		Link Boarin		Working Point A		Kg/Sqm Kg/cum	
	V				V		1		oil (Wet parti	-		Kg/cum	
	<u>_1</u>	A1		A1				Angle of Rep	ose (Dry ponti	on)		Deg	
		F1	1	F1	7		1		ose (Wei port	ian)	15	Deg	
							-	Water Table	}		0.0M I	Below GL	
										• • • • • • • • • • • • • • • • • • • •			

	<u>т</u>		Ē	
DESCRIPT		DATE	RBV NO	
LDAM-NAF	400KV D/C XE	IECT	PRO.	
VER GRID V	STERLITE POW	ent	CLI	
YER GRID V	STERLITE POW	INER:	DESIC	
 [7	21-09-18	ir.†	DRWN	······································
r	2t-09-18	АМ	СНКР	engingia Series (astro) 2014 AU, 2014 AU, 2014 AU, 2014 AU Neuros et des conjugadas des contras la angestación inconstat para form
	21-09-18	DL	APPD	by My course for any papers webset back there were parameters of the same The Line Transformed and it was well and as the information with the different dual to she if
GTTPL/4	DRAWING NO.	21-09-18	DATE	left in for a nation of an opport and polar language with a spence groups

10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONG.

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH

3300 mm

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED. 3.CONCRETE MIX USED M20,LBAN CONCRETE MIX M10.

7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.

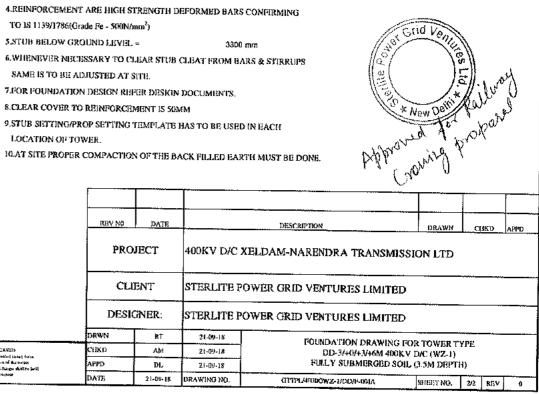
2 TAN 8 = 0.483931204 FACE = 1.028857304 DEV = 1.05692701 IN FACE SLOPE TAN B 😽 0.235178971 SEC H = 1.027282409 NOTES:

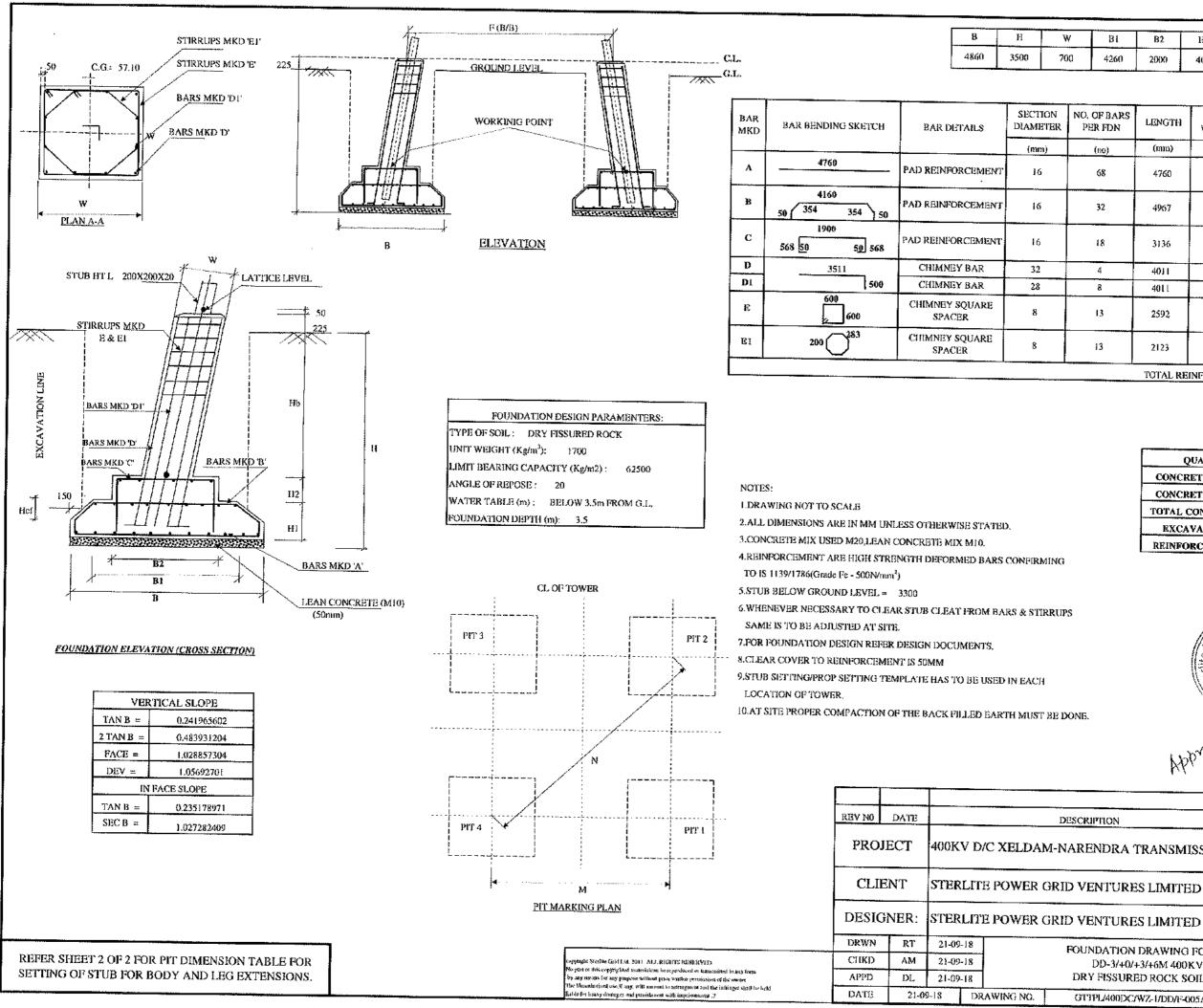
LDRAWING NOT TO SCALE

TO IS 1139/1786(Grade Fe - \$800N/mm²) 5.STUB BELOW GROUND ELEVEL =

SAME IS TO BE ADJUSTED AT SITE.

LOCATION OF TOWER.


8.CLEAR COVER TO REINFORCEMENT IS SOMM


0.241965602

VERTICAL SLOPE

TAN B =

- INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION. 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY, 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL BE READ CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.
- NOTE:). BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD, IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE

/	Bl	B2	B2 HI H2 H					Hb
a	4260	2000	400	3(00	300		2750
		L]				<u>_</u>		
	OF BARS ER FDN	LENGTH	H UNIT WEIGHT		WEIGHT PER LEG		W	EIGHT PER TOWER
	(no)	(mm)	('kg/n	('kg/ m)				(kg)
	68	4760	i.58	;	51	0.68		2042.71
	32	4967	t.58		25	0.80		1003,18
	18	3136	1.58		89).08		356.32
	4	4011	6.31		10	1.24		404.98
	8	4011	4.83		15	5.02		620.11
	13	2592	0.39		13	.29		53,18
	13	2123	0.39		10	.89		43.55
		TOTAL R	EINFORCE	MEN	Ίλ ΤΟ	WER=		4524.0
QUANTITIES/ STRUCTURECONCRETE (M20) m³45.07CONCRETE (M10) m³4.72TOTAL CONCRETE m³49.79EXCAVATION m3293.64REINFORCEMENT Kg4524.6								
s								
ONE. Hpproved to probably and the probably and the probability of the								
ESCRI	PTION				DR/	WN (<u>сш</u>	D APPD
ARE	NDRA '	TRANSN	AISSION	I LT	D			
) VE	ENTURE	ES LIMIT	ED					

FOUNDATION DRAWING FOR TOWER TYPE

GTTPL/400DC/WZ-1/DD/F-005A SHEET NO. 1/2 REV 0	DD-3/40/+3/+6M 400K V D/C DRY FISSURED ROCK SOIL (3.5				
	GTTPL/400DC/WZ-1/DD/F-005A	SHEET NO.	1/2	REV	0

			1			ENSION	TABLE	LIYPE-	DFR (3,	5M DEPTH)		Client: SPGVL	
400 KV D/C-X-M & X	-N- TT "DD"	* F * B/B of To 3MBE(+)-3M	MLE (TTF)	" F " B/B of 1 3MBE(+)-(OMLE (LF)	Slut: Se	ction (HT)	Lallice Level Io CL	cg	sec Bi	2°Tan B1	sec B2	2"Tan 82
<u></u>	1_	1271		127	713	200X	200X20	50	67.1	1.028857	0.483931204	1.028857	0.483931
Tower Detail	Exin from -SMBE(+)- SMLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	Ai	A2	в	E	F1	F2	Н
3MBE (+) -3M LE	0	12623	12823	4860	2750	225	7031	7031	9944	4850	9461	9461	3500
3MBE (+) -1.5M LE	1500	13349	13349	4860	2750	225	7394	7394	10457	4860	9824	9824	3500
3MBE (+) +0M LE	3000	14074	14074	4860	2750	225	7757	7757	10970	4860	10187	10187	3500
SMBE (+) +1.5M LE	4500	14800	\$4800	4860	2750	225	6120	8120	11483	4860	10560	10550	3500
3MBE (+) +9M LE	8000	15526	15526	4660	2750	225	6483	6483	11997	4960	10913	10913	3500
+0MBE (+) -9M LE	3000	14(174	14074	4860	2750	225	7757	7757	10970	4860	10187	10187	3500
OMBE (+) -1.5M LE	4500	14800	14800	4860	2750	225	8120	8120	11483	4860	10550	10550	3500
0M8E (+) +0M LE	6000	15526	15526	4860	2760	225	8483	6483	11997	4860	10913	10913	3500
OMBE (+) +1.5M LE	7500	18252	16252	4860	2750	225	8846	8846	12510	4860	11276	11276	3500
OMBE (+) +3M LE	9000	16978	1697B	4860	2750	225	9209	9209	13023	4860	11639	11639	3500
3M8E (+) -3M LE	6000	15526	15526	4B60	2750	225	8483	8483	11997	4860	10913	10913	3500
3MBE (+) -1.5M LE	7500	16252	16252	4860	2750	225	8646	8846	12510	4860	11276	11276	3500
3MBE (+) +0M LE	9000	16978	16978	4860	2750	225	9209	9209	13023	4860	11639		
3MBE (+) +1.5M LE	10500	17704	17704	4860	2750	225	9572	9572	13537	4860	12002	10002	3500
3MBE (+) +3M LE	12000	18430	18430	4860	2750	225	9935	9935	14050	4860		12002	3500
6MBE (+) -3M LE	9000	16978	16978	4850	2750	225	9209	9209	13023	4860	12365 11639	12365	3500
6MBE (+) -1.5M LE	10500	17704	17704	4860	2750	225	9572	9572	13537	4860		·	3500
6MBE (+) +0M LE	12000	16430	18430	4660	2750	225	9935	9935	14050		12002	12002	3500
6M8E (+) +1,5M LE	13500	19156	19156	4860	2750	225	10298	1029B	14563	4860	12365	12365	3500
6MBE (+) +3M LE	15000	19882	19882	4860	2750	225	10236	10295	15076	4860	12728	12728 13091	3500 3500
TONGITUDINAL FACE		B 	×	A1 F1		Working Point A	A2 F2	Limit Beatin Weight of so Weight of so Angle of Repu	g Capacity cil (Dry porti cil (Wet port cse (Dry porti	(noi)	1700 H 940 H 20 D	(g/Sqm (g/sqm (g/cum Xeg Deg	
		<u>,,</u> ,,,,,	I 					Water Table				telow GL	

5154 8	1.02602701
	IN FACE SLOPE
TAN B =	0.235178971
SEC B =	1.027282409
•	······································
NOTES:	
I.DRAWJ	NG NOT TO SCALE
2.ALI, DI	MENSIONS ARE IN MM UNLESS OTHER
3.CONCR	ETP MIX USED M20,LEAN CONCRETE N
4.REINFO	RCEMENT ARE HIGH STRENGTH DEFO
101510	10/17RG/Crade De 50021/mm2

PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SHALL BE READ AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME SHALL BE INTIMATED TO ENGINEERING THAM FOR CORRECTIVE ACTION. 2, FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER ONLY. 3. DIMENSIONS OF BACK TO BACK OF STUD AT CONCRETE LEVEL SHALL BE READ

- CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNISED IN THE
- VERTICAL SLOPE 0.241965602 TAN U 2 TAN B = 0.483931204 FACE = 1.028857304 DBV a 1.05692

NOTE:

RWISE STATED.

MIX M10.

ORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm²)

5.STUB BELOW GROUND LEVEL =

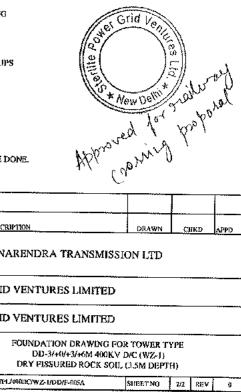
3900 mm 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS

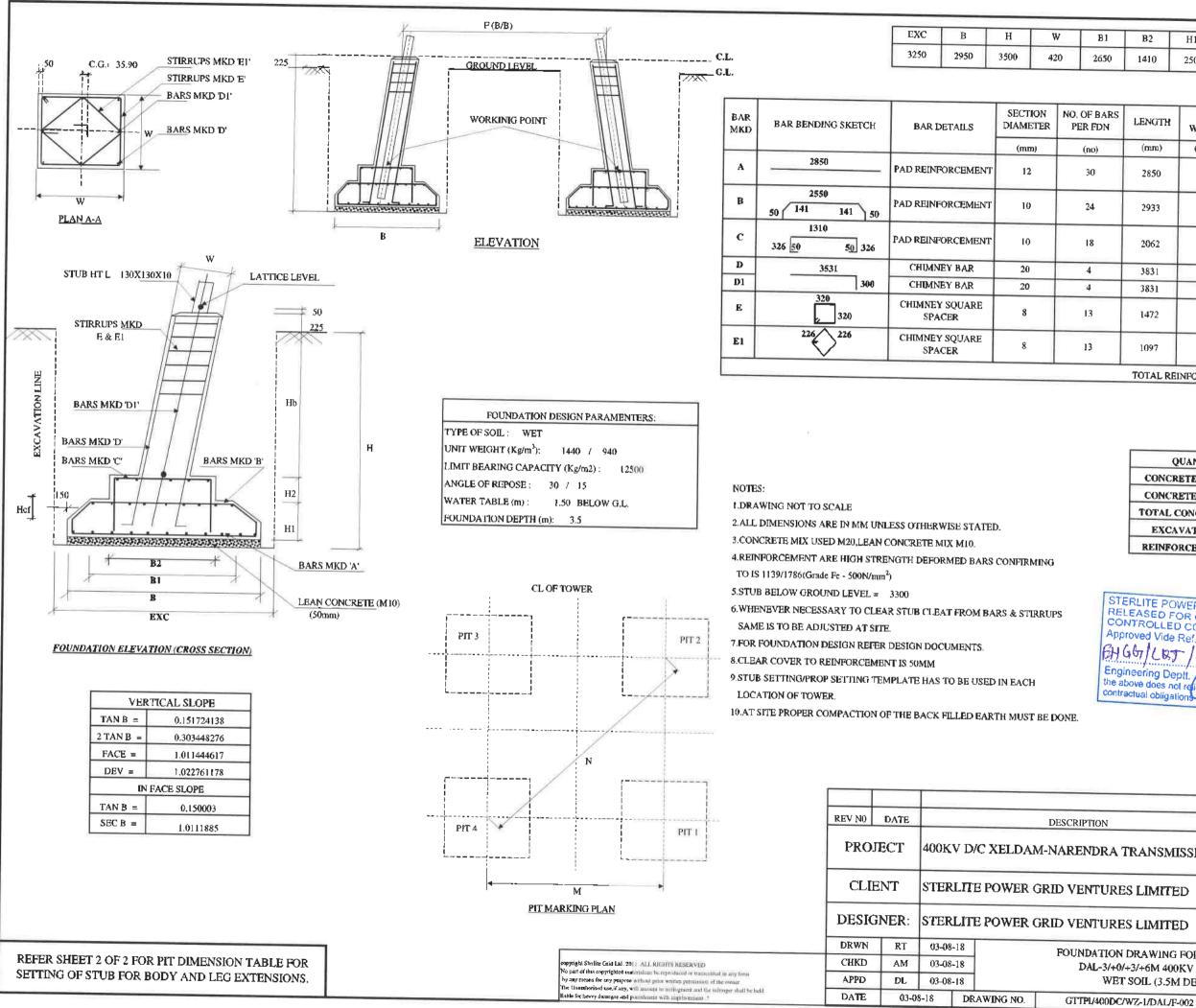
SAME IS TO BE ADJUSTED AT SITE.

7.FOR FOUNDATION DESIGN REPER DESIGN DOCUMENTS.

8.CLEAR COVER TO REINFORCEMENT IS 50MM

9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH


LOCATION OF TOWER,


10 AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DONE.

	·			
DESCRIPT		DATE	REV NO	
	400KV D/C XI	ECT	PRO.	
WER GRID V	STERLITE PO	ENT	СШ	
WER GRID \	STERLITE PO	INER	DESIC	
 I	21-09-18	RT	DRWN	
г	21-09-18	AM	ĊRKU	anguages Sustrement Let 2021 AUS (SECI) is SUSSINGLY No you of the control of a sustained to a produced or the sustaining of the
	21-09-38	DL	APPD	by any more size any property power weakers and any property of the owner. By any more size any property weakers from the property of the owner. The Operative and the weak any size of the size o
GTTt4./40	DRAWING NO.	21-09-TH	DATE	balde for the way done for and pranking of wells and the registree in the

1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT INFORMATION

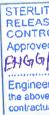
SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION PIT MARKING.

_							
	Bl	B2	H1	H2	Hcf	Hb	1
	2650	1410	250	200	150	3000	1

. OF BARS ER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
(no)	(mm)	('kg/ m)	(kg)	(kg)
30	2850	0.89	75.93	303.72
24	2933	0.62	43.42	173.70
18	2062	0.62	22.90	91.61
4	3831	2.46	37.77	151.11
4	3831	2.46	37.77	151.11
13	1472	0.39	7.55	30.21
13	1097	0.39	5.62	22.52
	TOTAL REI	NFORCEMEN	T/ TOWER=	924.0

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	12.06
CONCRETE (M10) m ³	1.74
TOTAL CONCRETE m ³	13.8
EXCAVATION m3	147.88
REINFORCEMENT Kg	924.0

STERLITE POWER GRID RELEASED FOR CONS CONTROLLED CC.PY Approved Vide Ref. Letter Approved Vide Ref. Letter Approved Vide Ref. Letter House for the store of the store the above does not releasing contractual obligations	No.S. <u>6</u> . Date: (3 /	~2 G70 08(1	7P2/ 8
RIPTION	DRAWN	CHKD	APPD
ENDRA TRANSMISSION L	ĪD		
ENTURES LIMITED			
ENTURES LIMITED			
NDATION DRAWING FOR TOWN DAL-3/+0/+3/+6M 400KV D/C (W WET SOIL (3.5M DEPTH)			


SHEET NO. 1/2 REV 0

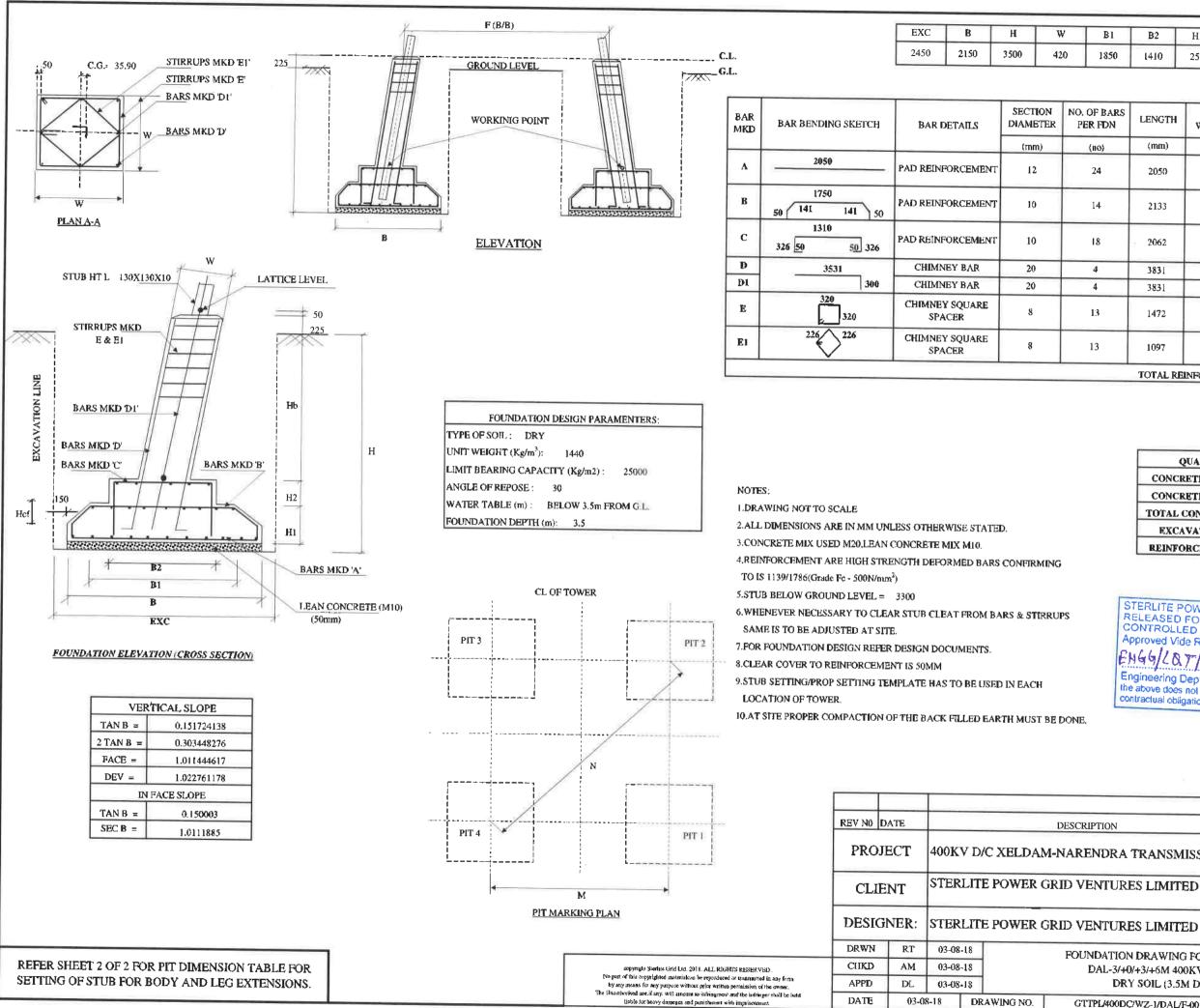
			400 KV	D/C -X-M	& X-N (Pit dime	WZ-1) - ENSION	TT "DA	L" SOIL	TYPE -	WET		Client: SPGVL	
400 KV D/C-X-M & X	-N- TT "DAL"	* F * B/B of To 3MBE(+)-31		" F " B/B of 1 9MBE(+)-3		Stub Se	ction (HT)	Lattice Level to CL	cg	sec B1	2*Tan Bt	sec B2	2ªTan B2
	T	943	2	94	32	130X	130X10	50	35.9	1.011445	0.303448276	1.011445	0.303448
Tower Delait	Extin from -3MBE(+)- 3MLE (mm)	cg-cg dim a) CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	AI	A2	ß	E	F1	F2	н
MBE (+) -3M LE	0	9375	9375	2950	3000	225	5177	5177	7321	3250	6802	6802	3500
MBE (+) -1.5M LE	1500	9830	9830	2950	3000	225	5404	5404	7643	3250	7029	7029	3500
MBE (+) +OM LE	3000	10285	10285	2950	3000	225	5632	5632	7965	3250	7257	7257	3500
WBE (+) +1.5M LE	4500	10741	10741	2950	3000	225	5860	5860	8287	3250	7485	7485	3500
MBE (+) +3W LE	6000	11196	11196	2950	3000	225	6087	6087	8609	3250	7712	7712	3500
MBE (+) -3M LE	3000	10285	10285	2950	3000	225	5632	5632	7965	3250	7257	7257	3500
MBE (+) -1.5M LE	4500	10741	10741	2950	3000	225	5860	5860	8287	3250	7485	7485	3500
MBE (+) +0M LE	6000	11196	11196	2950	3000	225	6087	6087	8609	3250	7712	7712	3500
MBE (+) +1.5M LE	7500	11551	11651	2950	3000	225	6315	6315	8930	3250	7940	7940	3500
MBE (+) +3M LE	9000	12106	12106	2950	3000	225	6542	6542	9252	3250	8167	8167	3500
MBE (+) -3M LE	6000	11196	11196	2950	3000	225	6087	6087	8609	3250	7712	7712	3500
MBE (+) -1.5M LE	7500	11651	11651	2950	3000	225	6315	6315	8930	3250	7940	7940	3500
MBE (+) +0M LE	9000	12106	12106	2950	3000	225	6542	6542	9252	3250	8167	8167	3500
MBE (+) +1.5M LE	10500	12561	12561	2950	3000	225	6770	6770	9574	3250	8395	8395	3500
MBE (+) +3M LE	12000	13016	13016	2950	3000	225	6998	6998	9896	3250	8623	8623	3500
MBE (+) -3M LE	9000	12106	12106	2950	3000	225	6542	6542	9252	3250	8167	8167	3500
MBE (+) -1.5M LE	10500	12561	12561	2950	3000	225	6770	6770	9574	3250	8395	8395	3500
MBE (+) +OM LE	12000	13016	13016	2950	3000	225	6998	6998	9696	3250	8623	8623	3500
MBE (+) +1.5M LE	13500	13472	13472	2950	3000	225	7225	7225	10218	3250	6850	8850	3500
	fin C				pit B		A2 F2			н			
LONGITUDWAL FACE		B x	*		4	Working Point A		Limit Bearin	IE SEC X-X	Working Point A	12500 K	g/Sqm	
T ST	pit D		*	[Point A	-	Limit Bearin Weight of s	I IE SEC X-X ng Capacity oil (Dry portic)n)		g/Sqm g/cum	
192	pit D	*	*	A1	4	Point A	+	Limit Bearin Weight of s Weight of s	N SEC X-X Ng Capacity oil (Dry portic oil (Wet porti	un) an)	1440 K 940 K	g/cum g/cum	
192	pit D		×	A1 F1	4	Point A	- - -	Limil Bearin Weight of s Weight of s Angle of Rep	I IE SEC X-X ng Capacity oil (Dry portic	un) an)	1440 K 940 K 30 D	g/cum	

NOTE:

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT IN PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SH AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEE 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL F CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNI SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION I

VE	ATICAL SLOPE
TAN B =	0.151724138
TAN B =	0.303448276
FACE =	1.011444617
DEV =	1.022761178
LN	FACE SLOPE
TAN 8 =	0.150003
SEC B =	1.0111885

NOTES:


LORAWING NOT TO SCALE 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3 CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

- 4 REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING
- TO IS 1139/1786(Grade Fe 500N/mm²)
- S.STUB BELOW GROUND LEVEL =
- 3300 mm 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS
- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.
- 10 AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DO

DESCRIPTIO		DATE	REV NO	
ELDAM-NARE	400KV D/C XE	ECT	PRO.	
WER GRID VE	STERLITE POV	CLIENT DESIGNER:		
WER GRID VE	STERLITE POV			
FOI	03-08-18	RT	DRWN	
FOL	03-08-18	AM	СНКД	2011: A.F. ARGETS RESERVED
	03-08-15	D1.	APPO	they: play while a promotion of the events. Not to suffact the addition of the strength of the second
GTTPL/4000	DRAWING NO.	03-08-18	DATE	all pubethinest with approximately .

NFORMATION			
HALL BE READ E SHALL BE			
ER ONLY.			
BE READ ISED IN THE			
PIT MARKING.			
	TUDECI	TO	
TE POWER GRID VEN SED FOR CONSTRUCT COLLED COPY			a. 1
OLLED COPY	961VL	GTT	PL
SED FOR CONSTRUCT COLLED COPY ad Vide Ref. Letter No.S CLAT/2.S. Date	13/0	8118	
ering Deptt.	1		
e does not relieve the century al obligations	ractor from	Ineit	
5			
			1
ONE.			
PTION	DRAWN	CHKD	APPD
RENDRA TRANSMISSI	ON LTD		
VENTURES LIMITED			
VENTURES LIMITED			
FOUNDATION DRAWING FOR DAL-3/+()+3/+6M 400KV J	TOWERTY	PE	
WET SOIL (3.5M DE	DVC (WZ-1) PTH)		
4000C/WZ-L/DAL/E-002	SHEET NO	2/2 REV	0

Bl	B2	H1	H2	Hcf	НЪ	1
1850	1410	250	200	150	3000	

. OF BARS ER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
(no)	(mm)	('kg/m)	(kg)	(kg)
24	2050	Ö.8 9	43.72	174.87
14	2133	0.62	18.45	73.80
18	2062	0.62	22.90	91.61
4	3831	2.46	37.77	151.11
4	3831	2.46	37.77	151.11
13	1472	0.39	7.55	30.21
13	1097	0.39	5.62	22.52
	TOTAL RE	NFORCEMEN	T/ TOWER=	695.2

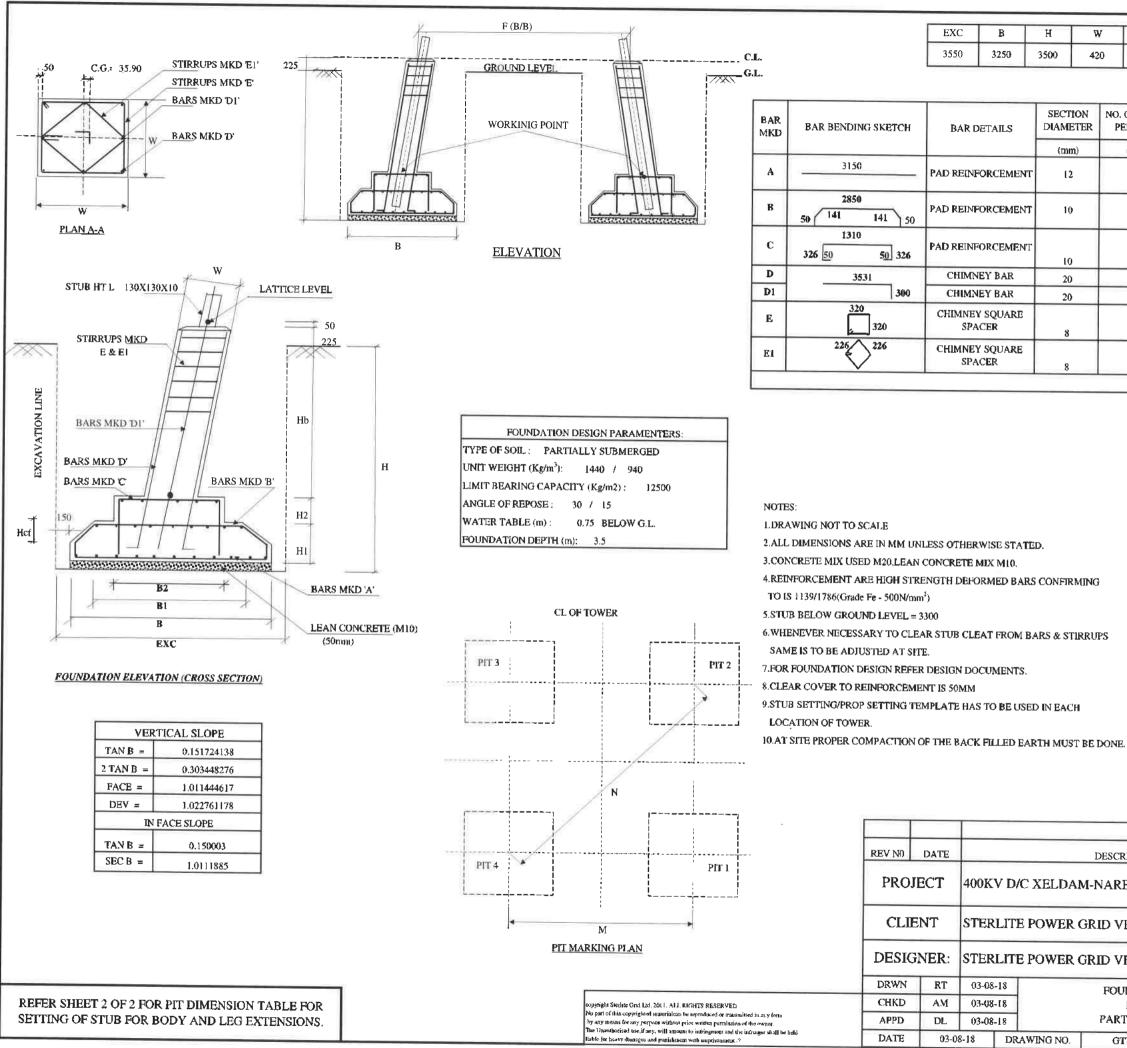
QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	8.12
CONCRETE (M10) m ³	0.92
TOTAL CONCRETE m ³	9.04
EXCAVATION m3	84.04
REINFORCEMENT Kg	695.2

UPTION DRAWN CHKD	O APPD
ENDRA TRANSMISSION LTD	

		_		
TPL/400DC/WZ-1/DAL/F-001	SHEET NO.	1/2	REV	0

GOA				/ D/C -X-₩	PIT DIME				IYPE-	DRY		Client; SPGVL	
400 KV D/C-X-M & X-	N- TT "DAL"	F * B/B of To 3MBE(+)-3	MLE (TF)	* F * B/B of 1 3MBE(+)-(Stub Se	clion (HT)	Lattice Level to CL	cg	sec B1	2*Tan B1	sec B2	2*Tan B
	1-	943	2	94	32	130X	30X10	50	35.9	1.011445	0.303448276	1.011445	0.30344
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	og-cg dîm at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	в	E	F١	F2	н
-3MBE (+) -3M LE	0	9375	9375	2150	3000	225	5177	5177	7321	2450	6402	6402	2000
3MBE (+) -1.5M LE	1500	9830	9830	2150	3000	225	5404	5404	7643	2450	6629	6629	3500 3500
SMBE (+) +OM LE	3000	10285	10285	2150	3000	225	5632	5632	7965	2450	6857	6857	3500
3MBE (+) +1.5M LE	4500	10741	10741	2150	3000	225	5860	5860	8287	2450	7085	7085	3500
3MBE (+) +3M LE	6000	11196	11196	2150	3000	225	6087	6087	8609	2450	7312	7312	3500
HOMBE (+) -3M LE	3000	10285	10285	2150	3000	225	5632	5632	7965	2450	6857	6857	3500
OMBE (+) -1.5M LE	4500	10741	10741	2150	3000	225	5860	5860	8287	2450	7085	7085	3500
OMBE (+) +OM LE	6000	11196	11196	2150	3000	225	6087	6087	8609	2450	7312	7312	3500
-0MBE (+) +1.5M LE	7500	11651	11651	2150	3000	225	6315	6315	8930	2450	7540	7540	3500
OMBE (+) +3MLE	9000	12106	12106	2150	3000	225	6542	6542	9252	2450	7767	7767	3500
SMBE (+) -3M LE	6000	11196	11196	2150	3000	225	6087	6087	8609	2450	7312	7312	3500
3MBE (+) -1.5M LE	7500	11651	11651	2150	3000	225	6315	6315	8930	2450	7540	7540	3500
3MBE (+) +0M LE	9000	12106	12106	2150	3000	225	6542	5542	9252	2450	7767	7767	3500
3M8E (+) +1.5M LE	10500	12561	12561	2150	3000	225	6770	6770	9574	2450	7995	7995	3500
3MBE (+) +3M LE	12000	13016	13016	2150	3000	225	6998	6998	9896	2450	8223	8223	3500
6MBE (+) -3M LE	9000	12106	12106	2150	3000	225	6542	6542	9252	2450	7767	7767	3500
6MBE (+) -1.5M LE	10500	12561	12561	2150	3000	226	6770	6770	9574	2450	7995	7995	3500
6MBE (+) +0M LE	12000	13016	13016	2150	3000	225	6998	6998	9896	2450	8223	8223	3500
6MBE (+) +1.5M LE	13500	13472	13472	2150	3000	225	7225	7225	10218	2450	8450	8450	3500
6MBE (+) +3M LE	15000	13927	13927	2150	3000	225	7453	7453	10540	2450	8678	8678	3500
LONGTUDINAL PACE	pin C	8	*	8		Norking Point A	N2 F2		I I I I I I I I I I I I I I I I I I I	Working Point A	GL.		
	pit D	A1 Ft	*	A1 F1	pit A	4	*	Limit Bearing Weight of so Weight of so Angle of Repo Angle of Repo Water Table	il (Dry port) il (Wet port) ise (Dry port) ise (Wet port	ion) on)	1440 H 940 H 30 C 15 C	(g/Sqm (g/cum (g/cum Deg Deg Lekow GL	

VEJ	TICAL SLOPE
TAN B =	0.151724138
TAN B =	0.303448278
FACE =	1.011444617
DEV =	1.022751178
DA LD	FACE SLOPE
FAN B =	0.150003
SEC B =	1.0111885



NOTES:

3.CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.

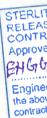
	1			
DESCRIPTION		DATE	REV NO	
	400KV D/C XELDAM-N		PRO.	
WER GRID VEN	STERLITE POWER GRID V		CLI	
WER GRID VEN	STERLITE PO	GNER:	DESIC	
FOUN	03-08-18	RT	DRWN	
1001	03-08-18	AM	CHKD	congreight Statistic Grief Leis 2011. ACLI, Rijkfjert's RESERVED . Na part of this constription, na ampiegn for rejuted cost or programski in the form
	03-08-18	DL	APPD	by any disents for any purpose without prior writers perfortation of the overage. The Unsertherized the of any, will accord to infrarence and the infrarence with the board
GTTPL/400DC	DRAWING NO.	03-08-18	DATE	lable for berry damages and providences with tarpaborations)

₽ROVI	IDED IN THE TEC	HNIC/	AL NOTES AN	ND FOUNDATIO	ON DRAWII	ENT INFORMATION NGS SHALL BE READ , SAME SHALL BE			
DNTIM 2. FOUND 3. DIMEN CHECK	IATED TO ENGINI DATION SHALL BI ISIONS OF BACK CED WITH FOUND	EERIN E EXE TO BA DATIO	G TEAM FOR CUTED IN TH CK OF STUB N DRAWING	CORRECTIVE RE PRESENCE O AT CONCRETE S PIT DIMENSIO	ACTION. DF SITE EN 3 LEVEL SH DN TABLE I	GINEER ONLY.			
	NORTHON I STORE		T						
TAN B =	VERTICAL SLOPE 0.151724138	A	-						
2 TAN B =	0.303448276		4						
FACE =	1.011444617	_				STERLITE POWER GRID			
DEV =	1,022761178	8				RELEASED FOR CONST CONTROLLED COPY		N	01
	IN FACE SLOPE		1			Approved Vide Ref. Letter	No.S.F.U	1240	TTFL
TAN B =	0.150003					EH66/L&T/23	Date:	1021	18 '
SEC B =	1.0111885		1		1	Engineering Deptt.		····· 6 ··· 4 ·· 1	1
						the above does not relievely te	gon Scior	from thei	r I
NOTES:						contractual obligations		-	
I.DRAW(N	NG NOT TO SCAL	Б							
	ENSIONS ARE IN				D.				
	ETE MIX USED MI								
	RCEMENT ARE H			FORMED BARS	S CONFIRM	IING			
	9/1786(Grade Fe - ;								
	LOW GROUND L			3300					
	VER NECESSARY TO BE ADJUSTEI			LEAT FROM B	ARS & STIR	RUPS			
	INDATION DESIG								
	OVER TO REINFO								,
	TTING/PROP SET								
	ON OF TOWER.				o in Exert				
IØ.AT SITE	PROPER COMPA	CTION	∛ ÓF THE BA	CK FILLED EAF	TH MUST	BE DONE.			
	REA	/ NQ	DATE		T	DESCRIPTION	DRAWN	CHER	1.Dan
		PRO.	JECT	400KV D/C		1-NARENDRA TRANSMISSI		CHKD	APPD
		CLE	ENT	STERLITE P	OWER G	RID VENTURES LIMITED			
	Г	DESIG	GNER:	STERLITE P	OWER	RID VENTURES LIMITED			
	DRWN		RT	03-08-18		FOUNDATION DRAWING FOR	TOUCOT	/00	
LYIECE . NAJ LL SLAy Formy	Снкр		АМ	03-08-18		DAL-3/+0/+3/+6M 400KV	D/C (WZ-I)	ITE,	
of die owner impersieht be tett weit	APPD		DL 01 09 19	03-08-18		DRY SOIL (3.5M DE	PTH)		
	DATE		03-08-18	DRAWING NO.		GTTPL/400DC/WZ-1/DAL/F-001	SHEET NO.	2/2 RBV	0

1	B1	B2	H1	H2	Hcf	Hb
	2950	1410	250	200	150	3000

LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
(mm)	('kg/m)	(kg)	(kg)
3150	0.89	100.69	402.75
3233	0.62	55.83	223.32
2062	0.62	22.90	91.61
3831	2.46	37.77	151.11
3831	2.46	37.77	151.11
1472	0.39	7.55	30.21
1097	0.39	5.62	22.52
TOTAL RE	INFORCEMEN	T/TOWER=	1072.6
	(mm) 3150 3233 2062 3831 3831 1472 1097	LENGTH WEIGHT (mm) ('kg/m) 3150 0.89 3233 0.62 2062 0.62 3831 2.46 3831 2.46 1472 0.39 1097 0.39	LENGTH WEIGHT PER LEG (mm) (kg/m) (kg) 3150 0.89 100.69 3233 0.62 55.83 2062 0.62 22.90 3831 2.46 37.77 3831 2.46 37.77 1472 0.39 7.55

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	13.86
CONCRETE (M10) m ³	2.11
TOTAL CONCRETE m ³	15.97
EXCAVATION m3	176.44
REINFORCEMENT Kg	1072.6


STERLITE POWER GRID VENTURES LTD. RELEASED FOR CONSTRUCTION CONTROLLED COPY Approved Vide Ref. Letter No S (DAYL / UTT PL/ NGUT / 20 Date: 13 (DB / 19) Engineering Deptt. The above does not relevance dominactor from their contractual obligations								
RIPTION	DRAWN	СНІ	KD /	APPD				
ENDRA TRANSMISSION I	.TD							
ENTURES LIMITED								
ENTURES LIMITED								
NDATION DRAWING FOR TOWER TYPE DAL-3/+0/+3/+6M 400KV D/C (WZ-1) TALLY SUBMERGED SOIL (3.5M DEPTH)								
TPL/400DC/WZ-1/DAL/F-003	SHEET NO.	1/1	REV	0				

	-				PIT DIME	INSION	TABLE	AL" SOI E		• PS		Client: SPGVL	
400 KV D/C-X-M & >	-N- FT "DAL"	" F " B/B of To 3MBE(+)-3P	ALE (TF)	" F " B/B of 1 3MBE(+)-3	BMLE (LF)		ction (HT)	Lattice Level to CL	cg	sec B1	2"Tan B1	sec B2	2*Tan Bi
		943.	2	94	32	130X	130X10	50	35.9	1.011445	0.303448276	1.011445	0.303448
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	cg-cg dim al CL (TF)	cg-cg dim at CL (LF)	Foundation Base Wigth	work pl	G.L. TO C.L.	Al	A2	в	E	F1	F2	н
-3MBE (+) -3M LE	0	9375	9375	3250	3000	225	5177	5177	7321	3550	6952	6952	3500
3MBE (+) -1.5M LE	1500	9830	9830	3250	3000	225	5404	5404	7643	3550	7179	7179	3500
3MBE (+) +0M LE	3000	10285	10285	3250	3000	225	5632	5632	7965	3550	7407	7407	3500
-3MBE (+) +1.5M LE	4500	10741	10741	3250	3000	225	5860	5860	8287	3550	7635	7635	3500
3MBE (+) +3M LE	6000	11198	11196	3250	3000	225	6087	6087	8609	3550	7862	7862	3500
+0MBE (+) -3M LE	3000	10285	10285	3250	3000	225	5632	5632	7965	3550	7407	7407	3500
OMBE (+) -1.5M LE	4500	10741	10741	3250	3000	225	5860	5860	8287	3550	7635	7635	3500
OMBE (+) +0M LE	6000	11196	11196	3250	3000	225	6087	6087	8609	3550	7862	7862	3500
OMBE (+) +1.5M LE	7500	11651	11651	3250	3000	225	6315	6315	8930	3550	8090	8090	3500
OMBE (+) +3M LE	9000	12106	12106	3250	3000	225	6542	6542	9252	3550	8317		
SMBE (+) - 3M LE	6000	11196	11196	3250	3000	225	6087	6087	8609	3650		8317	3500
3MBE (+) -1.5M LE	7500	11651	11651	3250	3000	225	6315	6315	8930	3550	7862	7862	3500
SMBE (+) +OM LE	9000	12106	12106	3250	3000	225	6542	6542	9252		8090	6090	3500
3MBE (+) +1.5M LE	10500	12561	12561	3250	3000	225	6770	6770		3550	8317	8317	3500
3MBE (+) +3M LE	12000	13016	13016	3250	3000	225	6998		9574	3550	8545	8545	3500
6MBE (+) -3M LE	9000	12106	12106	3250	3000	225		6998	9896	3550	8773	8773	3500
6MBE (+) -1.5M LE	10500	12561	12561	3250	3000	225	6542	6542	9252	3550	8317	8317	3500
6MBE (+) +0M LE	12000	13016	13016	3250	3000		6770	6770	9574	3550	8545	8545	3500
6MBE (+) +1.5M LE	13500	13472	13472	3250		225	6998	5998	9896	3550	8773	8773	3500
6MBE (+) +3M LE	15000	13927	13927	3250	3000	225 225	7225	7225	10218	3550	9000	9000	3500
				ſ	+	1	<u>}</u>	CL of found	10540	3550	9228	9228	3500
LOWGITUD MAL PACE	shi C	в	*	8		Norking Point A	A2 F2			Working Point A			
1	spit C	6 	*	в В		Norking Point A		CL of found	Jation Jatio	Working Point A	CL G.L. 12500 K	g/Sqm	
1	R	B 	×	B		Norking Point A	42 F2	CL of found	Jation Jatio	Working Point A	CL G.L. 12500 K 1440 K	g/Sqm g/cum	
1	R	B 	X	B		Norking Point A	A2 F2	CL of found	Jation Jatio	Working Point A	CL G.L. 12500 K 1440 K 940 K	g/Sqm g/cum g/cum	
1	R	x	X	A1 F1		Norking Point A	A2 F2	CL of found	altion	Working Point A	CL G.L. 12500 K 1440 K 940 K 30 D	g/Sqm g/cum	

NOTE:

- I. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT IN PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SH AND UNDERSTOOD, IF ANY ERROR OR CHANGES ARE OBSERVED, SAME INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEER
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL B CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNIS SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION P

VER	TICAL SLOPE
TAN B =	0.151724138
2 TAN B =	0.303448276
FACE =	1.011444617
DEV =	1.022761179
IN I	FACE SLOPE
TAN B -	0.150003
SEC B =	1.0111585

NOTES:

copyright S No pipt of stop stopy by any moons for The Unsetherized typ Lights for b LORAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3.CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMING

TO IS 1139/1786(Grade Fe - 500N/mm²)

5.STUB BELOW GROUND LEVEL = 3309 mm

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STRRUPS

- SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DO

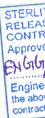
	1	_			
DESCRIPTIO		DATE	REV NO		
	400KV D/C XE				
WER GRID VE	STERLITE POV	ENT	СЦІ		
WER GRID VE	STERLITE POV	NER:	DESIC		
FOU	03-08-18	RT	DRWN		
100	03-08-18	AM	Снкр	ne Origi Carl. 2011 ALL RIGHTS REGERVED . Real materialism for reproduced or watermed in sur form	
PAR	03-08-18	DL	APPD	r pumpose webcele point weaters per persists of the sumper. 19. Web Accelerative (a) (a) acceleration and the infraview shall be both	
GTTPL/400D	DRAWING NO.	03-08-18	DATE	ry damages and projectors) with state long must	

FORMATION HALL BE READ					
E SHALL BE IR ONLY. 3E READ ISED IN THE PIT MARKING.					
Concentration of the second	TURES I CTION SP.G.V.	(1) 8.1	r	JP2	
NE.					
THON	DRAWN	CF	KD	APPD	
RENDRA TRANSMISSI	ON LTD				
VENTURES LIMITED					
VENTURES LIMITED	м. М	_			
FOUNDATION DRAWING FOR DAL-3/+0/+3/+6M 400KV 1 ARTIALLY SUBMERGED SOL	D/C (WZ-1)				
100DC/WZ-1/DAL/F-003	SHEET NO.	2/2	REV	0	

_						
	Bl	B2	H1	H2	Hcf	Hb
	3340	1410	250	200	150	3000

OF BARS ER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
(no)	(mm)	('kg/ m)	(kg)	(kg)
42	3540	0.89	131.99	527.97
26	3623	0.89	83.63	334.54
14	2062	0.89	25.65	102.59
4	3831	2.46	37.77	151.11
4	3831	2.46	37.77	151.11
13	1472	0.39	7.55	30.21
13	1097	0.39	5.62	22.52
	TOTAL RE	INFORCEMEN	T/ TOWER=	1320.0

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	16.48
CONCRETE (M10) m ³	2.65
TOTAL CONCRETE m ³	19.13
EXCAVATION m3	217.33
REINFORCEMENT Kg	1320.0


STERLITE POWER GRID VENTURES LTD. RELEASED FOR CONSTRUCTION CONTROLLED CC.PY Approved Vide Ref. Letter No. S. UTVL/GTTPL/ FHG97/LBT/2 Engineering Deptt. The above does not relievent the sentractor from their contractual obligations								
RIPTION	DRAWN	CHKD	A	PPD				
ENDRA TRANSMISSION LTD								
ENTURES LIMITED								
/ENTURES LIMITED								
UNDATION DRAWING FOR TOWER TYPE DAL-3/+0/+3/+6M 400KV D/C (WZ-1) ULLY SUBMERGED SOIL (3.5M DEPTH)								
TTPL/400DC/WZ-1/DAL/F-004 S	HEET NO.	1/2 R	EV	0				

Project GOA				V D/C -X-I						-13		Client: SPGVL	
400 KV D/C-X-M & X-	N- TT "DAL"	* F * B/B of To 3M8E(+)-3M	ALE (TF)	" F * B/B of 1 3MBE(+)-3		Slub Se	ction (HT)	Lattice Level to CL	cg	sec B1	2*Tan B1	sec B2	2"Tan B
	1	943	2	94	32	130X	30X10	50	35.9	1.011445	0.303448276	1.011445	0.30344
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	og-og dim at OL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	8	E	F1	F2	н
-3MBE (+) -3M LE	Q	9375	9375	3640	3000	225	5177	5177	7321	3940	7147	7147	3500
3MBE (+) -1.5M LE	1500	9830	9830	3640	3000	225	5404	5404	7643	3940	7374	7374	3500
SMBE (+) +0M LE	3000	10285	10285	3640	3000	225	5632	5632	7965	3940	7602	7602	3500
3MBE (+) +1.5M LE	4500	10741	10741	3640	3000	225	5860	5860	8287	3940	7830	7830	3500
SMBE (+) +3M LE	6000	11196	11196	3640	3000	225	6087	6087	8609	3940	8057	8057	3500
OMBE (+) -3M LE	3000	10285	10285	3640	3000	225	5632	5632	7965	3940	7602	7602	3500
OM8E (+) -1.5M LE	4500	10741	10741	3640	3000	225	5860	5860	8287	3940	7830	7630	3500
OMBE (+) +0M LE	6000	11196	11196	3640	3000	225	6087	6087	9609	3940	8057	8057	3500
OMBE (+) +1.5M LE	7500	11651	11651	3640	3000	225	6315	6315	8930	3940	8285	8285	3500
OMBE (+) +3M LE	9000	12106	12106	3640	3000	225	6542	6542	9252	3940	8512	8512	3500
3MBE (+) -3M LE	6000	11196	11196	3640	3000	225	6087	6087	8609	3940	8057	8057	3500
3MBE (+) -1.5M LE	7500	11651	11651	3640	3000	225	6315	6315	8930	3940	8285	8285	3500
SMBE (+) +OM LE	9000	12106	12106	3640	3000	225	6542	6542	9252	3940	8512	8512	3500
3MBE (+) +1.5M LE	10500	12561	12561	3640	3000	225	6770	6770	9574	3940	8740	8740	3500
SMBE (+) +SM LE	12000	13016	13016	3640	3000	225	6998	5998	9896	3940	8968	8968	3500
6MBE (+) -3M LE	9000	12106	12106	3640	3000	225	6542	6542	9252	3940	8512	8512	3500
6MBIE (+) -1.5M LE	10500	12561	12561	3640	3000	225	6770	8770	9574	3940	8740	8740	3500
6MBE (+) +0M LE	12000	13016	13016	3640	3000	225	6998	6998	9896	3940	8968	8968	3500
6MBE (+) +1.5M LE	13500	13472	13472	3640	3000	225	7225	7225	10218	3940	9195	9195	3500
6MBE (+) +3M LE	15000	13927	13927	3640	3000	225	7453	7453	10540	3940	9423	9423	3500
LONGITUDINAL FACE	pit C	в	*	в		Working Point A	A2 F2	Ł	//////////////////////////////////////		<u> </u>		
	K	_			7	╌╴╴╴	-	<u>s</u> Limit Bearin		Working Point A	12500	(g/Sqm	
	pit D	×		9L	pit A	-4-	*	Weight of s		on)		(g/cum	
	V		V		V			Weight of s				(g/cum	
	L	At	1	A1	11			Angle of Rep				Deg	
1	1	F1	1	F1				Angle of Rep	ose (Wet por	lion)		Deg	
			201					Water Table	÷		0.0M E	Below GL	

NOTE:

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVENT IN PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWINGS SH AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, SAME INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENGINEE
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHALL B CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FURNIS SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDATION F

VI	ERTICAL SLOPE
TAN B =	0.151724138
2 TAN B =	0.303448276
FACB =	1.011444617
DEV -	1.022761175
נו	N FACE SLOPE
TAN B =	0.150003
SEC B =	1.0111885

NOTES:

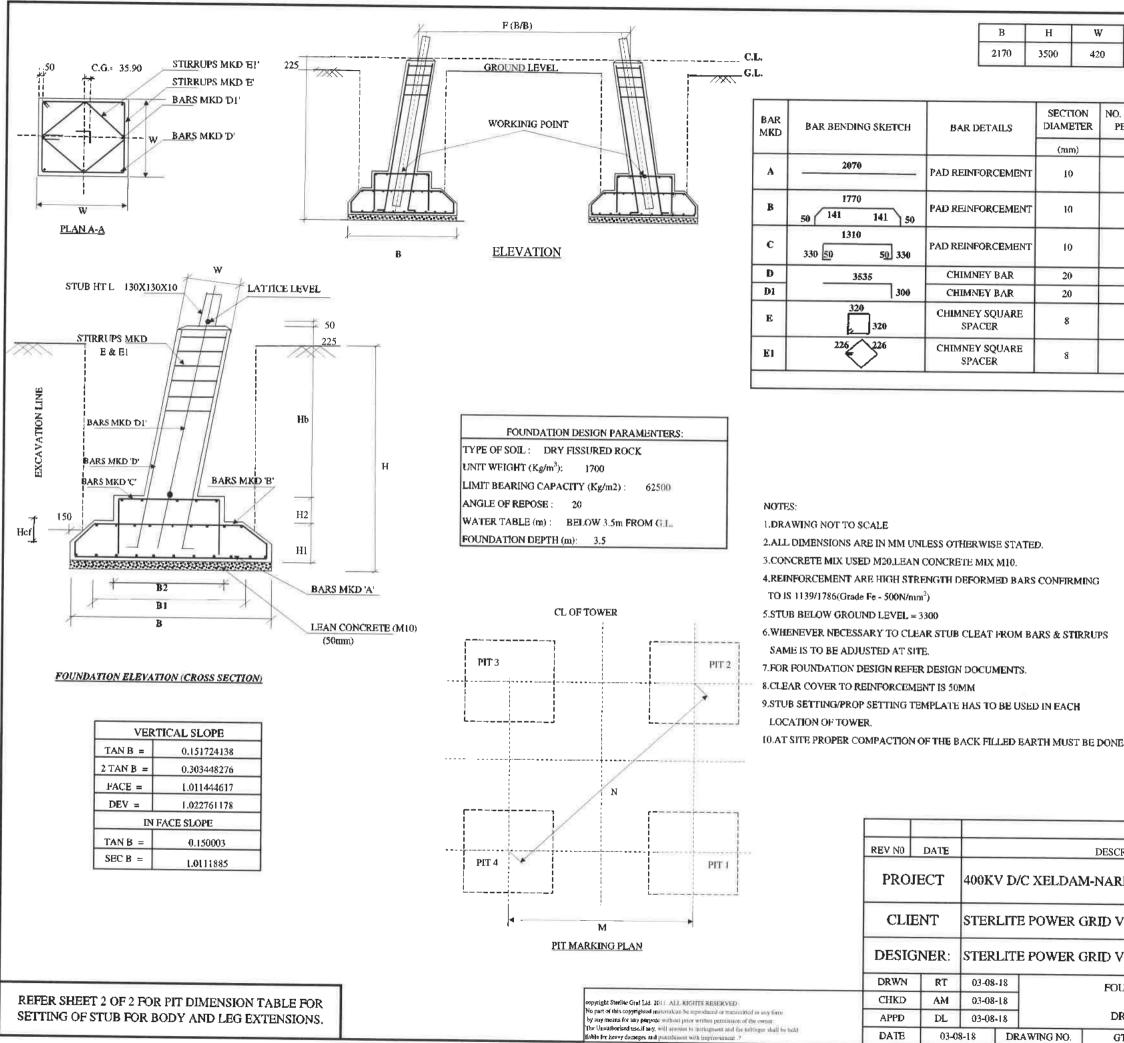
croppinght Sharfin: Ciriel Led., Still No post of the copyrighted instanticas is bit arrangement for any memory address

1.DRAWING NOT TO SCALE

2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.

3 CONCRETE MIX USED M20, LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BAR\$ CONFIRMING


- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL = 3300 mm

6.WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRRUPS SAME IS TO BE ADJUSTED AT SITE.

- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8.CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST BE DO

DESCRIPTIC		DATE	REV NO	
ELDAM-NARE	400KV D/C XE			
WER GRID VI	STERLITE PO			
WER GRID VE	STERLITE PO	NER:	DESIG	
FO	03-08-18	RT	DRWN	
10	03-08-18	AM	СНКД	I. ALL RECHTS RESERVED . In extended of theoremical in any form
F	81-80-60	DL	APPD	e sepretation of the series of the second prior written perculation of the second. I infrant guests and the staffreque shall be held
GTTPL/400	DRAWING NO.	03-08-18	DATE	misterent with Lagendo have be .

NFORMATION HALL BE READ				
E SHALL BE				
ER ONLY.				
BE READ ISED IN THE				
PIT MARKING.				
TE POWER GRID VEN SED FOR CONSTRUCT ROLLED COPY red Vide Ref. Letter No	TURESL TION	TD.	77	P21
NL&T 23 Date	1310	81	+	Ċ
A CONTRACTOR OF	actor from			
ctual obligations		-	-	
2				
S				
ONE.				
		1	_	
IPTION	DRAWN	Сн	KD	APPD
ARENDRA TRANSMISSIO	ON LTD			
VENTURES LIMITED				
VENTURES LIMITED				
FOUNDATION DRAWING FOR DAL-3/+0/+3/+6M 400KV FULLY SUBMERGED SOIL (D/C (WZ-1)			
	SHEET NO.	212	REV	Û

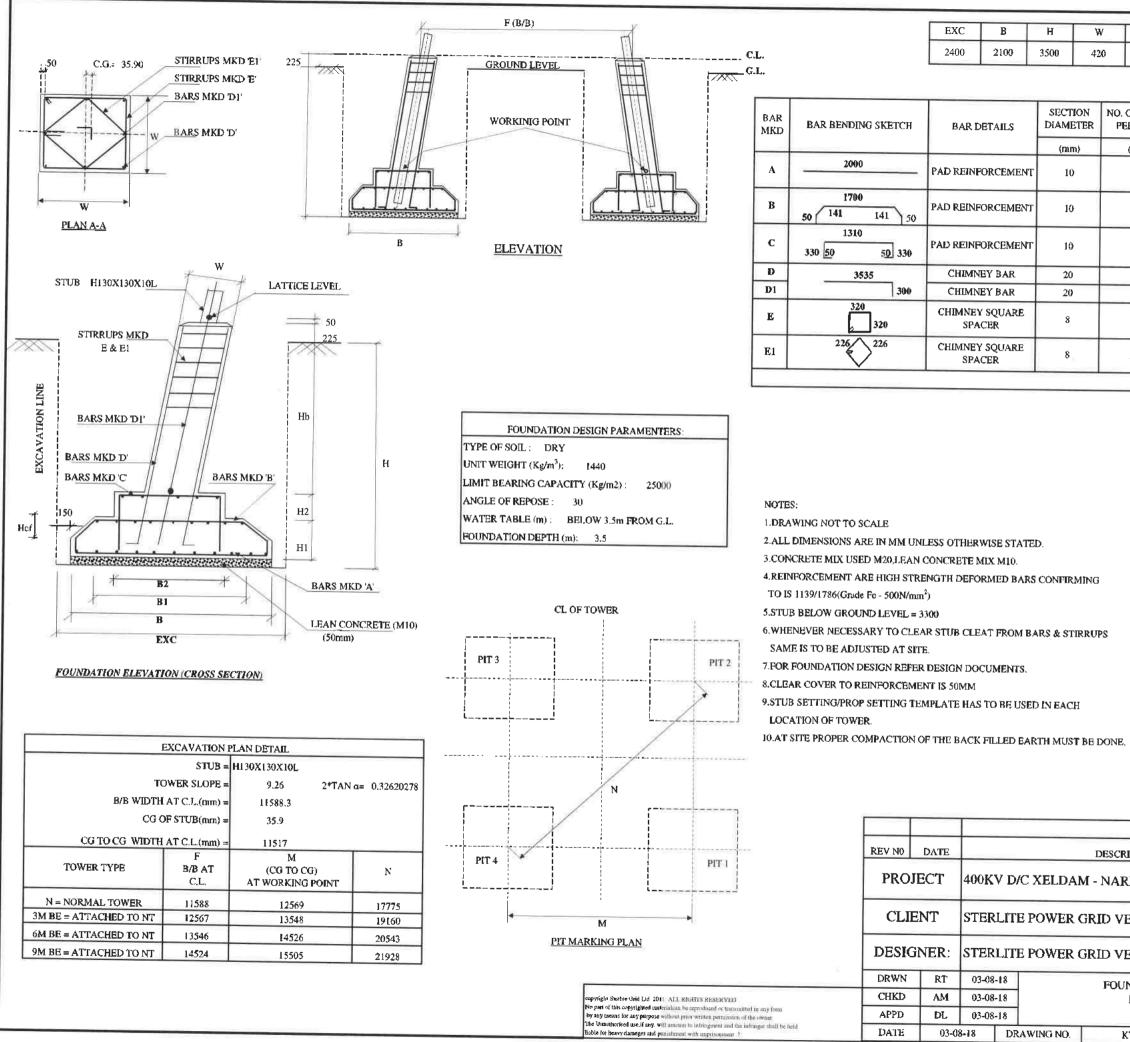
_						
	B1	B2	H1	H2	Hcf	Hb
	1870	1410	250	200	150	3000

OF BARS ER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
(no)	(mm)	('kg/m)	(kg)	(kg)
26	2070	0.62	33.23	132.90
16	2153	0.62	21.28	85.10
18	2070	0.62	22.99	91.96
4	3835	2.46	37.81	151.27
4	3835	2.46	37.81	151.27
13	14 7 2	0.39	7.55	30.21
13	1097	0.39	5.62	22.50
	TOTAL REI	INFORCEMEN	T/ TOWER=	665.2

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	8.2
CONCRETE (M10) m ³	0.94
TOTAL CONCRETE m ³	9,14
EXCAVATION m3	50.04
REINFORCEMENT Kg	665.2

STERLITE POWER GRID RELEASED FOR CONST CONTROLLED CO.2Y Approved Vide Ref. Letter ENGINE L&T 2.3 Engineering Deptt. the above does not relieven contractual obligations	No.5 1011	8/18	TTFL	4			
ESCRIPTION	DRAWN	CHKD	APPD				
ARENDRA TRANSMISSION LTD							
O VENTURES LIMITED							
VENTURES LIMITED							
FOUNDATION DRAWING FOR TOWER TYPE DAL-3/+0/+3/+6M 400KV D/C (WZ-1) DRY FISSURED ROCK SOIL (3.5M DEPTH)							
GTTPL/400DC/W2-1/DAL/F-005	SHEET NO.	1/2 RE	V 0				

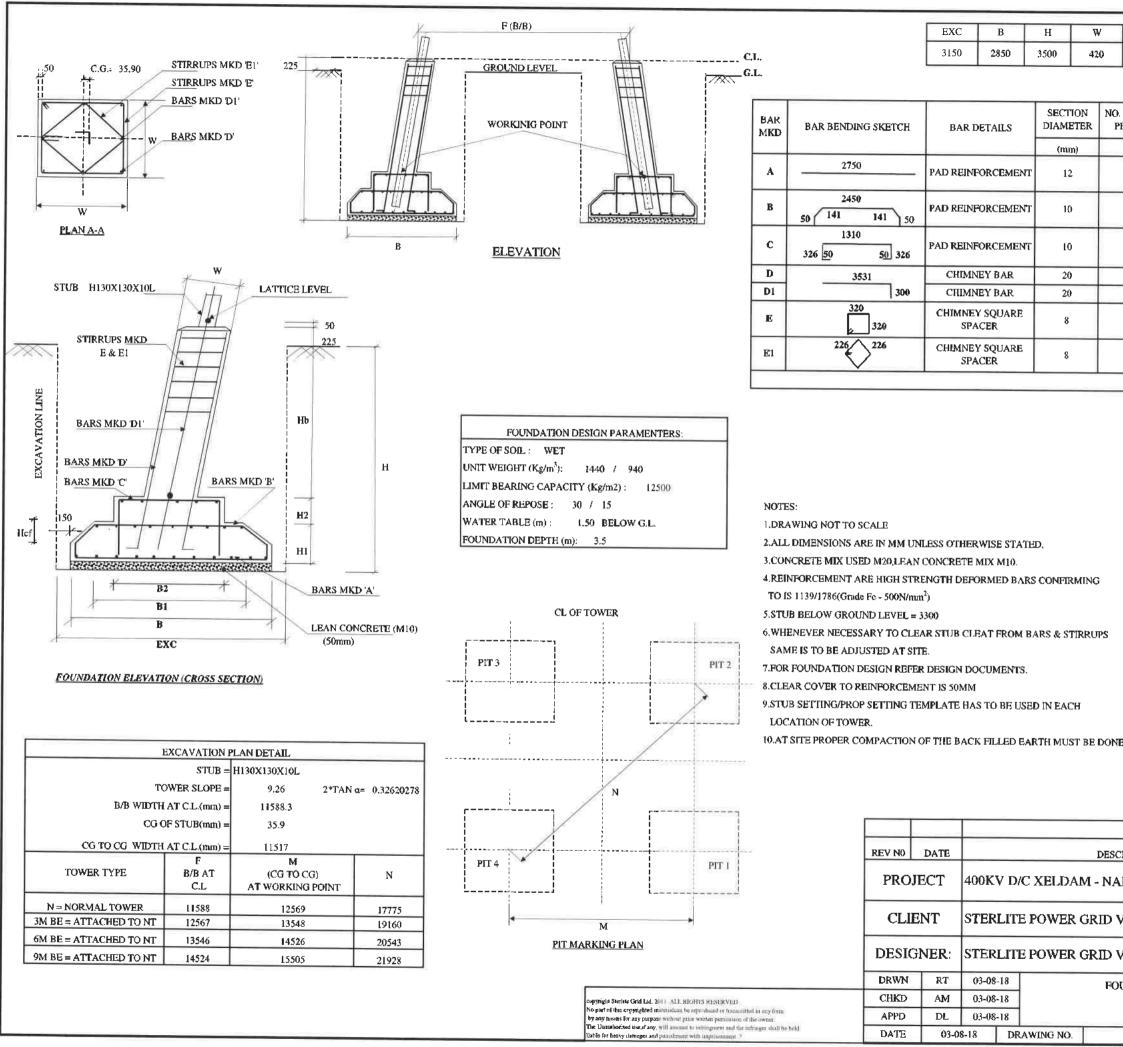
GOA			-100 KV	/ D/C -X-N	I & X-N (PIT DIME				TYPE	DFR		Client: SPGVL	
400 KV D/C-X-M & X-	N- JT "DAL"	* F * B/B of To 3MBE(+)-3h	MLE (TF)	* F * B/B of 1 3MBE(+)-3	MLE (LF)	Stub Ser	ction (HT)	Lattice Level to CL	୍ୟ	sec B1	2*Tan B1	sec B2	2*Tan Bi
	-	943;	1	94	32	130X1	130X10	50	35.9	1.011445	0.303448276	1.011445	0.30344
Tower Detail	Exin from -3MBE(+)- 3MLE (mm)	cg-cg dim at OL (TF)	Cg-cg dim at CL (LF)	Foundation Base Width	work pl	G.L. TO C.L.	A1	A2	в	E	F1	F2	н
SMBE (+) -SM LE	0	9375	9375	2170	3000	225	5177	5177	7321	2170	6262	6262	3500
3MBE (+) -1.5M LE	1500	9830	9830	2170	3000	225	5404	5404	7643	2170	6489	6489	3500
SMBE (+) +OM LE	3000	10285	10285	2170	3000	225	5632	5692	7965	2170	6717	6717	3500
3MBE (+) +1.5M LE	4500	10741	10741	2170	3000	225	5860	5860	8287	2170	6945	6945	3500
MBE (+) +3M LE	6000	11196	11196	2170	3000	225	6087	6067	8609	2170	7172		
OMBE (+) -3M LE	3000	10285	10285	2170	3000	225	5632	5632	7965	2170	6717	7172 6717	3500
OMBE (+) -1.5M LE	4500	10741	10741	2170	3000	225	5860	5860	8287	2170	6945		3500
OMBE (+) +OM LE	6000	11196	11196	2170	3000	225	6067	6087	8609	2170	7172	6945	3500
0MBE (+) +1.5M LE	7500	11651	11651	2170	3000	225	6315	6315	8930	2170		7172	3500
0MBE (+) +3M LE	9000	12106	12106	2170	3000	225	6542	6542	9252		7400	7400	3500
3MBE (+) -3M LE	6000	11196	11196	2170	3000	225	6087	6087	8609	2170	7627	7627	3500
3MBE (+) -1.5M LE	7500	11851	11651	2170	3000	225	6315	6315	8930	2170	7172	7172	3500
3MBE (+) +0M LE	9000	12706	12106	2170	3000	225	6542	6542		2170	7400	7400	3500
3MBE (+) +1.5M LE	10500	12561	12561	2170	3000	225	6770	6770	9252	2170	7627	7627	3500
3MBE (+) +3M LE	12000	13016	13016	2170	3000	225	6998		9574	2170	7855	7855	3500
5MBE (+) -3M LE	9000	12106	12106	2170	3000	225	6542	6998	9896	2170	8083	6083	3500
MBE (+) -1.5M LE	10500	12561	12561	2170	3000	225		6542	9252	2170	7627	7627	3500
MBE (+) +OM LE	12000	13016	13016	2170	3000	225	6770 6998	6770	9574	2170	7855	7855	3500
SMBE (+) +1.5M LE	13500	13472	13472	2170	3000			6998	9896	2170	8083	8083	3500
6MBE (+) +3M LE	15000	13927	13927	2170	3000	225	7225	7225	10218	2170	8310	8310	3500
LONGIT UDNAL FACE	pie C	в	*	8		Working Point A	42 F2			Working Point A			
9	W						<u>ज</u> ि ।		_				
	pit D	x		L		-	-	Limit Bearln				(g/Sqm	
	areas				plt A			Weight of so	-			(g/cum	
	×	A1		A1	1			Weight of se	•			(g/cum	
2	<u> </u>	F1	1	F1				Angle of Rep)eç	
	6		0.8		1			Angle of Rep Water Table		lion))eg	
							4	Water Table			3.5M E	elow GL	


1	ERTICAL SLOPE
TAN B =	0.151724138
2 TAN B 🛥	0.303448276
FACE =	1.011444617
DEA =	1.022761178
	IN FACE SLOPE
TAN B =	0.150003
SEC B =	1.0111685

NOTES:

DESCRIPTIO		DATE	REV NO	
ELDAM-NARE	400KV D/C XI	IECT	PRO	
WER GRID VE	STERLITE PO	ENT	CLI	
WER GRID VE	STERLITE PO	INER:	DESIG	
FOL	03-08-18	RT	DRWN	
POL	03-08-18	AM	CHIKID	. 2011 ALS: REGIETS RESORVED: Asia be reproduced or contacting an any jurge
DI	03-08-18	DL	APPD	ubou pror webve germining of the organization of the owner. 1991 19 Jahon general and the infranzer theil be held
CTTPL/400E	DRAWING NO.	03-08-18	DATE	and greatshances with Laprisectory

NOTE:							
				IE RELEVENT INFORMATION N DRAWINGS SHALL BE READ			
				ESERVED, SAME SHALL BE			
	ATED TO ENGINEERIN						
				F SITE ENGINEER ONLY. LEVEL SHALL BE READ			
				LEVEL SHALL BE READ N TABLE FURNISED IN THE			
				FOUNDATION PIT MARKING.			
		7					
TAN B =	VERTICAL SLOPE 0.151724138	-					
2 TAN B =	0.303448276	-		STERLITE POWER GRID	VENTUR	ES LTD.	1
FACE =	1.011444617	-		RELEASED FOR CONST CONTROLLED COPY			
DEV =	1.022761178			Approved Vide Ref. Letter i	No.S.P.G	YL/6	ITTPL
	IN FACE SLOPE			Approved Vide Ref. Letter	12	021	10
TAN B =	0.150003			Engineering Depty			0
SEC B =	1.0111885			the above does not relieve the contractual obligations	contractor	from their	
NOTES:				P			-
1.DRAWIN	G NOT TO SCALE						
2 ALL DIM	ENSIONS ARE IN MM	UNLESS OTH	ERWISE STATE	D.			
	TE MIX USED M20, LE/						
	CEMENT ARE HIGH S		EFORMED BARS	CONFIRMING			
	9/1786(Grade Fe - 500N/						
	LOW GROUND LEVEL (ER NECESSARY TO C		3300 7 E MT FROM D				
	TO BE ADJUSTED AT :		LEAT PROM B/	AKS & STIKKOPS			
	NDATION DESIGN RE		DOCUMENTS.				
8.CLEAR C	OVER TO REINFORCE	MENT IS 50M	М				
9.STUB SET	TTING/PROP SETTING	TEMPLATE F	IAS TO BE USEI	DIN EACH			
-	N OF TOWER.						
IO.AT SITE	PROPER COMPACTIO	N OF THE BA	ICK FILLED EAF	TH MUST BE DONE.			
	REV NO	DATE		DESCRIPTION	DRAWN	CHKD	APPD
	PRO)JEC T	400KV D/C	XELDAM-NARENDRA TRANSMISSI	ON LTD		
		CLIENT STERLITE POWER GRID VENTURES LIMITED					
	CLI	ENT	STERLITEP				
		GNER:		OWER GRID VENTURES LIMITED			
	DESI	GNER:	STERLITE P	OWER GRID VENTURES LIMITED FOUNDATION DRAWING FOR		(PE	
RifeD. Bioline Sang Forga oi dha company ringue studi se Said	DESI	GNER:	STERLITE P	OWER GRID VENTURES LIMITED	D/C (WZ-1)		

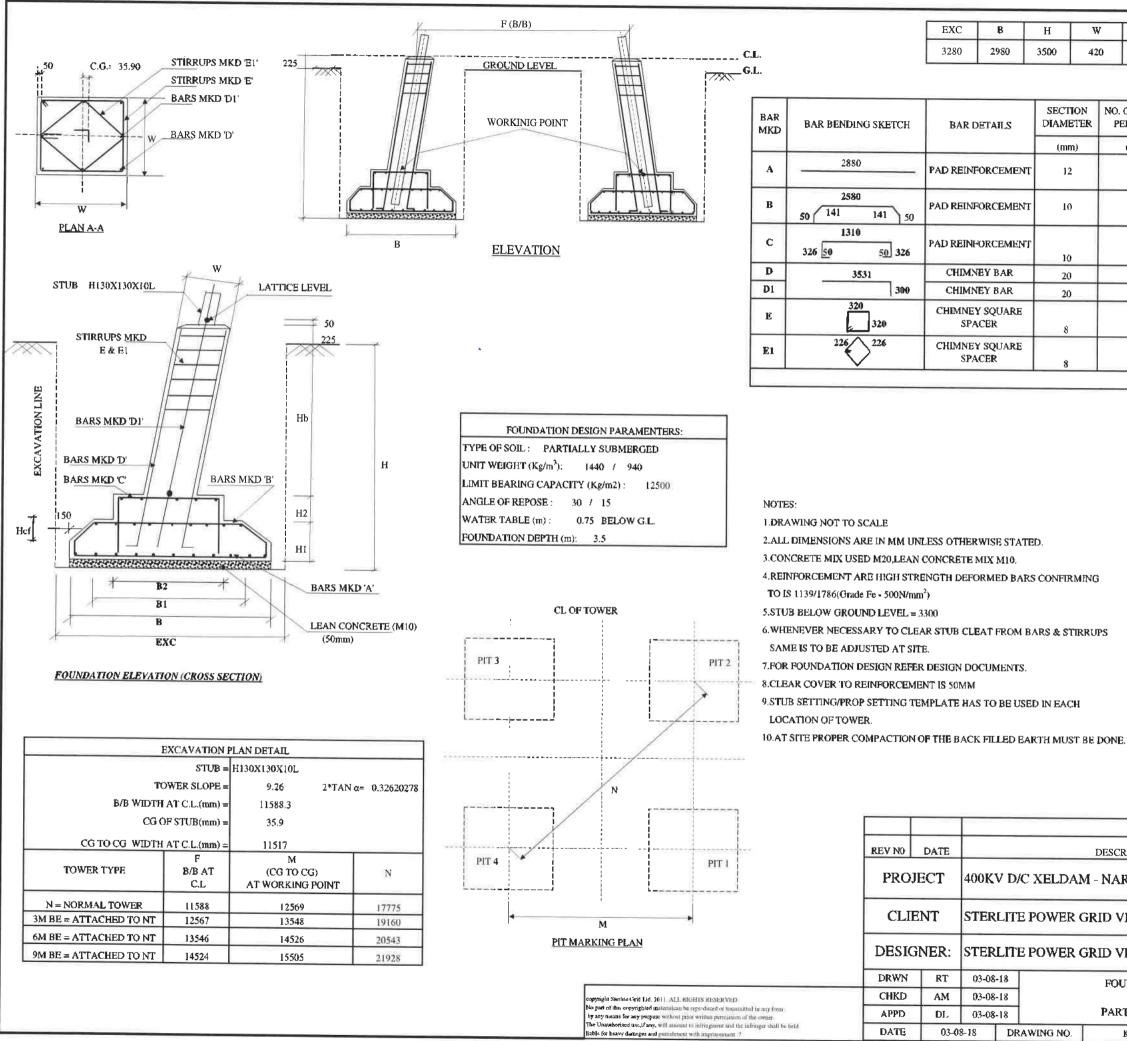


	_				
Bĭ	B2	Hl	H2	Hcf	Hb
1800	1410	250	200	150	3000

LENGTI	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
(mm)	('kg/m)	(kg)	(kg)
2000	0.62	32.10	128.41
2083	0.62	18.02	72.08
2070	0.62	22.99	91.96
3835	2.46	37.81	151.27
3835	2.46	37.81	151.27
1472	0.39	7.55	30.21
1097	0.39	5.62	22.52
TOTAL RE	INFORCEMEN	NT/ TOWER=	647.7
	(mm) 2000 2083 2070 3835 3835 1472 1097	LENGHI WEIGHT (mm) (kg/m) 2000 0.62 2083 0.62 2070 0.62 3835 2.46 3835 2.46 1472 0.39 1097 0.39	LENGTII WEIGHT PER LEG (mm) (kg/m) (kg) 2000 0.62 32.10 2083 0.62 18.02 2070 0.62 22.99 3835 2.46 37.81 3835 2.46 37.81 1472 0.39 7.55

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	7.92
CONCRETE (M10) m ³	0.88
TOTAL CONCRETE m ³	8.8
EXCAVATION m3	80.64
REINFORCEMENT Kg	647.7

STERLITE POWER GRIE RELEASED FOR CONS CONTROLLED CC-PY Approved Vide Ref. Lette ENGINEERING Depti- the above does no relieve contractual obligations	r No SPSV	45	18	РЦ				
CRIPTION	DRAWN	СНК	DA	PPD				
ARENDRA TRANSMISSION	LTD							
VENTURES LIMITED								
VENTURES LIMITED								
DUNDATION DRAWING FOR TOWER TYPE DA+0/+3/+6/+9M 400KV D/C (WZ-1) DRY SOIL (3.5M DEPTH)								
KTL/400DC/WZ-1/DA/F-001	SHEET NO.	1/1 1	REV	0				

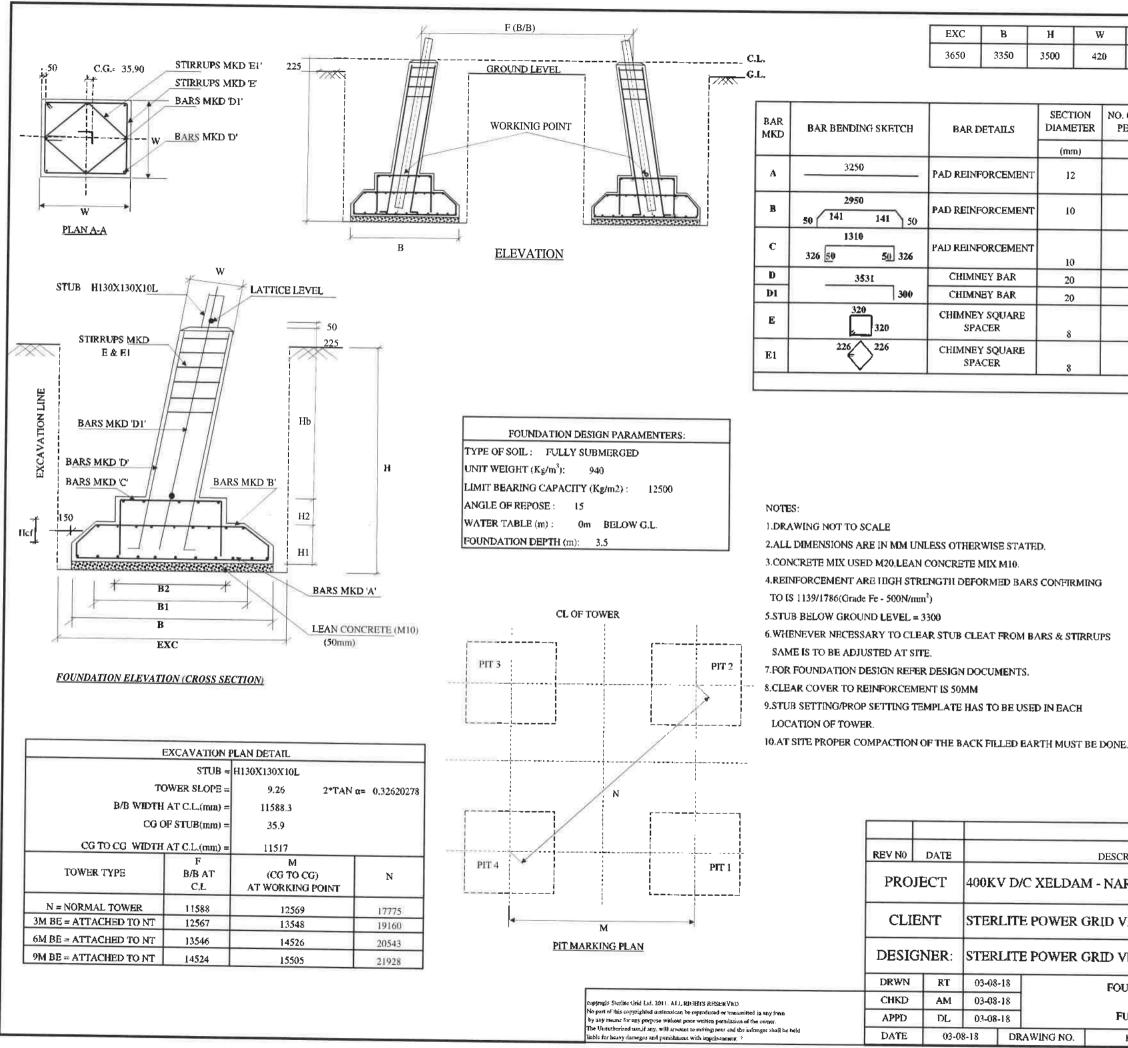


1	Bl	B2	H1	H2	Hef	Hb	1
	2550	1410	250	200	150	3000	

OF BARS ER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
(no)	(mm)	('kg/m)	(kg)	(kg)
26	2750	0.89	63.51	254.03
20	2833	0.62	34.96	139.85
18	2062	0.62	22.90	91.61
4	3831	2.46	37.77	151.11
4	3831	2.46	37.77	151.11
13	1472	0.39	7.55	30.21
13	1097	0.39	5.62	22.52
	TOTAL RE	INFORCEME	T/ TOWER=	840.4

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	11.49
CONCRETE (M10) m ³	1.62
TOTAL CONCRETE m ³	13.11
EXCAVATION m3	138.92
REINFORCEMENT Kg	841.0

STERLITE POWER GRID VE RELEASED FOR CONSTRUCT ONTROLLED CC3Y Approved Vide Ref. Letter No A 610 / L & T 23 Engineering Deptitine above does not reliand up contractual obligations	5/571	2/1		₽2 			
RIPTION	DRAWN	СНИ		APPD			
RENDRA TRANSMISSION	LTD						
/ENTURES LIMITED							
ENTURES LIMITED							
UNDATION DRAWING FOR TOWER TYPE DA+0/+3/+6/+9M 400KV D/C (WZ-1) WET SOIL (3.5M DEPTH)							
KTL400DC/WZ-1/DA/F-002	SHEET NO.	1/1	REV	0			

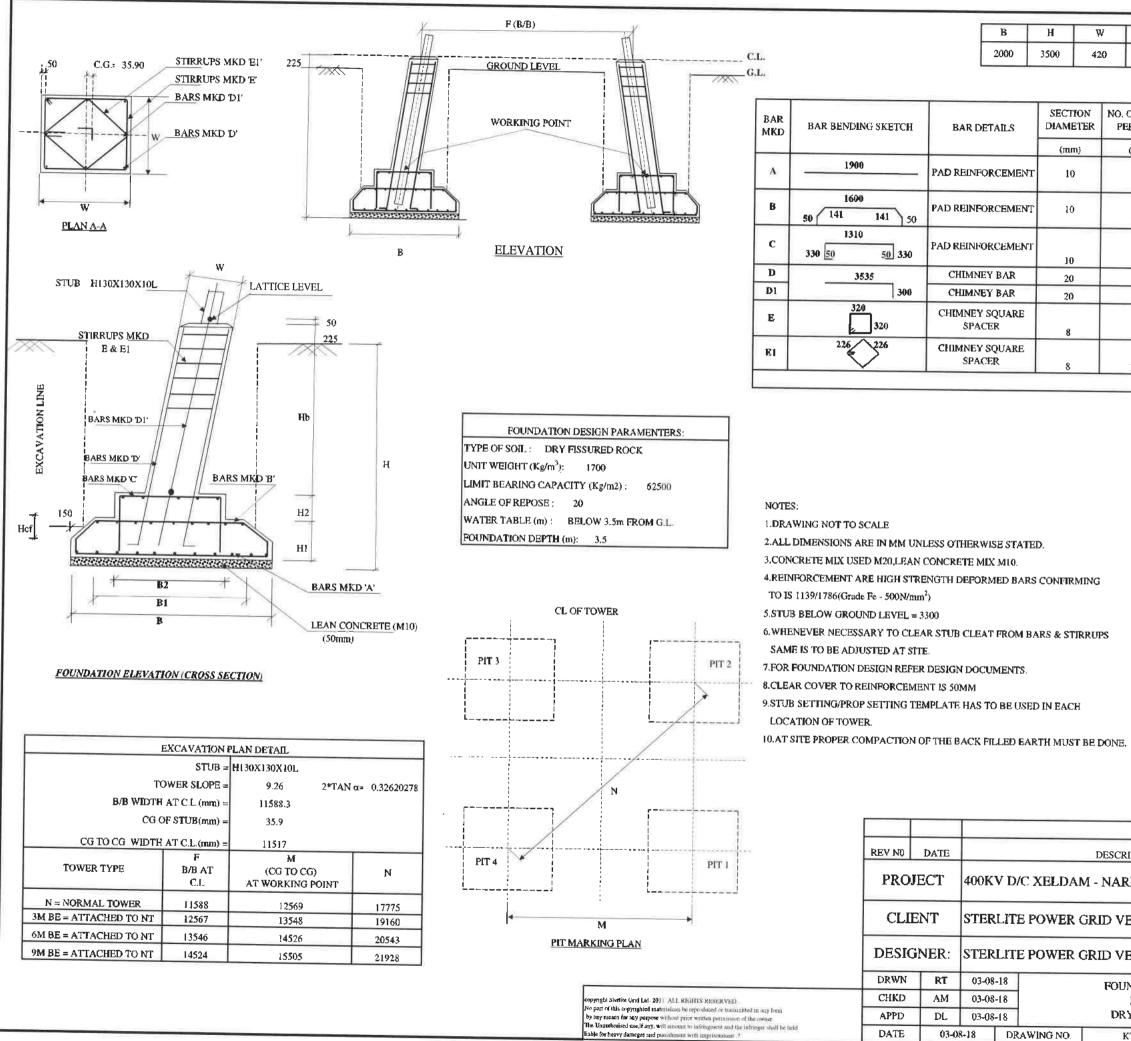


_							
	B1	B2	H1	H2	Hef	Hb	
	2680	1410	250	200	150	3000	

OF BARS ER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
(no)	(mm)	('kg/m)	(kg)	(kg)
30	2880	0.89	76.73	306.91
20	2963	0.62	36.57	146.26
18	2062	0.62	22.90	91.61
4	3831	2.46	37.77	151.11
4	3831	2.46	37.77	151.11
13	1472	0.39	7.55	3 0.2 1
_13	1097	0.39	5.62	22.52
	TOTAL RE	INFORCEME:	NT/ TOWER=	899.7

QUANTITIES/ STRU-	CTURE
CONCRETE (M20) m ³	12.23
CONCRETE (M10) m ³	1.78
TOTAL CONCRETE m ³	14.01
EXCAVATION m3	150.62
REINFORCEMENT Kg	899.7

STERLITE POWER GRID VENTURES LTD. RELEASED FOR CONSTRUCTION CONTROLLED CCPY Approved Vide Ref. Letter No S								
RIPTION	DRAWN	СНК	D A	APPD				
RENDRA TRANSMISSION	LTD							
ENTURES LIMITED								
ENTURES LIMITED								
JNDATION DRAWING FOR TOWER TYPE DA+0/+3/+6/+9M 400KV D/C (WZ-1) TIALLY SUBMERGED SOIL (3.5M DEPTH)								
CTL/400DC/WZ-1/DA/F-003 SHEET NO. 1/1 REV 0								

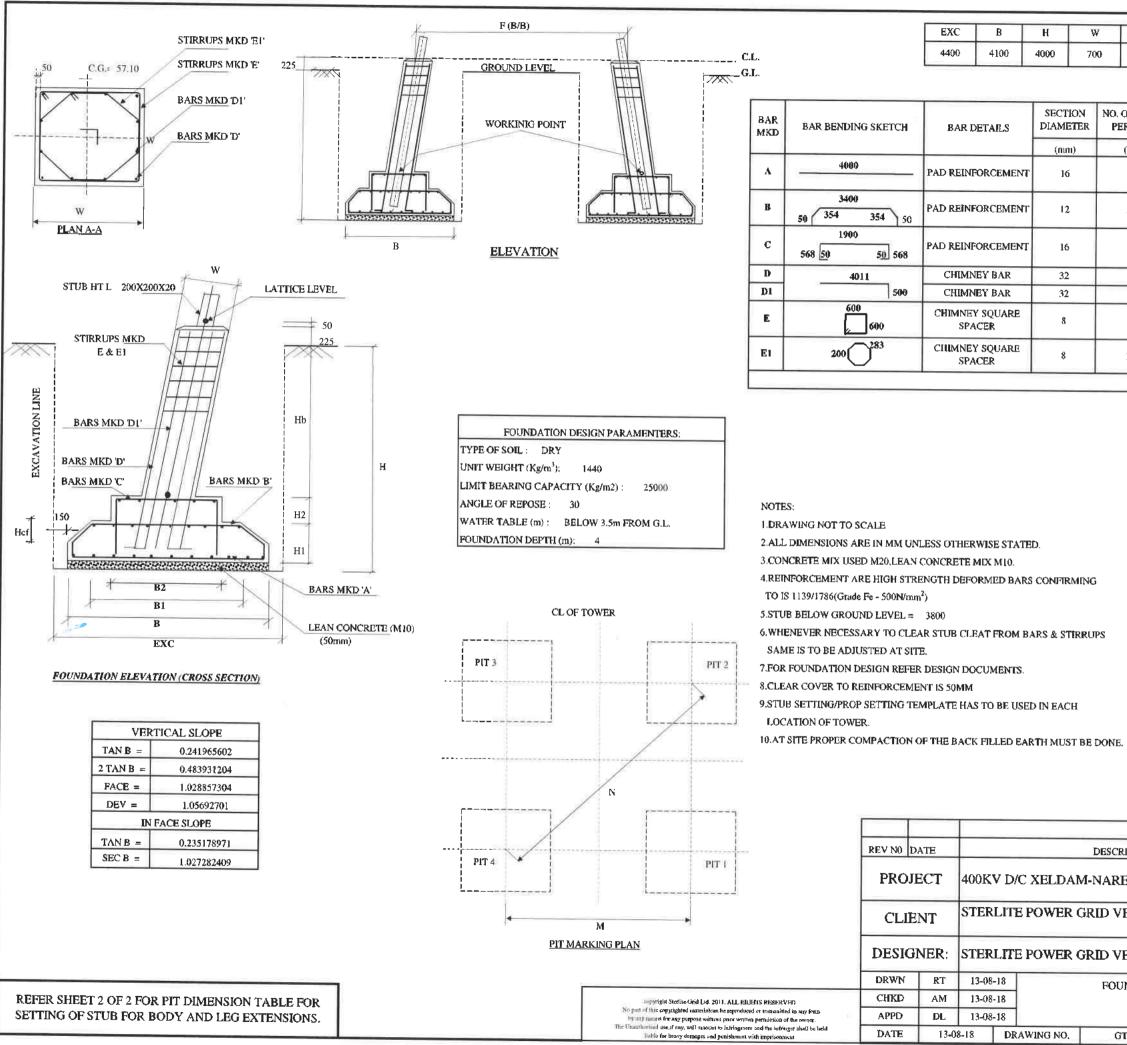


Ĩ	BI	B2	H1	H2	Hcf	Hb	
	3050	1410	250	200	150	3000	

LENGTH	UNIT WEIGHT	WEIGHT	WEIGHT PER
		PER LEG	TOWER
(mm)	('kg/m)	(kg)	(kg)
3250	0.89	92.35	369.38
3333	0.62	53.45	213.79
2062	0.62	22.90	91.61
3831	2.46	37.77	151.11
3831	2.46	37.77	151.11
l472	0.39	7.55	30.21
1097	0.39	5.62	22.52
TOTAL RE	INFORCEMEN	T/TOWER=	1029.7
	3250 3333 2062 3831 3831 1472 1097	3250 0.89 3333 0.62 2062 0.62 3831 2.46 3831 2.46 1472 0.39 1097 0.39	3250 0.89 92.35 3333 0.62 53.45 2062 0.62 22.90 3831 2.46 37.77 1472 0.39 7.55

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	14.5
CONCRETE (M10) m ³	2.24
TOTAL CONCRETE m ³	16.74
EXCAVATION m3	186.52
REINFORCEMENT Kg	1029.7

STERLITE POWER GRID RELEASED FOR CONST CONTROLLED CC:PY Approved Vide Ref. Letter FN 44/L &T/2.3 Engineering Deptt. the above does not relie contractual obligations	No.Sf.GN	2](08.	1.18	<i>ΡL</i>]			
RIPTION	DRAWN	СН		PPD			
RENDRA TRANSMISSION	LTD						
ENTURES LIMITED							
ENTURES LIMITED							
JNDATION DRAWING FOR TOWER TYPE DA+0/+3/+6/+9M 400KV D/C (WZ-1) JLLY SUBMERGED SOIL (3.5M DEPTH)							
KTL/400DC/WZ-1/DA/F-004	SHEET NO.	1/1	REV	0			



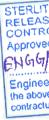
B1	B2	H1	H2	Hcf	Hb	
1700	1410	250	200	150	3000	

OF BARS ER FDN	LENGTH	UNI T WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
(110)	(mm)	('kg/m)	(kg)	(kg)
26	1900	0.62	30.50	l22.01
14	1983	0.62	17.16	68.63
18	2070	0.62	22.99	91.96
4	3835	2.46	37.81	151.27
4	3835	2.46	37.81	151.27
13	1472	0.39	7.55	30.21
13	Ł097	0.39	5.62	22.50
	TOTAL RE	INFORCEMEN	T/ TOWER=	637.8

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	7.52
CONCRETE (M10) m ³	0.8
TOTAL CONCRETE m ³	8.32
EXCAVATION m3	41.44
REINFORCEMENT Kg	637.8

STERLITE POWER GRID RELEASED FOR CONS CONTROLLED CC.PY Approved Vide Ref. Letter FNGG/LO.T 2-3 Engineering Deptt. the above does not reliable contractual obligations	NoSPERY	2 GT) 08/10	
IPTION	DRAWN	CHKD	APPD
ENDRA TRANSMISSION	LTD		
ENTURES LIMITED			
ENTURES LIMITED			
NDATION DRAWING FOR TOW DA+0/+3/+6/+9M 400KV D/C (W Y FISURED ROCK SOIL (3.5M	/Z-t)		
TL/400DC/WZ-1/DA/F-005	SHEET NO.	1/1 RE	V 0

B1	B2	HJ	H2	Hef	НЪ	1
3500	2000	400	300	300	3250	1

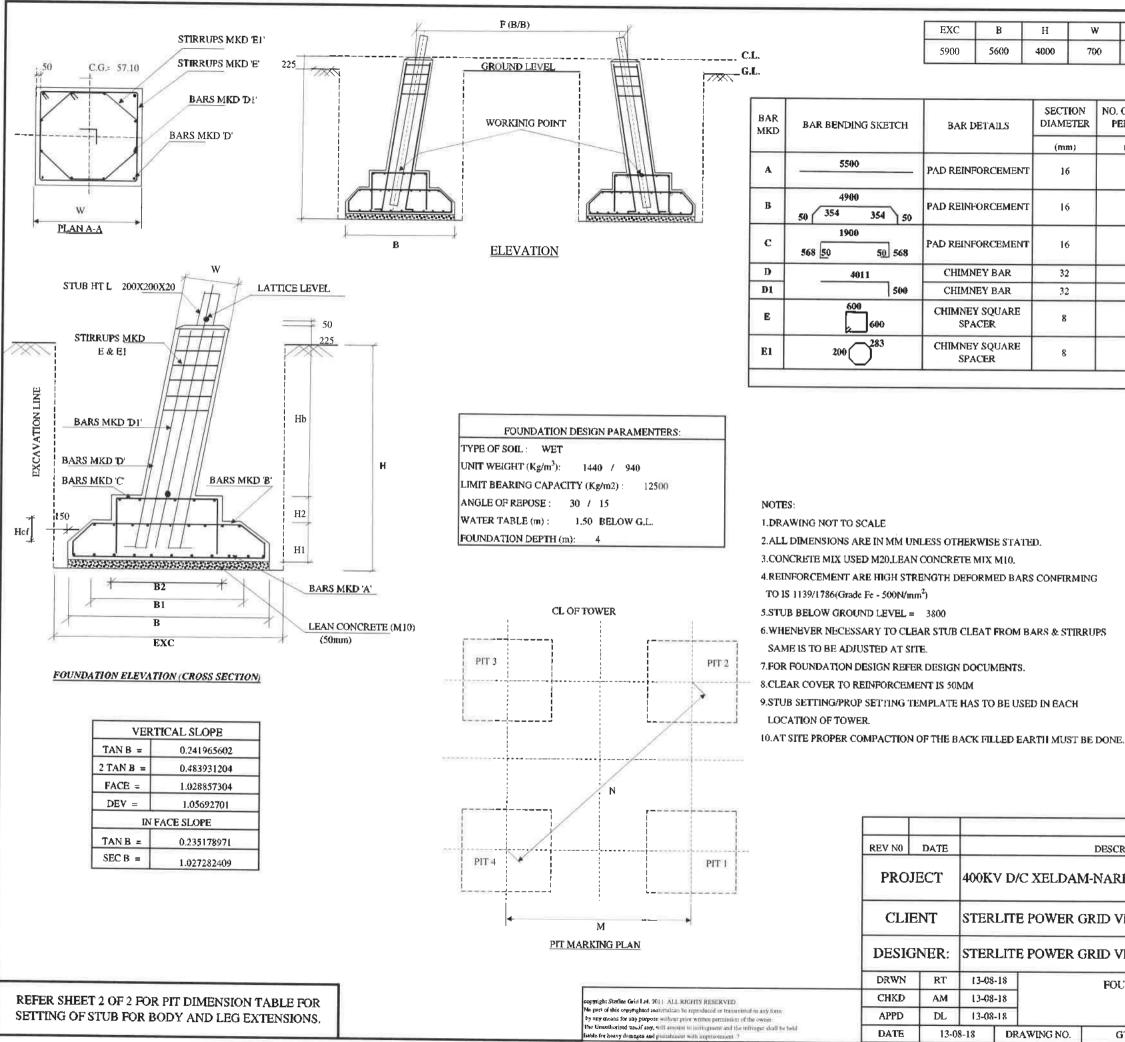

OF BARS ER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGIIT PER TOWER
(no)	(mm)	('kg/m)	(kg)	(kg)
50	4000	1.58	315.57	1262.27
36	4207	0.89	134.45	537.79
16	3136	1.58	79.18	316.74
4	4511	6.31	113.86	455.46
8	4511	6.31	227.72	910.90
14	2592	0.39	14.31	57.27
14	2123	0.39	[1.72	46.92
	TOTAL RE	INFORCEMEN	TOWER=	3587.3

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	35.7
CONCRETE (M10) m ³	3.36
TOTAL CONCRETE m ³	39.06
EXCAVATION m3	309.76
REINFORCEMENT Kg	3587.3

STERLITE POWER G RELEASED FOR CO CONTROLLED CCP Approved Vide Ref. Le FNG 6/L D.T / 2 Engineering Deptt. the above does not releve contractual obligation	etter No.S.f. 2. Date:	biyi. 1.98	677	PL/
				1
RIPTION	DRAWN	СНКД	APPD	
ENDRA TRANSMISSION I	LTD			
ENTURES LIMITED				
ENTURES LIMITED				
UNDATION DRAWING FOR TOW DD-3/+0/+3/+6M 400KV D/C (V DRY SOIL (4.0M DEPTH)				
TTP1/400DC/WZ-1/DD/F-001	SHEET NO.	1/2 R	EV O	

400 KV D/C-X-M & X					PIT DIME				DRY (4.	OM DEPTH)		Client: SPGVL	
	-N- TT "DD"	" F * B/B of To 3MBE(+)-3N	ILE (TF)	* F * B/B of 1 3MBE(+)-3	fower al 3MLE, (LF)	Stub Ser	ction (HT)	Lattice Level to CL	c9	sec B1	2*Tan B1	sec B2	2'Tan I
	1	1271	3	123	713	200X2	200X20	50	57.1	1.028857	0.483931204	1.028857	0.4839
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	eg-eg olim at OL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pi	G.L. TO C.L.	A1	A2	в	E	F1	F2	н
9MBE (+) -3M LE	0	12623	12623	4100	3250	225	7152	7152	10115	4400	9352	9352	4000
3MBE (+) -1.5M LE	1500	13349	13349	4100	3250	225	7515	7515	10628	4400	9715	9715	4000
SMBE (+) +OM LE	3000	14074	14074	4100	3250	225	7878	7878	11141	4400	10078	10078	4000
MBE (+) +1.5M LE	4500	14800	14800	4100	3250	225	8241	8241	11655	4400	10441	10441	4004
MBE (+) +3M LE	6000	15526	15526	4100	3250	225	8604	8604	12168	4400	10804	10804	4000
OMBE (+) -3M LE	3000	14074	14074	4100	3250	225	7878	7878	11141	4400	10078	10078	4000
0M8E (+) -1.5M LE	4500	14800	14800	4100	3250	225	8241	8241	11655	4400	10441	10441	4000
OMBE (+) +0M LE	6000	15526	16526	4100	3250	225	8604	8604	12168	4400	10804	10804	4000
OMBE (+) +1.5M LE	7500	16252	16252	4100	3250	225	8967	8967	12681	4400	11167	11167	4000
OMBE (+) +3M LE	9000	16978	16978	4100	3250	225	9330	9330	13194	4400	11530	11530	4000
3MBE (+) -3M LE	6000	15526	15526	4100	3250	225	8604	8604	12168	4400	10804	10804	4000
MBE (+) -1.5M LE	7500	16252	16252	4100	3250	225	8967	8967	12681	4400	11167	11167	4000
MBE (+) +0M LE	9000	16978	16978	4100	3250	225	9330	9330	13194	4400	11530	1 1530	4000
3MBE (+) +1.5M LE	10500	17704	17704	4100	3250	225	9693	9693	13708	4400	11893		
MBE (+) +3M LE	12000	18430	18430	4100	3250	225	10056	10056	14221	4400	12256	11893	4000
MBE (+) -3M LE	9000	16978	16978	4100	3250	225	9330	9330	13194	4400		12256	4000
MBE (+) -1.5M LE	10500	17704	17704	4100	3250	225	9693	9693	13708		11530	11530	4000
MBE (+) +OM LE	12000	18430	18430	4100	3250	225	10056	10056	14221	4400	11893	11893	4000
SMBE (+) +1.5M LE	13500	19156	19156	4100	3250	225	10419				12256	12255	4000
SMBE (+) +3M LE	15000	19882	19882	4100	3250	225	10782	10419	14734 15248	4400	12619	12619 12982	4000
					pit B		A2 F2			н			
IGITUDINAL FACE	rit C	в	*	И		Working Point A	A2 F2		/ / / /E	Warking Point A			
LONGITUDINAL FACE	pit C	В	*	в		Point A	A2 F2	Limit Bearin	/ iE	Working Point A	25000	Kg/Sam	
TAN	pit C	в ,	*	в		Point A			/ : IE IE Ig Capacity			Kg/Sqm Kg/cum	
TAN		в ф	*	8		Point A	-	Limit Bearin	/ IE iEC X-X ig Capacity cil (Ory porti	ion)	1440 (
TAN		B X X	*	A1		Point A	+	Limit Bearin Weight of s	I E	on) ion)	1440 (940 (Kg/cum	
TAN			*	A1 F1		Point A	+	Limit Bearin Weight of s Weight of s	/ iE BEC X-X IIII Capacity oil (Dry portional cee (Dry portional cee (Dry portional)	ion) iion)	1440 (940 (30 (Kgy'cum Kgy'cum	

	VERTICAL SLOPE
TAN B =	0.241965602
2 TAN B =	0.483931204
FACE -	1.028857304
DEV =	1,05692701
	IN FACE SLOPE
TAN B =	0.235178971
SEC B =	1.027282409



NOTES:

emptight Storfee Ocid La No just of the coppegned vester by my means for any perpose The Growhorsed use. If any, will an lable for heavy damage

		1		
DESCRIPTIC		DATE	REV NO	
ELDAM-NARE	400KV D/C XE	ECT	PRO	
WER GRID VI	STERLITE PO	ENT	CLI	
WER GRID VI	STERLITE PO	NER:	DESIG	
FO	13-08-18	RT	DRWN	
10	13-08-18	AM	СНКР	M 2011, ALL BIGGTS RESERVED Division to teaturbeed of Kastanipel in any ferm
	13-08-18	DL	APPD	na and na indicator concern an indication (1991) and a substances of shore and a substances of substances and a substances of subst substances of substances
GTTPL/404	DRAWING NO.	13-08-15	DATE	and provinces) with approximent

PROVIDED IN THE AND UNDERSTOC INTIMATED TO EL 2. FOUNDATION SIL 3. DIMENSIONS OF B CLIECKED WITH P	E TECHNICA DD. IF ANY E NGINEERING ALL BE EXEC ACK TO BAG OUNDATION	L NOTES AN RROR OR CH TEAM FOR CUTED IN TH CK OF STUB I DRAWINGS	D FOUNDATION IANGES ARE ON CORRECTIVE A E PRESENCE ON AT CONCRETE PTT DIMENSIO	E RELEVENT INFORMATION N DRAWINGS SHALL BE READ BSERVED, SAME SHALL BE ACTION. F SITE ENGINEER ONLY. LEVEL SHALL BE READ IN TABLE FURNISED IN THE FOUNDATION PIT MARKING.					
2 TAN B = 0.480 FACE = 1.020 DEV = 1.05 IN FACE SLO TAN B = 0.230	1985802 3931204 385 730 4 692701			STERLITE POWER GRID RELEASED FOR CONST CONTROLLED COPY Approved Vide Ref. Letter ENGG/LOT/2_3 Engineering Deptt. the above does not relieve contractual obligations	No.S	(310)	67	777	PLJ
NOTES: 1 DRAWING NOT TO 2.ALL DIMENSIONS A 3.CONCRETE MIX US 4.REINFORCEMENT A TO IS 1139/1786(Grad	ARE IN MM U ED M20, LEA ARE HIGH ST	N CONCRETI RENGTH DE	E MIX M10.						
5.STUB BELOW GROU 6.WHENEVER NECES SAME IS TO BE ADJ 7.FOR FOUNDATION 8.CLEAR COVER TO I 9.STUB SETTING/PRO	IND LEVEL SARY TO CL USTED AT S DESIGN REF REINFORCEM	= .EAR STUB C. ITE. ER DESIGN L MENT IS 50MJ	XXCUMENTS. M	NRS & STIRRUPS					
LOCATION OF TOW 10.AT SITE PROPER O		OF THE BA	CK FILLED BAF	ith must be done.					
	REV NO	DATE		DESCRIPTION		DRAWN	СНК	KD	APPD
	PRO	JECT	400 KV D/C :	XELDAM-NARENDRA TRANSI	MISSI	ON LTD			
	CLI	ENT	STERLITE P	OWER GRID VENTURES LIMIT	red				
	DESIG	GNER:	STERLITE P	OWER GRID VENTURES LIMIT	TED				
	DRWN	RT	13-08-18	FOUNDATION DRAWI			(PE		
ERVED Niged in any form	CHKD	AM	13-08-18	DD-3/+0/+3/+6M 4 DRY SOLL (4					
an of the owner Länager skelt be lucki Samets	APPD Date	DL 11.09.15	13-08-18		ow DB	· · · · ·		-	
	DATE	13-08-15	DRAWING NO.	GTTPL/400DC/W2-1/DD/F-001		SHEET NO.	2/2	REV	0

B1	B2	H1	H2	Hef	Hb
5000	2000	400	300	300	3250

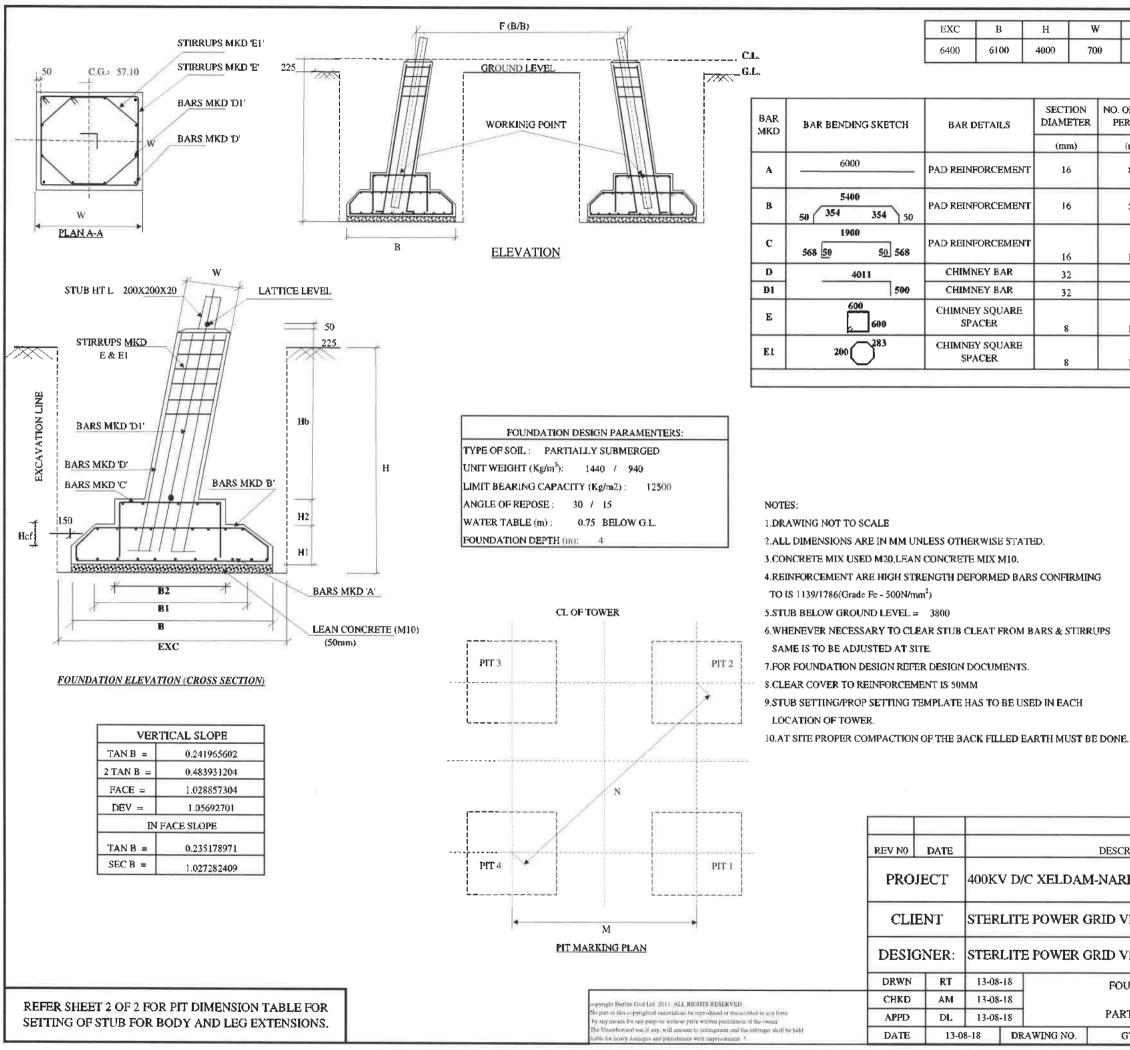
OF BARS ER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
(no)	(mm)	('kg/m)	(kg)	(kg)
72	5500	1.58	624.76	2499.06
44	5707	1.58	396.19	1584.76
16	3136	1.58	79.18	316.74
4	4511	6.31	113.86	455.46
8	4511	6.31	227.72	910.90
14	2592	0.39	t4.31	57.27
14	2123	0.39	11.72	46.92
	TOTAL RE	INFORCEME	NT/ TOWER=	5871.1

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	57.9
CONCRETE (M10) m ³	6.27
TOTAL CONCRETE m ³	64.17
EXCAVATION m3	556.96
REINFORCEMENT Kg	5872.0

STERLITE POWER GRID V RELEASED FOR CONSTR CONTROLLED CC:2Y Approved Vide Ref. Letter N ENGG L&T 22 Engineering Deptt. the above does not relevante contractual obligations	10.5. f. G. V.	LGD P.I.P	FT)//					
SCRIPTION	DRAWN	CHKD	AI	PPD					
ARENDRA TRANSMISSION I	.TD								
VENTURES LIMITED									
VENTURES LIMITED									
	OUNDATION DRAWING FOR TOWER TYPE DD-3/+0/+3/+6M 400KV D/C (WZ-1) WET SOIL (4.0M DEPTH)								
GTTPL/400DC/WZ-1/DD/F-002	SHEET NO.	1/2 R	EV	0					

	_				PIT DIME	INSION	TABLE		₩EI (4.	OM DEPTH)		Client: SPGVL	
400 KV D/C-X-M &)	(-N- TT "DD"	* F * B/B of To 3MBE(+)-34	ALE (TF)	" F * 8/8 of 7 3MBE(+)-3	Fower at 3MLE (LF)	Stub Sec	ction (HT)	Lattice Level to GL	cg	sec B1	2°Tan B1	sec B2	2*Tan
	-	1271	3	123	713	200X2	200X20	50	57.1	1.028857	0.483931204	1.028857	0.4839
Tower Detail	Exin from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pi	G.L. TO C.L.	A1	A2	в	E	F1	F2	н
SMBE (+) - 3M LE	0	12623	12623	5600	3250	225	7152	7152	10115	5900	10102	10102	4000
3MBE (+) -1.5M LE	1500	13349	13349	5600	3250	225	7515	7515	10628	5900	10465	10465	400
BMBE (+) +0M LE	3000	14074	14074	5600	3250	225	7878	7878	11141	5900	10828	10828	400
SMBE (+) +1.5M LE	4500	14800	14800	5600	3250	225	8241	8241	11655	5900	11191	11191	400
3MBE (+) +3M LE	6000	15528	15526	5600	3250	225	8604	8604	72168	5900	11554	11554	400
OMBE (+) -3M LE	3000	14074	14074	5600	3250	225	7878	7878	11141	5900	10828	10828	400
OMBE (+) -1.5M LE	4500	14800	14800	5600	3250	225	8241	8241	11655	5900	11191	11191	4000
OMBE (+) +OM LE	6000	15526	15526	5600	3250	225	8604	8604	12168	5900	11554	11554	400
OMBE (+) +1.5M LE	7500	16252	16252	5600	3250	225	8967	8967	12681	5900	11917	11917	4000
DMBE (+) +9M LE	9000	16978	16978	5600	3250	225	9330	9330	13194	5900	12280	12280	400
3MBE (+) -3M LE	6000	16526	15526	5600	3250	225	8604	8604	12168	5900	11554	11554	400
3MBE (+) -1.5M LE	7500	16252	16252	5600	3250	225	8967	8967	12681	5900	11917	11917	
3MBE (+) +0M LE	9000	16978	16978	5600	3250	225	9330	9330	13194	5900	12280		4000
MBE (+) +1.5M LE	10500	17704	17704	5600	3250	225	9693	9693	13708	5900		12280	4000
BMBE (+) +3M LE	12000	18430	18430	5600	3250	225	10056	10056	14221	5900	12643	12643	4000
SMBE (+) -3M LE	9000	16978	16978	5600	3250	225	9330	9330	13194	5900	13006	13006	4000
5MBE (+) -1.5M LE	10500	17704	17704	5600	3250	225	9693	9693	13708		12280	12250	4000
MBE (+) +0M LE	12000	18430	18430	5600	3250	225	10056	10056		5900	12643	12643	4000
SMBE (+) +1.5M LE	13500	19156	19156	5600	3250	225			14221	5900	13006	13006	4000
6MBE (+) +3M LE	15000	19882	19882	5600	3250	225	10419	10419	14734 15248	5900	13369	13369 13732	4000
						^ 、	<u>\</u>	CL of found	ation	7	CL G.L.		
MGITUDINAL FACE	the C	8	*	8		Working Point A	A2 F2		/ IE	Working Point A	CL G.L.		
LONGITUDINAL PACE	ejit C		*	8		Working Point A	~				<u>GL</u>	Ka/Sam-	
TYN	pht C	B 	*	8		Working Point A	~		I IE SEC X-X	Working Point A	<u>G.L.</u> <u>G.L.</u> 12500 1	Kg/Sqm Kg/cum	
TYN	K		×	8		Working Point A	A2 F2		I E VEC X-X	Working Point A	<u>G.L.</u> G.L. 12500 1 1440 1	Kg/cum	
TAN	K		X	B		Working Point A	42 F2	Limit Bearin Weight of s	I EC X-X I E I E I E I E I E I E I E I E	Working Point A	G.L. G.L. 12500 1 1440 1 940 1	Kg/cum Kg/cum	
TAN	K	•_x	×	B A1 F1		Working Point A	A2 F2	Limit Bearin Weight of s	I EC X-X I E I E I E I E I E I E I E I E	Working Point A	G.L. G.L. 12500 1 1440 9 940 4 30 0	Kg/cum	

VERTICAL SLOPE TAN B = 0.241965602 0.483931204 2 TAN B -FACE -1.028857304 DEV = 1.05692701 IN FACE SLOPE TAN B ≃ 0.235178971 SEC B = 1.027282409



NOTES:

organizet Stephic Guyl Lie Na goar of this cupyinglined maners by tast means for any ongrain The Constituented asset any, out an Basic for beorg datagets

	1			
DESCRIPTI		DATE	REV NO	
ELDAM-NARI	400KV D/C XI	JECT	PRO	
WER GRID V	STERLITE PO	ENT	CLI	
WER GRID V	STERLITE PO	SNER:	DESI	
FO	13-08-18	RT	DRWN	
10	13-08-18	AM	СНКД	2011 ALL RIGHTS RESERVED.
	13-08-18	DL	APPD	deen heropoulused of analysis in sing farm when prior were a pertaining of the average water to taking gastaf and the jeffinger shall be haid
GTTPL/40	DRAWING NO.	13-08-18	DATE	and publicated with imprimental .

NOTE: 1. BEFORE STAF	et of the four	IDATION AC	TIVITY, ALL TH	JE RELEVENT INFORMATION						
AND UNDERS	TOOD, IF ANY E	RROR OR CI	IANGES ARE O	N DRAWINGS SHALL BE READ BSERVED, SAME SHALL BE						
	O ENGINEERIN									
				F SITE ENGINEER ONLY. LEVEL SHALL BE READ						
				N TABLE FURNISED IN THE						
				E FOUNDATION PIT MARKING,						
		7								
	IL SLOPE	4				170				
	0.241965602	-		STERLITE POWER GRID VE RELEASED FOR CONSTRU	NTURES	LED.				
	0.483931204	-				1/47	TPL			
DEV =	1.05692701	-		Approved Vide Ref. Letter No	sfbr	E JUJ	1 4 -1			
IN FACE		4		EHGIGT/LOST/23 Da	te: [3/.9	8.1.18				
	0.235178971	1		Engineering Deptl.	attagetor from	n their				
SOC B =	1.027282409	1		the above does not relevance contractual obligations						
NOTES: 1.DRAWING NOT 2.ALL DIMENSIO 3.CONCRETE MD 4.REINFORCEME TO IS 1139/1786(5.STUB BELOW C 6.WHENEVER NE SAME IS TO BE 7.FOR FOUNDATT 8.CLEAR COVER 9.STUB SETTING/ LOCATION OF 7 10.AT SITE PROPE	NS ARE IN MM I (USED M20,LEA NT ARE HIGH ST Grade Pe - 500N/c ROUND LEVEL CESSARY TO CI ADJUSTED AT S ION DESIGN REF TO REINPORCES PROP SETTING	IN CONCRET (RENGTH DE Inn ²) - LEAR STUB C SITE, TE, TE, TE, TE, TE, SITE, TE, SITE, TE, SITE, TE, SITE, TE, SITE, TE, SI	E MIX M10. SFORMED BARS 3800 LEAT FROM BA DOCUMENTS. IM IAS TO BE USEI	S CONFIRMING) mm ARS & STIRRUPS	T					
	REV NO	DATE		DESCRIPTION	DRAWN	CHKD	APPD			
	PRO	JECT	400KV D/C	XELDAM-NARENDRA TRANSMISSI	ON LTD					
	CLIENT STERLITE POWER GRID VENTURES LIMITED									
		DESIGNER: STERLITE POWER GRID VENTURES LIMITED								
	DESI									
RV10.	DESI	RT	13-08-18	FOUNDATION DRAWING FO		rpe				
RV3D. Micol Is My fam net the survey. Tinger hall be laid	DESI				D/C (WZ-1)	rpe				

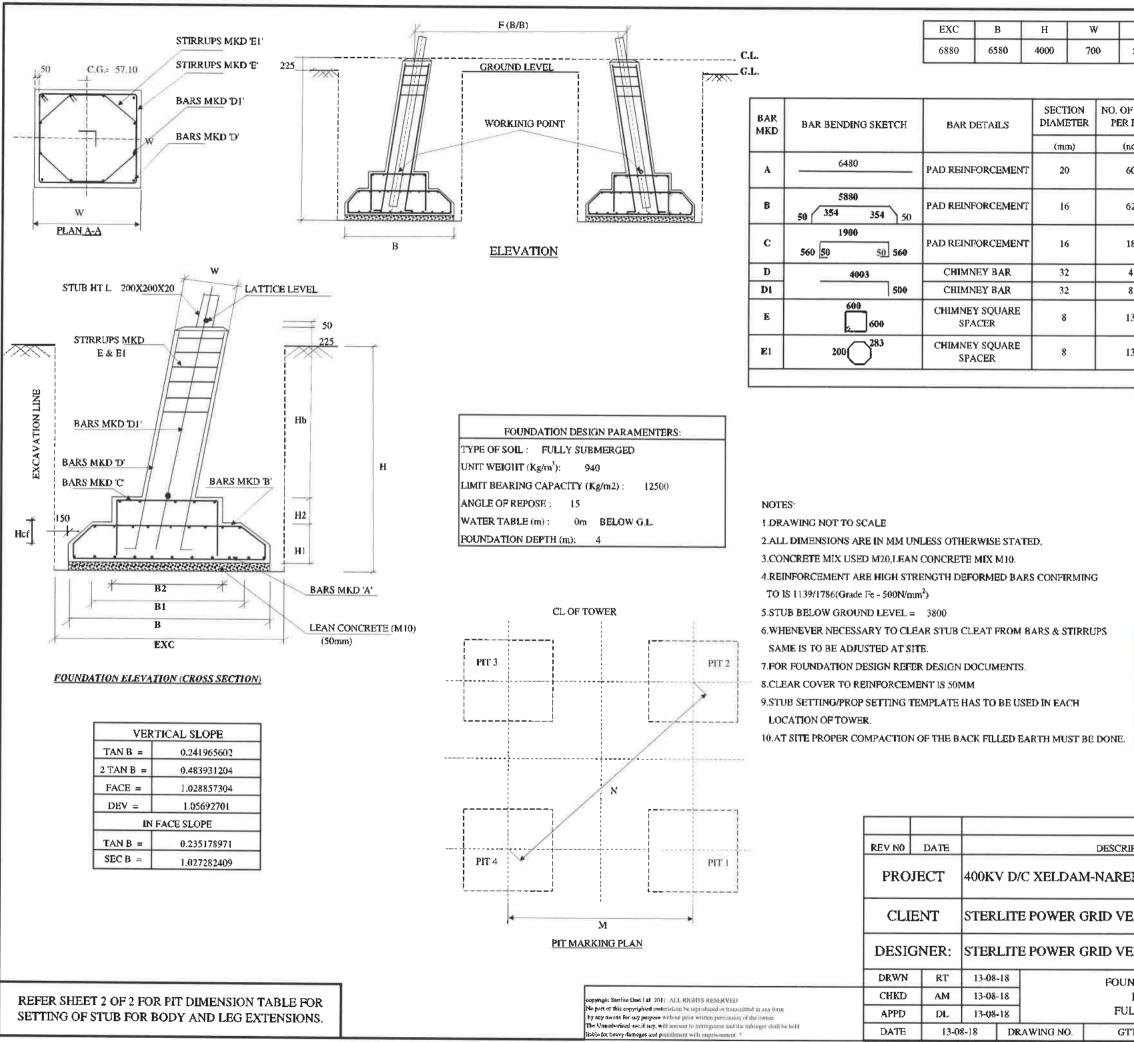
BI	B2	H1	H2	Hcf	НЬ
5500	2000	400	300	300	3250

OF BARS R FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
(no)	(mm)	mm) (kg/m)		(kg)
80	6000	1.58	757.28	3029.11
52	6207	1.58	509.23	2036.92
18	3136	1.58	89.08	356.32
4	4511	6.31	113.86	455,46
8	4511	6.31	227.72	910,90
14	2592	0,39	14.31	57.27
14	2123	0.39	11.72	46.92
	TOTAL RE	INFORCEME	NT/ TOWER=	6892.9

QUANTITIES/ STRUCTURE							
CONCRETE (M20) m ³	66.9						
CONCRETE (M10) m ³	7.44						
TOTAL CONCRETE m ³	74.34						
EXCAVATION m3	655.36						
REINFORCEMENT Kg	6892.9						

STERLITE POWER GRID V RELEASED FOR CONSTR CONTROLLED CC.PY Approved Vide Ref. Letter N CHG67 LAT 2.3 r Engineering Deplt. the above does not release the contractual obligations	asfbr	2/67	ŢŢĻĹ	-/				
RIPTION	DRAWN	CHKD	APPD					
ENDRA TRANSMISSION L	.TD							
/ENTURES LIMITED								
VENTURES LIMITED								
UNDATION DRAWING FOR TOW DD-3/+0/+3/+6M 400KV D/C (W TIALLY SUBMERGED SOIL (4.0)	/Z-1)							
GTTPL/400DC/WZ-1/DD/F-003	SHEET NO.	1/1 RF	ev o					

GOA		400 N				ENSION			- 15 (4.0	M DEPTH)		Client: SPGVL	
400 KV D/C-X-M & X	-N- TT "DD"	* F * 8/8 of To 3MBE(+)-30	ALE (TF)	F T B/B of T 3MBE(+)-3	BMLE (UF)	Stub Sec	tion (HT)	Lattice Level to CL	cg	sec B1	2*Tan 81	sec B2	2"Tan E
		1271	3	127	13	200X2	200X20	50	57.1	1.028857	0.483931204	1.028857	0.4839
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	в	E	F1	F2	н
-3M8E (+) -3M LE	0	12623	12623	6100	3250	225	7152	7152	10115	6400	10352	10352	4000
3MBE (+) -1.5M LE	1500	13349	13349	6100	3250	225	7515	7515	10628	6400	10715	10715	4000
SMBE (+) +0M LE	3000	14074	14074	6100	3250	225	7878	7878	11141	6400	11078	11078	4000
3MBE (+) +1.5M LE	4500	14800	14800	6100	3250	225	8241	8241	11655	6400	11441	11441	4000
3MBE (+) +3M LE	6000	15526	15526	6100	3250	225	8604	8604	12168	6400	11804	11604	4000
MBE (+) -3M LE	3000	14074	14074	6100	3250	225	7678	7878	11141	6400	11078	1 1078	4000
OMBE (+) -1.5M LE	4500	14800	14900	6100	3250	225	8241	6241	11655	6400	11441	11441	4000
OMBE (+) +0M LE	6000	15526	15526	6100	3250	225	8604	8604	12168	6400	11804	11804	4000
OMBE (+) +1.5M LE	7500	16252	16252	6100	3250	225	8967	8967	12681	6400	12167	12167	4000
OMBE (+) +3M LE	9000	16978	16978	÷100	3250	225	9330	9330	13194	6400	12530	12530	4000
3MBE (+) ·3M LE	6000	15526	15526	6100	3250	225	8604	8604	12168	54 00	11804	11804	4000
-3MBE (+) -1.5M LE	7500	16252	18252	6100	3250	225	8967	8967	12681	6400	12167	12167	4000
3MBE (+) +0M LE	9000	16978	16978	6100	3250	225	9330	9330	13194	6400	12530	12530	4000
3MBE (+) +1.5M LE	10500	17704	17704	6100	3250	225	9693	9693	13708	6400	12893	12893	4000
-3MBE (+) +3M LE	12000	18430	18430	6100	3250	225	10056	10056	14221	6400	13256		
6MBE (+) -3M LE	9000	16978	16978	5100	3250	225	9330	9330	13194	6400		13256	4000
6MBE (+) -1.5M LE	10500	17704	17704	6100	3250	225	9693	9693	13708	6400	12530	12530	4000
6MBE (+) +0M LE	12000	18430	18430	6100	3250	225	10056	10056	14221		12893	12893	4000
6MBE (+) +1.5M LE	13500	19156	19156	6100	3250	225	10419	10419	14734	6400	13256	13256	4000
6MBE (+) +3M LE	15000	19882	19882	6100	3250	225	10782	10782	15248	6400 6400	13619 13962	13619 13982	4000
LONGITUDINAL FACE	pit ¢	в	*	В	pit B	Working Point A	A2 F2		I. I. SEC X-X	Working Point A	GL		
<u>+</u>	K	+				-		Limit Bearin	ng Capacity		12500	Kg/Sqm	
	pit D	x	Į		pit A	<u> </u>		Weight of s	ail (Dry port	ion)	1440	Kg/cum	
	Y		Y		Y			Weight of a	oil (Wet por	tion)	940	Kg/cum	
	1	At	1	A1	1	2		Angle of Rep	xase (Dry por	Non)	30	Deg	
	1	F1	1	Ft	1			Angle of Rep		(ion)	15	Deg	
								Water Tabl	e		0.75M	Below GL	


VERTICAL SLOPE						
TAN B = 0.241965602						
2 ТАН В -	0.483931204					
FACE =	1.028857304					
DEV =	1.05692701					
	IN FACE SLOPE					
TAN B =	0.235178971					
SEC B =	SEC B = 1.027282409					

NOTES:

REV NO	DATE		DESCRIPTIO
		400KV D/C XELDAM-NA	
CL	IENT	STERLITE POV	VER GRID VE
DES	GNER:	STERLITE POV	VER GRID VE
DRWN	RT	13-08-18	FOU
СНКД	AM	13-08-18	100
APPD	DL	13-08-18	PAR
DATE	13-08-18	DRAWING NO.	GTTPL/400
	CL DESI DRWN CHKD APPD	PROJECT CLIENT DESIGNER: DRWN RT CHKD AM APPD DL	PROJECT 400KV D/C XE CLIENT STERLITE POV DESIGNER: STERLITE POV DRWN RT 13-08-18 CHKD AM APED DL

PROVII AND UT INTIMA 2. FOUND 3. DIMENS CHECKI	DED IN THE TE NDERSTOOD. 1 ATED TO ENGI ATION SHALL SIONS OF BACI ED WITH FOU?	ECHNICAL IF ANY ER INEERING BE EXECT K TO BAC NDATION	NOTES ANI ROR OR CH TEAM FOR (UTED IN THI K OF STUB / DRAWINGS	> FOUNDATION ANGES ARE OF CORRECTIVE A E PRESENCE OF AT CONCRETE 1 PTT DIMENSION	E RELEVENT INFORMATION CRAWINGS SHALL BE READ SERVED, SAME SHALL BE CTION. SITE ENGINEER ONLY. LEVEL SHALL BE READ N TABLE FURNISED IN THE FOUNDATION PIT MARKING.			
TAN B = 2 TAN B - FACE = DEV =	VERTICAL SLOPE 0.241965 0.483931 1.028857 1.056927 IN FACE SLOPE 0.235173 1.027262	5602 1204 7304 701 1971			STERLITE POWER GRID VEN RELEASED FOR CONSTRUCT CONTROLLED CCPY Approved Vide Ref. Letter No.S AUGUAT 23 Date Engineering Deptt. The above does not relieve the office ontractual obligations		1.18	-PL]
2. ALL DIM 3. CONCRE 4. REINFOR TO IS 113 5. STUB SE 6. W(IENEN SAME IS 7. FOR FOU 8. CLEAR C 9. STUB SE LOCATIO	TTE MIX USED RCEMENT ARE 9/1786(Grade R 2LOW GROUNI VER NECESSAI TO BE ADJUS JNDATION DE: XOVER TO RELL TTENG/PROP S DN OF TOWER	EIN MM UP M20,LEAN HIGH STI E HIGH STI E + 500N/mi D LEVEL = RY TO CLE TED AT ST SIGN REFE NFORCEM NFORCEM	N CONCRETT RENGTH DE m ²) EAR STUB C TE. ER DESIGN I IENT IS SOMI EMPLATE H	FORMED BARS 3800 LEAT FROM BA DOCUMENTS, M AS TO BE USEE	CONFIRMING mm NRS & STIRRUPS			
	_	REV NO	DATE	400KV D/C	DESCRIPTION	DRAWN	CHKD	APPD
		CLIE	ENT	STERLITE P	VOWER GRID VENTURES LIMITED			
ERVIED. antel la aryfoens an ef die ermar. dên geeshal be beld oomenik.			RT AM DL 13-08-18	13-08-18 13-08-18 13-08-18 DRAWING NO.	FOUNDATION DRAWING FOI DD-3/+0/+3/+6M 400KV I PARTIALLY SUBMERGED SOI GTTPL/4000CWZ-1/DD/F-003	≫C (₩Z-I)		0
						STRUCT INC.	MAL NOV	L Č

BL	B2	HI	H2	Hcf	Hb	
5980	2000	400	300	300	3250	

OF BARS R FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
(no)	(mm)	(kg/m)	(kg)	(kg)
60	6480	180 2.46 958.41		3833.65
62	6687	1.58	654.10	2616.39
18	3120	1.58	88.62	354.50
4	4503	6.31	113.66	454.65
8	4503	6.31	227.32	909.29
13	2592	0.39	13.29	53.18
13	2123	0.39	10.89	43.57
	TOTAL RE	INFORCEME	NT/ TOWER=	8265.2

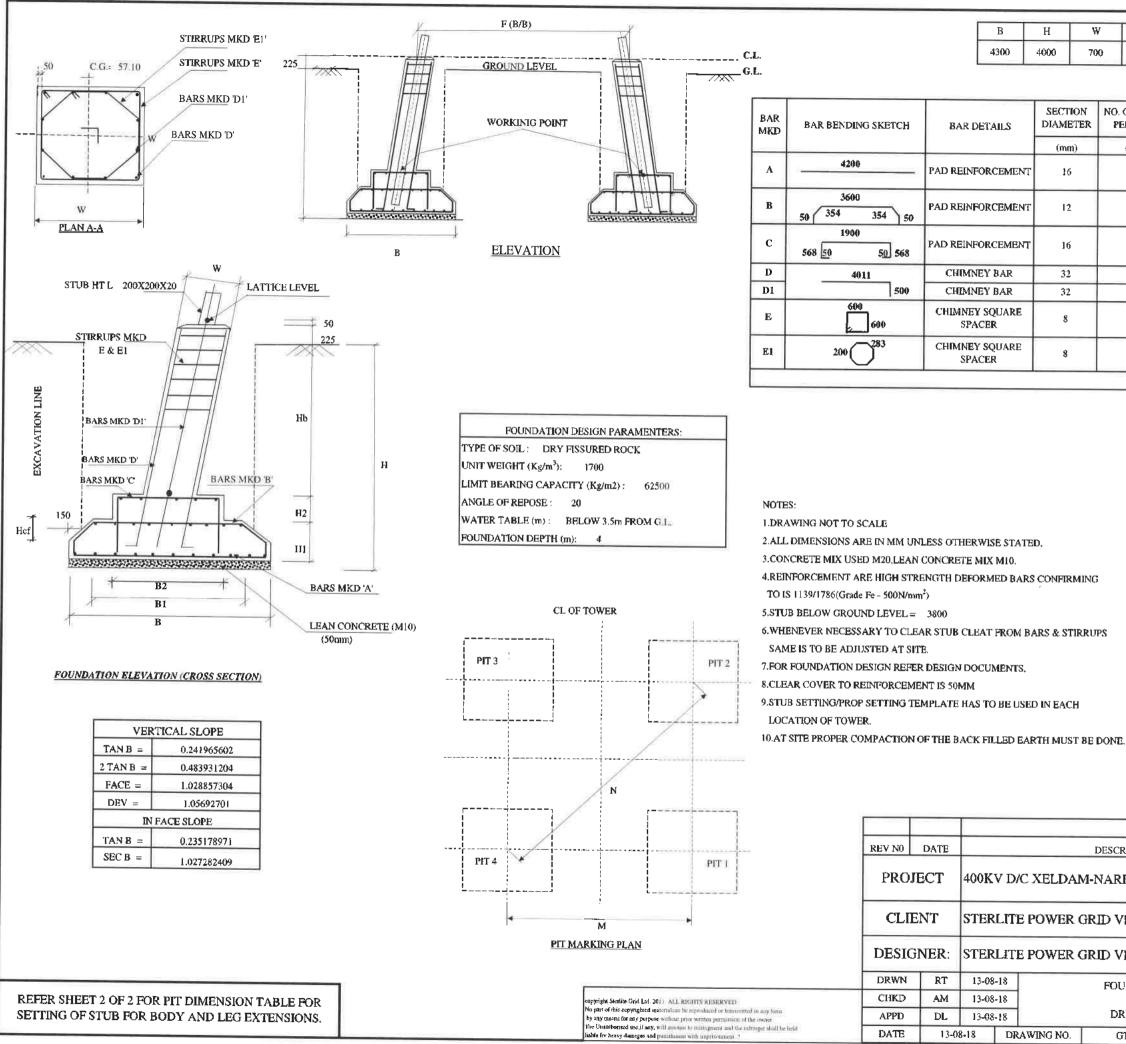
QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	76.29
CONCRETE (M10) m ³	8.66
TOTAL CONCRETE m ³	84.95
EXCAVATION m3	757.35
REINFORCEMENT Kg	8265.2

STERUTE POWER GRID VE RELEASED FOR CONSTRUCT CONTROLLED CC.PY Approved Vide Ref. Letter No EHGGT L-OST 123 Da Engineering Depti the above does not letter the option contractual obligations	sf lave	-6	57	-pLy
UPTION	DRAWN	СНК	D A	PPD
ENDRA TRANSMISSION L	TD			
ENTURES LIMITED				
ENTURES LIMITED				
NDATION DRAWING FOR TOW DD-3/+0/+3/+6M 400KV D/C (W JLLY SUBMERGED SOIL (4.0M I	Z-1)			
TTPL/400DC/WZ-1/DD/F-004	SHEET NO.	1/2	REV	0

GOA					N (WZ-1) Pit dime				- 15 (4.0	M DEPTH)		Client: SPGVL	
400 KV D/C-X-M & X	N- TT "DD"	F - B/B of To 3MBE(+)-3M		* F * B/B of 1 3MBE(+)-3		Stub Sec	stion (HT)	Lattice Level to CL	¢g	sec B1	2*Tan B1	sec B2	2°Tan B
		1271	3	127	713	200)(2	00X20	50	57.1	1.028857	0.483931204	1.028857	0.48393
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	eg-eg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L,	A1	A2	в	E	F1	F2	н
-3MBE (+) -3M LE	0	12623	12623	6580	3250	225	7152	7152	10115	6880	10592	10592	4000
-3MBE (+) -1.5M LE	1500	13349	13349	6580	3250	225	7515	7515	10628	6880	10955	10955	4000
-3MBE (+) +0M LE	3000	14074	14074	6580	3250	225	7878	7878	11141	6960	11318	11318	4000
-3MBE (+) +1.5M LE	4500	14800	14800	6580	3250	225	8241	8241	11665	6880	11681	1 1681	4000
-3MBE (+) +3M LE	6000	15526	15526	6580	3250	225	8604	8604	12168	6880	12044	12044	4000
+0MBE (+) -3M LE	3000	14074	14074	6580	3250	225	7878	7878	11141	6880	11318	11318	4000
+0MBE (+) -1.5M LE	4500	14800	14800	6580	3250	225	8241	8241	11655	6880	11681	11681	4000
+0MBE (+) +0M LE	6000	15526	15526	6580	3250	225	8604	8604	12168	6880	12044	12044	4000
+OMBE (+) +1.5M LE	7500	16252	16252	6580	3250	225	8967	8967	12681	6880	12407	12044	4000
+OMBE (+) +3M LE	9000	16978	16978	6580	3250	225	9330	9330	13194	6880	12770	12770	-
+3M8E (+) -3M LE	6000	15526	15526	6580	3250	225	8604	8604	12168	6880			4000
+3MBE (+) -1.5M LE	7500	16252	16252	6580	3250	225	8967	8967	12681		12044	12044	4000
+3MBE (+) +0M LE	9000	16978	16978	6580	3250	225	9330	9330		6880	12407	12407	4000
+3MBE (+) +1.5M LE	10500	17704	17704	6580	3250	225	9693		13194	6880	12770	12770	4000
+3MBE (+) +3M LE	12000	18430	18430	6580	3250	225		9693	13708	6880	13133	13133	4000
+6MBE (+) -3M LE	9000	16978	16978	6580	3250		10056	10056	14221	6880	13496	13495	4000
+6MBE (+) -1.5M LE	10500	17704	17704	6580		225	9330	9330	13194	6880	12770	12770	4000
+6MBE (+) +0M LE	12000	18430			3250	225	9693	9693	13708	6880	13133	13133	4000
+6MBE (+) +1.5M LE	13500	1	18430	6580	3250	225	10056	10056	14221	6880	13496	13496	4000
+6MBE (+) +3M LE	15000	19156 19882	19156 19882	6580 6580	3250 3250	225 225	10419	10419	14734 15248	6880	13859	13859	4000
LONGTUDMAL FACE	ри с	в	×	В		Working Point A	A2 F2		I I I E SEC X-X	Working Paint A	CL G.L.		
<u>+</u>	ph D	A1 Ft	1	A1 F1	pit A		-	Weight of a Weight of s Angle of Rep	ng Capacity coll (Dry porti coll (Wet port cose (Dry port cose (Wet port e	ion) ion)	1440 940 30 15	Kg/Sqm Kg/cum Kg/cum Deg Deg Below GL	

VE	RTICAL SLOPE
TAN B =	0.241965802
2 TAN B -	0.483931204
FACE -	1.028857304
DEV =	1.05692701
IN	FACE SLOPE
TAN B 🖃	0.235178971
SEC B =	1.027282409

10



NOTES:

No period that co by any moves (The Clanarhorised as isotic de

		-		
	REV NO	DATE		DESCRIPTIO
	1001 110	DATE		DESCRIPTIC
	PRO	JECT	400KV D/C XE	LDAM-NARI
	СЦ	ENT	STERLITE POV	VER GRID VI
	DESI	GNER:	STERLITE POV	VER GRID VI
	DRWN	RT	13-08-18	FO
ine Origi 7.44 (2011) A.C. REGUES RESERVED. Jund usseriation for neurolatori of visconistal in any form	СНКД	AM	13-08-18	
p payings without grows twisten permutation of the states by, will accelent to balangement and the infra-ger shall be bala	APPD	DL	13-08-18	F
by damages and produces we wells unprison to an	DATE	13-08-18	DRAWING NO.	GTTPL/400

				IE RELEVENT INFORMATION N DRAWINGS SHALL BE READ			
AND UNDERSTOR	OD, IF ANY E	RROR OR CH	IANGES ARE O	BSERVED, SAME SHALL BE			
INTIMATED TO E				ACTION. F SITE ENGINEER ONLY.			
				LEVEL SHALL BE READ			
CHECKED WITH F	OUNDATION	DRAWINGS	PIT DIMENSIO	N TABLE FURNISED IN THE			
SHEET 2 OF 2 OF 1	THIS DRAWD	IGS BEFORE	START OF THE	FOUNDATION PIT MARKING.			
	1965802			STERLITE POWER GRID	ENTURE	SLTD.	
	3931204	4		STERLITE POWER GRID V RELEASED FOR CONSTR		will	DITPL
	8857304	4		STERLITE FOR CONSTR RELEASED FOR CONSTR CONTROLLED COPY Approved Vide Ref. Letter M CHGG/LOT/23 Engineering Deptt.	NO.S.K.R	1	
IN FACE SLO		1		PUGG/LBT/23	Date:	108/	B
TAN B - 0.23	5178971	1		Engineering Deptt.	Constant	trom their	
SEC B = 1.02	7282409	1		I I - Thoug does not token and	W		
NOTES:		1		contractual obligations			
1.DRAWING NOT TO	SCALE						
2.ALL DIMENSIONS /				D			
3.CONCRETE MIX US							
4.REINFORCEMENT , TO IS 1139/1786(Grad			FORMED BARS	CONFIRMING			
5.STUB BELOW GRO		·	3800	mm			
6.WHENEVER NECES							
SAME IS TO BE AD							
7.FOR FOUNDATION	DESIGN REF	ER DESIGN I	DOCUMENTS.				
8.CLEAR COVER TO	REINFORCEN	AENT IS 50M	М				
9.STUB SETTING/PRO		TEMPLATE H	AS TO BE USEL	DIN EACH			
LOCATION OF TOW		∮ OF THE BA	CK FILLED EAF	RTH MUST BE DONE.			
	REV NO	DATE		DESCRIPTION	DRAWN	CHKD	APPD
	PRO	JECT	400KV D/C	XELDAM-NARENDRA TRANSMISSI	ON LTD		
	CLI	ENT	STERLITE P	OWER GRID VENTURES LIMITED			
		GNER:		OWER GRID VENTURES LIMITED			
ERVED.	DRWN	RT AM	13-08-18	FOUNDATION DRAWING FOR		YPE,	
nalital in app (arr) an al the same	APPD	AM DL	13-08-18	DD-3/+0/+3/+6M 400KV I FULLY SUBMERGED SOLL (0	
ufrikger sholl he kelid Darbean	DATE		DRAWING NO.	GTTPL/400DC/WZ-L/DD/F-064	SHEET NO.	2/2 RBV	0

BI	B2	H1	H2	Hef	Hb
3700	2000	400	300	300	3250

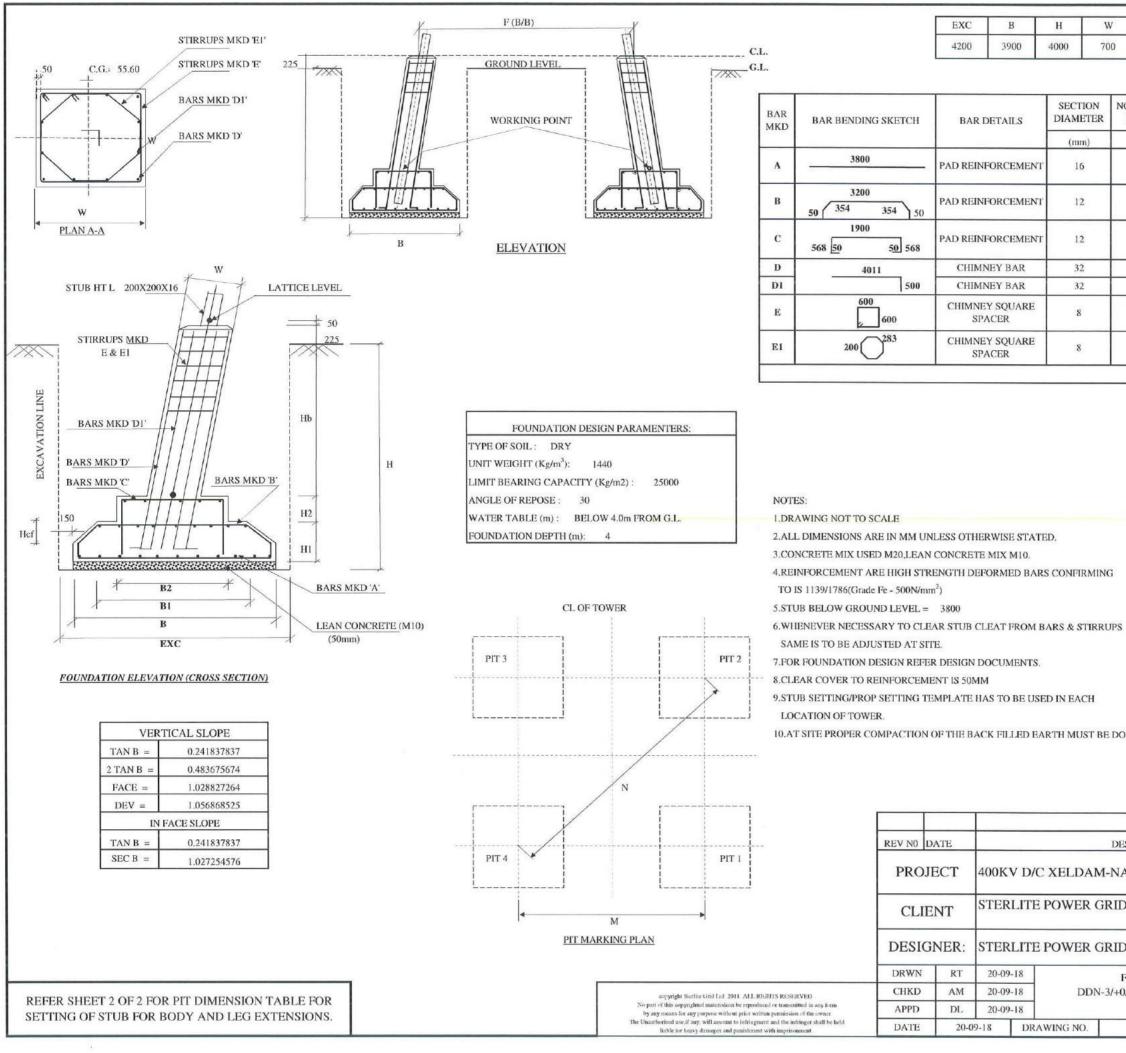
OF BARS ER FDN	LENGTH	LENGTH UNIT WEIGHT WEIGHT PER LEG		WEIGHT PER TOWER
(no)	(mm)	('kg/m)	(kg)	(kg)
54	4200	1.58	357.85	1431.38
40	4407	0.89	156.48	625.91
16	3136	1.58	79.18	316.74
4	4511	6.31	113.86	455.46
8	4511	6.31	227.72	910.90
14	2592	0 39	14.31	57.27
14	2123	0.39	11.72	46.90
	TOTAL RE	INFORCEMEN	T/ TOWER=	3844.6

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	38.24
CONCRETE (M10) m ³	3.7
TOTAL CONCRETE m ³	41.94
EXCAVATION m3	258.24
REINFORCEMENT Kg	3844.6

STERLITE POWER GRID VEN RELEASED FOR CONSTRUC ONTROLLED CC.?Y Approved Vide Ref. Letter No FHGG LGT 2.3 Da Engineering Deptt. the above does not release the or contractual obligations	SF 01)	814	77FL	-1
SCRIPTION	DRAWN	CHKD	APPD	
ARENDRA TRANSMISSION LT	D			
O VENTURES LIMITED				
VENTURES LIMITED				
FOUNDATION DRAWING FOR TOWE	R TYPE			
DD-3/+0/+3/+6M 400KV D/C (WZ-	/			
DRY FISSURED ROCK SOIL (4.0M DI	EPTH)			

GTTPL/400DC/WZ-1/DD/F-005 SHEET NO. 1/2 REV 0

					PIT DIME	ENSION	TABLE		urn (4.	OM DEPTH)		Client: SPGVL	
400 KV D/C-X-M & X	-N- TT "DD"	* F * B/B of To 3MBE(+)-3f	ALE (TF)		3MLE (LF)		ction (HT)	Latlice Level to CL	¢g	sec B1	2"Tan B1	sec B2	2*Tan I
	Text	1271	1	127	713	20000	200X20	50	57.1	1.028857	0.483931204	1.028857	0.4839
Tower Detail	Exin from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pl	G.L. TO C.L.	A1	A2	в	E	F1	F2	н
SMBE (+) -3M LE	0	12623	12623	4300	3250	225	7152	7152	10115	4300	9302	9302	4900
3MBE (+) -1.5M LE	1500	13349	13349	4300	3250	225	7515	7515	10628	4300	9665	9665	4000
SMBE (+) +OM LE	3000	14074	14074	4300	3250	225	7678	7876	11141	4300	10028	10028	400
3MBE (+) +1.5M LE	4500	14800	14800	4300	3250	225	8241	8241	11655	4300	10391	10391	400
3MBE (+) +3M LE	6000	15526	15526	4300	3250	225	8604	8604	12168	4300	10754	10754	400
OMBE (+) -3M LE	3000	14074	14074	4300	3250	225	7878	7878	11141	4300	10028	10028	4000
OMBE (+) -1.5M LE	4500	14800	14800	4300	3250	225	8241	8241	11655	4300	10391	10391	4000
OMBE (+) +OM LE	6000	15528	15526	4300	3250	225	8604	8604	12168	4300	10754	10754	4000
OMBE (+) +1.5M LE	7500	16252	16252	4300	3250	225	6967	8967	12681	4300	11117	11117	4000
MBE (+) +3M LE	9000	16978	16978	4300	3250	225	9330	9330	13194	4300			
3MBE (+) -3M LE	6000	15526	15526	4300	3250	225	8604	8604	12168	4300	11480	11480	4000
3MBE (+) -1.5M LE	7500	16252	16252	4300	3250	225	8967	8967	12681		10754	10754	4000
3MBE (+) +0M LE	9000	16978	16978	4300	3250	225	9330	9330		4300		11117	4000
3MBE (+) +1.5M LE	10500	17704	17704	4300	3250	225	9693		13194	4300	11480	11480	4000
SMBIE (+) +3M LE	12000	18430	18430	4300	3250	225		9693	13708	4300	11843	11843	4000
SMBE (+) -3M LE	9000	16978	16978	4300	3250		10056	10056	14221	4300	12206	12206	4000
6MIBE (+) -1.5M LE	10500	17704	17704	4300	3250	225	9330	9330	13194	4300	11480	11460	4000
SMBE (+) +OM LE	12000	18430	18430	4300		225	9693	9693	13708	4300	11843	11843	4000
SMBE (+) +1.5M LE	13500	19156			3250	225	10056	10056	14221	4300	12206	12206	4000
SMBE (+) +3M LE	15000	19196	19156 19882	4300	3250 3250	225	10419	10419	14734	4300	12569	12569	4000
LONGITUDINAL PADE	pit C	в	*	6		Working Point A	A2 F2		EC X-X	Worlding Point A			
		t				4		Limit Bearin			62500	(g/Sqm	
		x					IN	Weight of se	oil (Ory porti-	(nc	1700 1	(g/cum	
	pit D	X			pit A							1	
	pit D			A1			ŀ	Weight of sa	ail (Wet port	•	940 I	(g/cum	
	pit D	At	1	A1			1	Weight of so Angle of Rep	ose (Dry porti	nn}	940 I 20 (Deg	
	pit D		1	A1 F1			1	Weight of so Angle of Rep	ose (Dry porti ose (Wet port	nn}	940 I 20 (10 (


VER	TICAL SLOPE
TAN B =	0.241965602
ZTAN B =	0.483931204
FACE =	1.028857304
DEV =	1.05692701
IN	FACE SLOPE
TAN B =	0.235178971
SEC B +	1.027262409

NOTES:

	_			
	DATE	REV NO		
400KV D/C XI				
STERLITE PO	CLIENT STERLITE			
STERLITE PO	VER:	DESIC		
13-08-18	RT	DRWN		
13-08-18	AM.	Снкр	rins Grief Ltd. 2011. ALL, ROOD'S RESIGNED greet managements for payrological or measurated or any form	
13-08-18	DL	APPD	prover internet watches bet payred you of internet and any payr for a by payry one without pajor whether permanant of the you'ver any, will a more any to maintage acts and the uniformate that he hadd	
DRAWING NO.	13-08-18	DATE	ny density and putation with inpreviancer .	
	13-08-18 13-08-18	ENT STERLITE PO' SNER: STERLITE PO' RT 13-08-18 AM 13-08-18 DL 13-08-18	PROJECT 400KV D/C XE CLIENT STERLITE PO DESIGNER: STERLITE PO DRWN RT 13-08-18 CHKD AM 13-08-18 APPD DL 13-08-18	

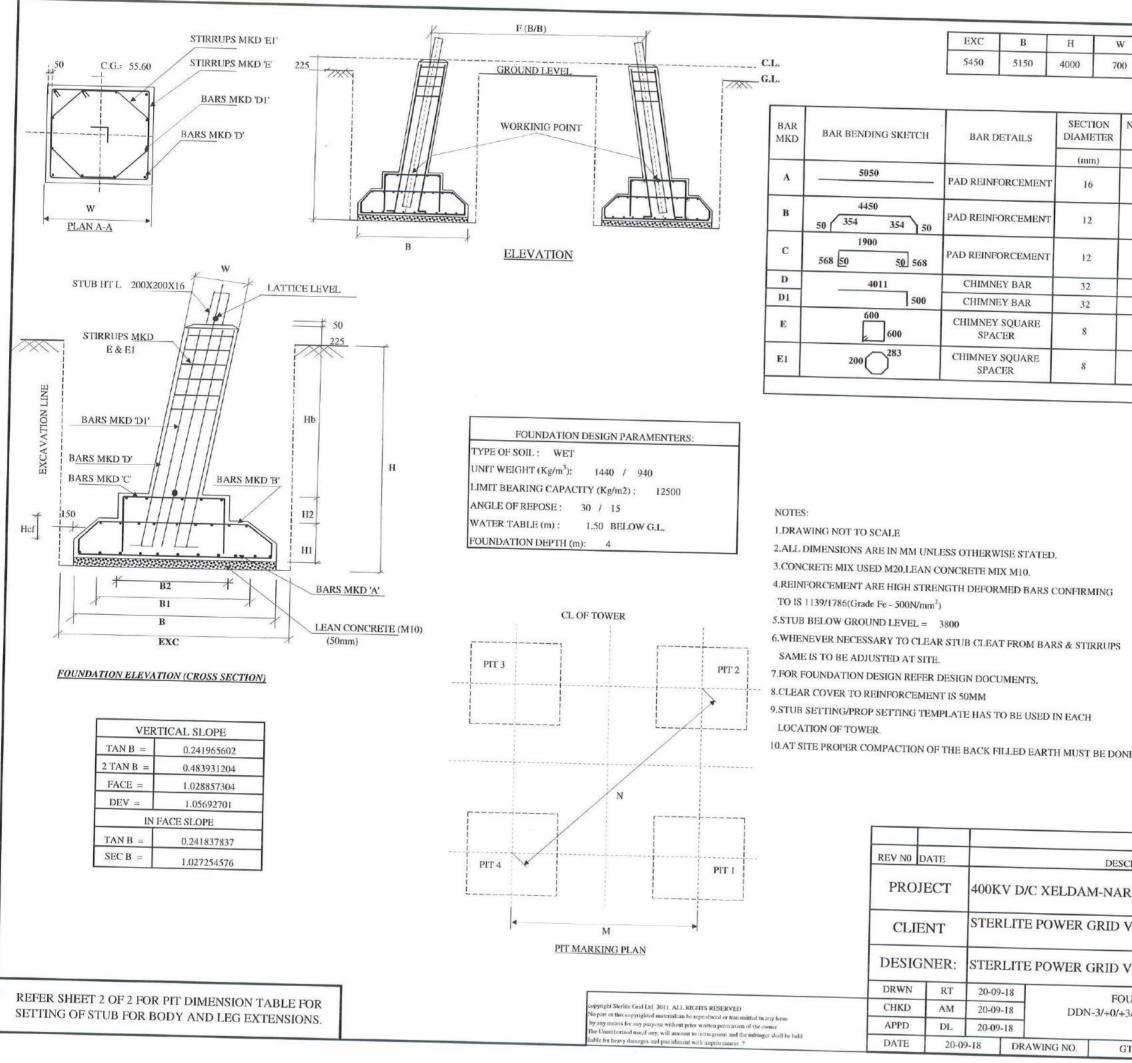
				HE RELEVENT INFORMATION			
	DD. IF ANY (ERROR OR C	HANGES ARE O	N DRAWINGS SHALL BE READ BSERVED, SAME SHALL BE ACTION.			
				F SITE ENGINEER ONLY.			
				LEVEL SHALL BE READ			
				ON TABLE FURNISED IN THE			
311661 2 OF 2 OF 1	IIIS DKAWI	NGS BEFORI	START OF TH	E FOUNDATION PIT MARKING.			
	OPE 1965602 3931204			STERLITE POWER GRID VE RELEASED FOR CONSTRU	NTURES	LTD.	TTPL
	8857304	-				1-7-1	
DEV 1,05	692701	1					2
IN FACE SLO	PE	1		Engineering Deptt. the above does not relieve the source on tractural obligations	Shar	rom their	
TAN B = 0.235	5178971	1		Engineering Dept.	and actor u	form who	
SEC 8 = 1.027	7282409	1		the above does need to contractual obligations			
NOTES: 1.DRAWING NOT TO 2.ALL DIMENSIONS A 3.CONCRETE MIX US 4.REINFORCEMENT A TO IS 1139/1786(Grad 5.STUB BELOW GROU 6.WHENEVER NECES: SAME IS TO BE ADJ 7.FOR FOUNDATION D 8.CLEAR COVER TO B 9.STUB SETTINC/PROLOCATION OF TOW 10.AT SITE PROPER CO	ARE IN MM U IED M20, LEA ARE HIGH ST le Fe - 500N/I UND LEVEL SARY TO CI USTED AT S DESIGN REF REINFORCE/ PP SETTING 1 ER.	IN CONCRET TRENGTH DI nun ²) = LEAR STUB (STTE. FER DESIGN MENT IS 50M TEMPLATE H	IE MIX M10. EFORMED BARS 3800 CLEAT FROM B/ DOCUMENTS. IM HAS TO BE USED	S CONFIRMING I mm ARS & STIRRUPS D IN EACH			
	REV NO	DATE		DESCRIPTION	DRAWN	CHKD	APPD
	PRO	JECT	400KV D/C	XELDAM-NARENDRA TRANSMISSI	ON LTD		
		ENT		OWER GRID VENTURES LIMITED			
	DESI	GNER:	STERLITE P	OWER GRID VENTURES LIMITED			
	DRWN	RT	13-08-18	FOUNDATION DRAWING FO		YPE	
atied og progefor pr	CHKD APPD	AM DL	13-08-18	DD-3/+0/+3/+6M 400KV I DRY FISSURED ROCK SOIL	D/C (WZ-1)		
fruger faal tee held	DATE	13-08-18	DRAWING NO.	GTTPL/460DC/W2-1/DD/F-00/3	SHBET NO.	2/2 REV	U D
					SHOEL NV.	DA REV	L V

	BI	B2	H1	Н	12	Hef	Hb
3300		2000	400	30	00 300		3250
NO. OF BARS PER FDN		LENGTH	UNIT WEIGHT			IGHT R LEG	WEIGHT PER TOWER
	(no)	(mm)	('kg/r	n)	(kg)	(kg)
	42	3800	1.58	3	251.83		1007.34
	28 4007		0.85)	99.61		398.45
	28 3136		0.89		77.95		311,79
	4	4511	6.31		113.86		455.46
	8 4511		6.31		227.72		910.90
	14 2592		0.39		14.31		57.27
14		2123	0.39	,	1	1.72	46.92
		TOTAL R	EINFORC	EME	NT/ TO	OWER=	3188.1

QUANTITIES/ STRUCTURE					
CONCRETE (M20) m ³	33.28				
CONCRETE (M10) m ³	3.04				
TOTAL CONCRETE m ³	36.32				
EXCAVATION m3	282.24				
REINFORCEMENT Kg	3188.1				

Letter No. SP.6 26 Date: 20 It. Contractor	109/18	
DRAWN	CHKD	APPD
ON LTD		
GLE) 400KV D/C	(WZ-1)	
SHEET NO.	1/2 RE	V 0
	DRAWN ON LTD	DRAWN CHKD ON LTD

												SPGVL	
400 KV D/C -X-N-	TT "DDN"	" F * B/B of To 3MBE(+)-3/	MLE (TF)	" F * B/B of 1 3MBE(+)-:	BMLE (LF)	Stub Se	ction (HT)	Lattice Level to CL	cg	sec B1	2"Tan B1	sec B2	2*Tan Bź
		1271	10	123	10	200X	200X16	50	55.6	1.028827	0.483675674	1.028827	0.483675
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	cg-cg đim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	в	E	F1	F2	н
-3MBE (+) -3M LE	0	12623	12623	3900	3250	225	7152	7152	10114	4200	9252	0050	1000
3MBE (+) -1.5M LE	1500	13348	13348	3900	3250	225	7515	7515	10627	4200	9615	9252 9615	4000
3MBE (+) +0M LE	3000	14074	14074	3900	3250	225	7877	7877	11140	4200	9977	9977	4000
3MBE (+) +1.5M LE	4500	14800	14800	3900	3250	225	8240	8240	11653	4200	10340	10340	4000
3MBE (+) +3M LE	6000	15525	15525	3900	3250	225	8603	8603	12166	4200	10703		
OMBE (+) -3M LE	3000	14074	14074	3900	3250	225	7877	7877	11140	4200	9977	10703	4000
0MBE (+) -1.5M LE	4500	14800	14800	3900	3250	225	8240	8240	11653	4200	10340	9977	4000
0MBE (+) +0M LE	6000	15525	15525	3900	3250	225	8603	8603	12166	4200	10703	10340	4000
OMBE (+) +1.5M LE	7500	16251	16251	3900	3250	225	8966	8966	12679	4200		10703	4000
OMBE (+) +3M LE	9000	16976	16976	3900	3250	225	9328	9328	13192	4200	11066	11066	4000
3MBE (+) -3M LE	6000	15525	15525	3900	3250	225	8603	8603	12166		11428	11428	4000
3MBE (+) -1.5M LE	7500	16251	16251	3900	3250	225	8966	8966	12679	4200	10703	10703	4000
3MBE (+) +0M LE	9000	16976	16976	3900	3250	225	9328	9328		4200	11066	11066	4000
3MBE (+) +1.5M LE	10500	17702	17702	3900	3250	225	9691	9691	13192	4200	11428	11428	4000
	12000	18427	18427	3900	3250	225	10054	10054	13705	4200	11791	11791	4000
3MBE (+) +3M LE	14000						10054		14218	4200	12154	12154	4000
	9000	16976	16976	3900	3250	225	0220	0200	10100		Contraction of the second s		
6MBE (+) -3M LE		16976 17702	16976	3900 3900	3250	225	9328	9328	13192	4200	11428	11428	4000
6MBE (+) -3M LE 6MBE (+) -1.5M LE	9000	And the second s	17702	3900	3250	225	9691	9691	13705	4200	11791	11428 11791	4000 4000
6MBE (+) -3M LE 6MBE (+) -1.5M LE 6MBE (+) +0M LE	9000 10500	17702 18427	17702 18427	3900 3900	3250 3250	225 225	9691 10054	9691 10054	13705 14218	4200 4200			
6MBE (+) -3M LE 6MBE (+) -1.5M LE 6MBE (+) +0M LE 6MBE (+) +1.5M LE	9000 10500 12000	17702	17702	3900	3250	225	9691 10054 10417 10779	9691	13705 14218 14731 15244	4200	11791	11791	4000
6MBE (+) -3M LE 6MBE (+) -1.5M LE 6MBE (+) +0M LE 6MBE (+) +1.5M LE	9000 10500 12000 13500	17702 18427 19153	17702 18427 19153	3900 3900 3900	3250 3250 3250 3250 3250	225 225 225 225 225 225	9691 10054 10417 10779	9691 10054 10417 10779 CL of found	13705 14218 14731 15244 ation	4200 4200 4200	11791 12154 12517 12879 CL	11791 12154 12517	4000 4000 4000
SMBE (+) -3M LE SMBE (+) -1.5M LE SMBE (+) +0M LE SMBE (+) +1.5M LE SMBE (+) +3M LE SMBE (+) +3M LE	9000 10500 12000 13500 15000	17702 18427 19153 19873 В	17702 18427 19153	3900 3900 3900	3250 3250 3250 3250 3250	225 225 225 225 225 225	9691 10054 10417 10779 10779	9691 10054 10417 10779 CL of found	13705 14218 14731 15244 lation	4200 4200 4200 4200 H	11791 12154 12517 12879 CL G.L.	11791 12154 12517 12879	4000 4000 4000
6MBE (+) -3M LE 6MBE (+) -1.5M LE 5MBE (+) +0M LE 5MBE (+) +1.5M LE 5MBE (+) +3M LE 	9000 10500 12000 13500 15000	17702 18427 19153 19878	17702 18427 19153	3900 3900 3900	3250 3250 3250 3250 3250	225 225 225 225 225 225	9691 10054 10417 10779 42 F2 42 F2 42 F2	9691 10054 10417 10779 CL of found CL of found S S imit Bearing	13705 14218 14731 15244 ation 	4200 4200 4200 4200 H Working Point A	11791 12154 12517 12879 CL G.L. 3 G.L.	11791 12154 12517 12879	4000 4000 4000
SMBE (+) -3M LE SMBE (+) -1.5M LE SMBE (+) +0M LE SMBE (+) +1.5M LE SMBE (+) +3M LE SMBE (+) +3M LE	9000 10500 12000 13500 15000	17702 18427 19153 19873 В	17702 18427 19153	3900 3900 3900	3250 3250 3250 3250 3250	225 225 225 225 225 225	9691 10054 10417 10779 10779 102 F2 2 F2 2 F2	9691 10054 10417 10779 CL of found CL of found S imit Boaring Veight of so	13705 14218 14731 15244 lation 	4200 4200 4200 4200 H Working Point A	11791 12154 12517 12879 CL G.L. G.L. 25000 K 1440 K	11791 12154 12517 12879 12879	4000 4000 4000
6MBE (+) -3M LE 6MBE (+) -1.5M LE 6MBE (+) +0M LE 6MBE (+) +1.5M LE 5MBE (+) +3M LE 	9000 10500 12000 13500 15000	17702 18427 19153 19873 В	17702 18427 19153	3900 3900 3900	3250 3250 3250 3250 3250	225 225 225 225 225 225	9691 10054 10417 10779 10779	9691 10054 10417 10779 CL of found CL of found CL of found Similar Bearing Veight of so Veight of so	13705 14218 14731 15244 lation / // // // // // // // // // /	4200 4200 4200 4200 4200 4200 4200 4200	11791 12154 12517 12879 CL G.L. G.L. 25000 Kr 1440 Kr 940 Kr	11791 12154 12517 12879 12879 y/Sqm y/Sqm y/cum	4000 4000 4000
	9000 10500 12000 13500 15000	17702 18427 19153 19873 В В х	17702 18427 19153	3900 3900 3900 3900	3250 3250 3250 3250 3250	225 225 225 225 225 225	9691 10054 10417 10779 10779	9691 10054 10417 10779 CL of found CL of found CL of found Similar Bearing Veight of so Veight of so veight of so	13705 14218 14731 15244 lation / // /// /// /// /// /// /// //	4200 4200 4200 4200 4200 4200 4200 4200	11791 12154 12517 12879 CL G.L. G.L. 25000 Ki 1440 Ki 940 Ki 30 Di	11791 12154 12517 12879 12879 12879	4000 4000 4000
6MBE (+) -3M LE 6MBE (+) -1.5M LE 6MBE (+) +0M LE 6MBE (+) +1.5M LE 5MBE (+) +3M LE 	9000 10500 12000 13500 15000	17702 18427 19153 19873 B B X	17702 18427 19153	3900 3900 3900 3900 8 8	3250 3250 3250 3250 3250	225 225 225 225 225 225	9691 10054 10417 10779 10779 10779	9691 10054 10417 10779 CL of found CL of found CL of found Similar Bearing Veight of so Veight of so veight of so	13705 14218 14731 15244 ation	4200 4200 4200 4200 4200 4200 4200 4200	11791 12154 12517 12879 CL G.L. G.L. 25000 Ki 1440 Ki 940 Ki 30 Di 15 Di	11791 12154 12517 12879 12879 12879	4000 4000 4000


VEB	TICAL SLOPE
TAN B =	0.241837837
2 TAN B =	0.483675674
FACE =	1.028827264
DEV =	1.056868525
IN	FACE SLOPE
TAN B =	0.241837837
SEC B =	1.027254576

F	TERLI ELEAS ONTR opprove
E	nginee ne above ontractu

NJ	വ	TES	
0	01	TW	

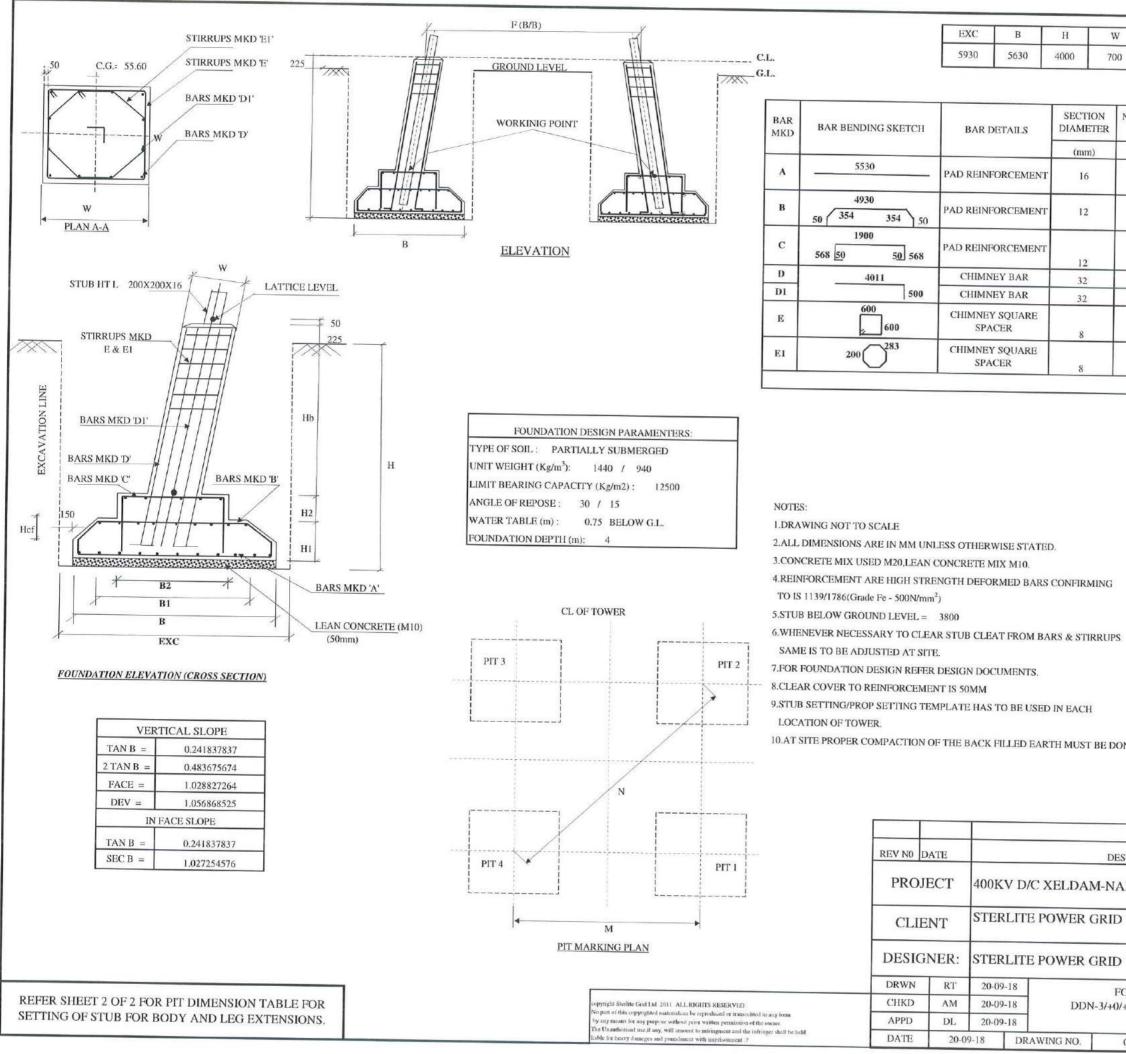
			1	
	REV NO	DATE		DESCRIPTI
	PROJECT		400KV D/C XELDAM-NA	
			STERLITE POWER GRID	
	DESI	GNER:	STERLITE PO	WER GRID VI
	DRWN	RT	20-09-18	
orpingle Studies Gell Lil. 2011. AUCHES RESERVED No periol due oppygheet materials in bereproduced or manimum in y fam- by up manafer any pagoos without prior netrics permanes of the sister The Chardwood studies any ad anomic to administer and the schard and the held	CHKD	AM	20-09-18	FO DDN-3/+0/+
	APPD	DL	20-09-18	
Like for heavy decarges and purnitment with a paintenent	DATE	20-09-18	DRAWING NO.	GTTPL/400

NOTE:									
1. BEFO	RE START	OF THE FOU	INDATION	ACTIVITY, ALL	THE RELEVENT INFORMATION				
					TON DRAWINGS SHALL BE READ				
AND	UNDERSTO	DOD. IF ANY	ERROR OR	CHANGES ARE	OBSERVED, SAME SHALL BE				
INTIM	MATED TO	ENGINEERIN	NG TEAM FO	OR CORRECTIVI	E ACTION.				
					OF SITE ENGINEER ONLY.				
					TE LEVEL SHALL BE READ				
					SION TABLE FURNISED IN THE				
SHEET	1 2 OF 2 OF	THIS DRAW	INGS BEFO	RE START OF TH	HE FOUNDATION PIT MARKING.				
	MONTHONI O		7						
TAN B =	VERTICAL S		-						
2 TAN B =	-	41837837 83675674	-						
FACE =	1	28827264	-		STERLITE POWER GRID VENTU		3		
DEV =	-	56868525	-		RELEASED FOR CONSTRUCTION	M	d d	10	1
	IN FACE SLO		-		Approved Vide Ref. Letter No. SPC	NULL	511	PL	1
TAN B =	1	11837837	-		FRICCH &T126 Date: 2	2/09/	10		
SEC B =		27254576	-		Engineering Deptt.		14		
		in Londing			the above does not relieve the contract	ir from the	ir.		
NOTES:					contractual obligations				
	NG NOT TO	SCALE							
			UNI ESS OT	HERWISE STATI					
				HERWISE STATI	ED.				
					RS CONFIRMING				
		de Fe - 500N/1		ILFORMED DAK	3 CONFIRMING				
		UND LEVEL		380	10 mm				
					BARS & STIRRUPS				
		JUSTED AT S			nko Gorikkura				
FOR FOU	INDATION	DESIGN REI	ER DESIGN	DOCUMENTS.					
		REINFORCE							
STUB SE	TTING/PRO	P SETTING	TEMPLATE	HAS TO BE USE	D IN EACH				
LOCATIO	ON OF TOW	/ER.							
0 AT SITE	PROPER C	OMPACTION	OF THE B	ACK FILLED EA	RTH MUST BE DONE.				
				Т		T			
		REV N0	DATE		DESCRIPTION	DRAWN	СН	KD	APPD
		PPO	IROT	100VV D/G			1		nu c
		FRO.	JECT	400KV D/C	XELDAM-NARENDRA TRANSMISSI	ON LTD			
								_	
		CLI	ENT	STERLITE F	POWER GRID VENTURES LIMITED				
		DESIG	INFR.	CTEDI ITE I				_	
	ł	-	INER.	STERLITEP	POWER GRID VENTURES LIMITED				
TED .		DRWN	RT	20-09-18	FOUNDATION DRAWING FOR	TOWER T	YPE		
d ne my fana. E the owner	ŀ	CHKD APPD	AM	20-09-18	DDN-3/+0/+3/+6M (30-45 DEG. DEV. AN DRY SOIL (4.0M DE	GLE) 400K	V D/C	WZ-I)
per chall be held cut	- F	DATE	20-09-18	DRAWING NO.	OTTING LINES &		-		
					GTTPD400DC/w2-1/DDN/t-001	SHEET NO.	2/2	REV	0

V	B 1	B2	HI	H	2	Hcf	Hb
00	4550	2000	400	30	0	300	3250
—			-				
	OF BARS ER FDN	LENGTH	UNIT WEIGI		WEI PER	GHT LEG	WEIGHT PER TOWER
	(no)	(mm)	('kg/m	1)	(k	g)	(kg)
	58	5050	1.58		462	.12	1848.48
	54	5257	0.89		251	.96	1007.83
	28	3136	0.89		77.9	95	311.79
	4	4511	6.31	+	113.	86	455.46
	8	4511	6.31		227.	72	910.90
	14	2592	0.39		14.3	1	57.27
	14	2123	0.39		11.7	2	46.92
		TOTAL RE	INFORCE	MENT	/ TOW	ER=	4638.6
		Q	UANTITI	ES/ST	RUC	TURE	
			ETE (M20			50	.48
			ETE (M10			5.	.3
		TOTAL C				55.	.78
			VATION 1		-	475	.24
		REINFO	D CITE AND				9.0

E.	STERLITE POWER RELEASED FOR C CONTROLLED CC Approved Vide Ref Engineering Deptt. the above does not re contractual obligation	Letter No.SPC	VL/6	ATT 2/18	рЦ
RIPTIC	DN	DRAWN			
	RA TRANSMISSIO		СНК	DA	PPD
/ENT	URES LIMITED				-
'ENT	URES LIMITED				
JNDA /+6M	TION DRAWING FOR T (30-45 DEG, DEV, ANG WET SOIL (4.0M DEPT	LE) 400KV D/C	(WZ-1)	
TPL/4	00DC/WZ-1/DDN/F-002	SHEET NO.	1/2 R	EV	0

GOA		* F * B/B of To				NOION	TABLE	Lattice	1			SPGVL	
400 KV D/C -X-N-	TT "DDN"	3MBE(+)-3	MLE (TF)	* F * B/B of 7 3MBE(+)-3	Tower at 3MLE (LF)	Stub Se	ction (HT)	Level to CL	cg	sec B1	2*Tan B1	sec B2	2*Tan Ba
	1	1271	10	127	710	200X	200X16	50	55.6	1.028827	0.483675674	1.028827	0.483675
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	в	E	F1	F2	н
-3MBE (+) -3M LE	0	12623	12623	5150	3250	225	7152	7152	10114	5450	9877	0077	1000
3MBE (+) -1.5M LE	1500	13348	13348	5150	3250	225	7515	7515	10627	5450	10240	9877	4000
3MBE (+) +9M LE	3000	14074	14074	5150	3250	225	7877	7877	11140	5450	10602	10240	4000
3MBE (+) +1.5M LE	4500	14800	14800	5150	3250	225	8240	8240	11653	5450	10965	10602	4000
3MBE (+) +3M LE	6000	15525	15525	5150	3250	225	8603	8603	12166	5450			4000
OMBE (+) -3M LE	3000	14074	14074	5150	3250	225	7877	7877	11140	5450	11328	11328	4000
OMBE (+) -1.5M LE	4500	14800	14800	5150	3250	225	8240	8240	11653	5450	10602	10602	4000
OMBE (+) +0M LE	6000	15525	15525	5150	3250	225	8603	8603	12166		10965	10965	4000
OMBE (+) +1.5M LE	7500	16251	16251	5150	3250	225	8966	8966		5450	11328	11328	4000
OMBE (+) +3M LE	9000	16976	16976	5150	3250	225	9328		12679	5450	11691	11691	4000
3MBE (+) -3M LE	6000	15525	15525	5150	3250	225	8603	9328	13192	5450	12053	12053	4000
3MBE (+) -1.5M LE	7500	16251	16251	5150	3250	225		8603	12166	5450	11328	11328	4000
3MBE (+) +0M LE	9000	16976	16976	5150	3250	225	8966	8966	12679	5450	11691	11691	4000
3MBE (+) +1.5M LE	10500	17702	17702	5150	3250		9328	9328	13192	5450	12053	12053	4000
3MBE (+) +3M LE	12000	18427	18427	5150		225	9691	9691	13705	5450	12416	12416	4000
6MBE (+) -3M LE	9000	16976	16976	5150	3250	225	10054	10054	14218	5450	12779	12779	4000
6MBE (+) -1.5M LE	10500	17702	17702		3250	225	9328	9328	13192	5450	12053	12053	4000
6MBE (+) +0M LE	12000	18427		5150	3250	225	9691	9691	13705	5450	12416	12416	4000
6MBE (+) +1.5M LE	13500	19153	18427	5150	3250	225	10054	10054	14218	5450	12779	12779	4000
6MBE (+) +3M LE	15000	19133	19153 19878	5150 5150	3250 3250	225	10417	10417	14731	5450	13142	13142	4000
LONGITUDINAL FACE	pit C	в	×	8		Vorking Point A	A2 F2			H Vorking Point A	G.L.		
ž i	1				/		-						
		*x			-	Ť,		Limit Bearing	innis Cor		12500 K	g/Sqm	
	pit D	*x			plt A	Ť_,	*	Weight of so	il (Dry portio			g/Sqm g/cum	
	pit D	x		A1	pit A	Ť.	*	Weight of so Weight of so	il (Dry portion il (Wet portion	in)	1440 K 940 K		
	pit D	x	1	A1	pit A	Ť.	*	Weight of so Weight of so Angle of Repo	iil (Dry portion iil (Wet portion se (Dry portion	n)	1440 K 940 K 30 D	g/cum	
	pit D	AI F1	+	A1 F1	pit A	Ť.	~	Weight of so Weight of so Angle of Repo	oil (Dry portion oil (Wet portion ose (Dry portion ose (Wet portion	n)	1440 K 940 K 30 D	g/cum g/cum	


VE	RTICAL SLOPE
TAN B =	0.241965602
2 TAN B =	0.483931204
FACE =	1.028857304
DEV =	1.05692701
IN	FACE SLOPE
TAN B =	0.241837837
SEC B =	1.027254576

STERLITE RELEASER CONTROL Approved V
Engineering the above do contractual o

NOTES:

		1		
	REV NO	DATE		DESCRIPT
	PR	OJECT	400KV D/C X	ELDAM-NAR
	CL	JENT	STERLITE PO	WER GRID V
	DES	IGNER:	STERLITE PO	WER GRID V
	DRWN	RT	20-09-18	
repyrate Sceles Gol Lt 2011 ALL REGISTS RESORVED No part of the copyration controlous by reproduced or transmitted in any form	СНКФ	AM	20-09-18	FC DDN-3/+0/-
by any ensure for any purpose without price service permanent of the encode. The Unsetteerand the dicay, will success to infragment and the enforcement of the best	APPD	DL.	20-09-18	
lable for herey dancers and periodian or with any community	DATE	20-09-18	DRAWING NO.	GTTPL/400

1999 Aug. 1								
NOTE:								
					THE RELEVENT INFORMATION			
					TON DRAWINGS SHALL BE READ			
					E OBSERVED, SAME SHALL BE			
				OR CORRECTIV				
					E OF SITE ENGINEER ONLY.			
					TE LEVEL SHALL BE READ			
					SION TABLE FURNISED IN THE			
SHEET	2 OF 2 OF	THIS DRAW	INGS BEFO	RE START OF T	HE FOUNDATION PIT MARKING.			
	VERTICAL SI	LOPE		-				
TAN B =	0.24	1965602			STERLITE POWER GRID VENTU	14 C		
2 TAN B =	0.48	33931204			RELEASED FOR CONSTRUCTION CONTROLLED CO.2Y		. 1	
FACE =	1.02	28857304		1	Approved Vide Ref. Letter NoS.P.6	NL/GT7	-PL/	
DEV =	1.05	5692701		1		1.9/18		
	IN FACE SLO	OPE		6	Engineering Deptt.	1.024.1.0		
TAN B =	0.24	1837837	1			r from their		
SEC B =	1.02	7254576	1	(contractual obligations			
					,			
NOTES:								
DRAWIN	IG NOT TO	SCALE						
ALL DIM	ENSIONS	ARE IN MM	UNLESS OT	HERWISE STAT	ΨD.			
				TE MIX M10.	ED.			
					RS CONFIRMING			
		ie Fe - 500N/		ALLOKALD DAL	CONFIRMING			
		UND LEVEL	0.00000000	200				
					00 mm BARS & STIRRUPS			
		USTED AT S		CLEAT FROM I	BARS & STIRRUPS			
				DOCUMENTS.				
		REINFORCE						
				HAS TO BE USE				
	ON OF TOW		LEMILLATE	HAS TO BE USE	ED IN EACH			
			N OF THE B	ACKEULEDEA	ARTH MUST BE DONE.			
			i or the bi	ACK FILLED EA	IN MUST BE DONE.			
								<u> </u>
								-
		REV NO	DATE		DESCRIPTION	DRAWN	CHKD	APPD
		PRO	JECT	400KV D/C	XELDAM-NARENDRA TRANSMIS	CION L COD		
		1		issuer bie	ALLDAM-NAKENDRA TRANSMIS	SION LTD		
		CLI	ENIT	000000				
	l	CLI	ENT	STERLITE	POWER GRID VENTURES LIMITED)		
		DESIG	GNER:	STERLITE	POWER GRID VENTURES LIMITED			
					COWER ORID VENTURES LIMITED)		
		DRWN	RT	20-09-18	FOUNDATION DRAWING	FOR TOWER TY	PE	_
iD Ini any form Dia mitan	- F	APPD	AM DL	20-09-18	DDN-3/+0/+3/+6M (30-45 DEG. DEV. WET SOIL (4.0M	ANGLE) 400KV	D/C (WZ-1	1)
भ जोत्वी भर किसी इ	- F	DATE	20-09-18	20-09-18 DRAWING NO.				
				Partinity NO.	GTTPL/400DC/WZ-1/DDN/F-002	SHEET NO.	2/2 REV	0

/	B1	B2	H 1	H2	Hcf	Hb
0	5030	2000	400	300	300	3250

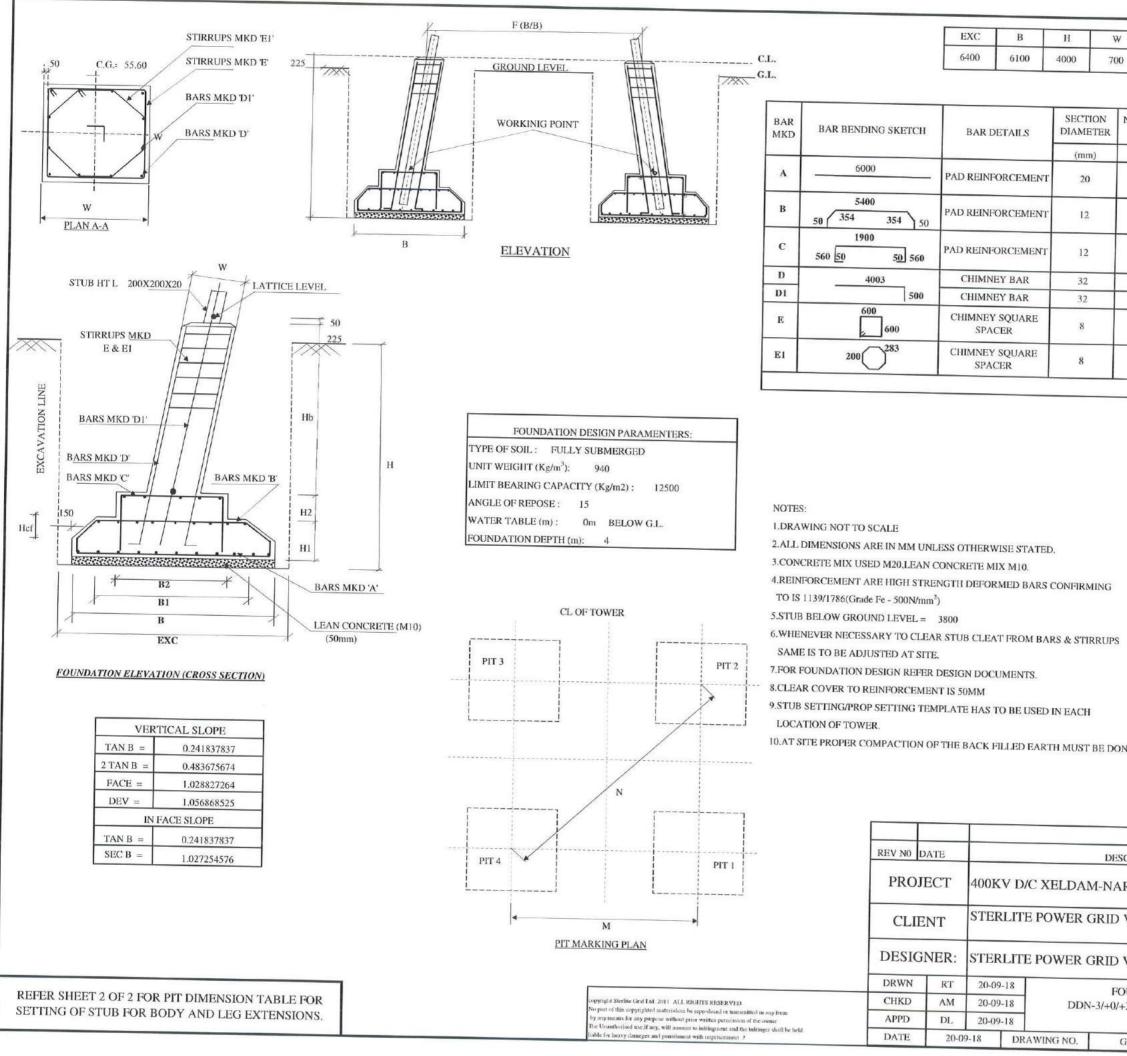
NO. OF BARS PER FDN	LENGTH	UNIT WEIGHT	WEIGHT PER LEG	WEIGHT PER TOWER
(no)	(mm)	('kg/m)	(kg)	(kg)
62	5530	1.58	540.93	2163.74
68	5737	0.89	346.23	1384.93
28	3136	0.89	77.95	311.79
4	4511	6.31	113.86	455.46
8	4511	6.31	227.72	910.90
14	2592	0.39	14.31	57.27
14	2123	0.39	11.72	46.92
	TOTAL REI	INFORCEMEN	T/ TOWER=	5331.0

QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	58.42
CONCRETE (M10) m ³	6.34
TOTAL CONCRETE m ³	64.76
EXCAVATION m3	562.64
REINFORCEMENT Kg	5331.0

DNE.	STERLITE POWER GRIE RELEASED FOR CONS CONTROLLED CC.PY Approved Vide Ref. Letter [N44/L&T/26 Engineeting Dept. the above does not relieve the contractual obligations	NoSPAVL/C	аттр 1.18	4
SCRI	PTION	DRAWN	CHKD	APPD
ARE	NDRA TRANSMISSIO	N LTD		
VE	NTURES LIMITED			
VE	NTURES LIMITED			
	IDATION DRAWING FOR T 6M (30-45 DEG. DEV, ANG PS SOIL (4.0M DEPTH	LE) 400KV D/C	(WZ-1)	
CUTTE				
611	PL/400DC/WZ-1/DDN/F-003	SHEET NO.	1/2 RE	V 0

						1	TABLE					SPGVL	
400 KV D/C -X-N-	TT "DDN"	" F " B/B of To 3MBE(+)-3M	wer at MLE (TF)	" F " B/B of 3MBE(+)-		Stub Se	ction (HT)	Lattice Level to CL	cg	sec B1	2'Tan B1	sec B2	2*Tan B
	T	1271	0	12	710	200X	200X16	50	55.6	1.028827	0.483675674	1.028827	0.48367
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	в	E	F1	F2	н
-3MBE (+) -3M LE	0	12623	12623	5630	3250	225	7152	7152	10114	5930	10117	10117	4000
-3MBE (+) -1.5M LE	1500	13348	13348	5630	3250	225	7515	7515	10627	5930	10480	10480	4000
3MBE (+) +0M LE	3000	14074	14074	5630	3250	225	7877	7877	11140	5930	10842	10842	4000
SMBE (+) +1.5M LE	4500	14800	14800	5630	3250	225	8240	8240	11653	5930	11205	11205	4000
3MBE (+) +3M LE	6000	15525	15525	5630	3250	225	8603	8603	12166	5930	11568	11568	4000
OMBE (+) -3M LE	3000	14074	14074	5630	3250	225	7877	7877	11140	5930	10842	10842	4000
OMBE (+) -1.5M LE	4500	14800	14800	5630	3250	225	8240	8240	11653	5930	11205	11205	4000
OMBE (+) +0M LE	6000	15525	15525	5630	3250	225	8603	8603	12166	5930	11568	11568	0.555
OMBE (+) +1.5M LE	7500	16251	16251	5630	3250	225	8966	8966	12679	5930	11931	1.1.1.1	4000
0MBE (+) +3M LE	9000	16976	16976	5630	3250	225	9328	9328	13192	5930	0.000	11931	4000
3MBE (+) -3M LE	6000	15525	15525	5630	3250	225	8603	8603	12166	5930	12293	12293	4000
3MBE (+) -1.5M LE	7500	16251	16251	5630	3250	225	8966	8966	12679	Tradestoria and	11568	11568	4000
3MBE (+) +0M LE	9000	16976	16976	5630	3250	225	9328	9328		5930	11931	11931	4000
3MBE (+) +1.5M LE	10500	17702	17702	5630	3250	225	9691	NAME OF T	13192	5930	12293	12293	4000
3MBE (+) +3M LE	12000	18427	18427	5630	3250	225	managers 1	9691	13705	5930	12656	12656	4000
6MBE (+) -3M LE	9000	16976	16976	5630	3250	225	10054	10054	14218	5930	13019	13019	4000
						2002.0	9328	9328	13192	5930	12293	12293	4000
6MBE (+) -1.5M LE	10500	17702	17702	5630	3250 1			9691	13705			10050	
	10500	17702	17702	5630	3250	225	9691			5930	12656	12656	4000
6MBE (+) -1.5M LE 6MBE (+) +0M LE	12000	18427	18427	5630	3250	225	10054	10054	14218	5930	13019	13019	4000
SMBE (+) -1.5M LE SMBE (+) +0M LE SMBE (+) +1.5M LE							10054 10417 10779		14218 14731 15244				Australia
6MBE (+) -1.5M LE	12000 13500	18427 19153	18427 19153	5630 5630	3250 3250 3250 91t B	225 225 225 225 Vorking	10054 10417 10779	10054 10417 10779 CL of found	14218 14731 15244 ation / /	5930 5930	13019 13382 13744 CL	13019 13382	4000 4000
6MBE (+) -1.5M LE 6MBE (+) +0M LE 5MBE (+) +1.5M LE 5MBE (+) +3M LE	12000 13500 15000	18427 19153 19878	18427 19153	5630 5630	3250 3250 3250 91t B	225 225 225 225 Vorking	10054 10417 10779	10054 10417 10779 CL of found	14218 14731 15244 ation	5930 5930 5930 H	13019 13382 13744 <u>CL</u> G.L.	13019 13382	4000 4000
6MBE (+) -1.5M LE 6MBE (+) +0M LE 5MBE (+) +1.5M LE 5MBE (+) +3M LE	12000 13500 15000	18427 19153 19878	18427 19153	5630 5630	3250 3250 3250 91t B	225 225 225 225 Vorking	10054 10417 10779	10054 10417 10779 CL of found T SI Imit Bearing	14218 14731 15244 ation	5930 5930 5930 H	13019 13382 13744 	13019 13382 13744	4000 4000
6MBE (+) -1.5M LE 6MBE (+) +0M LE 5MBE (+) +1.5M LE 5MBE (+) +3M LE	12000 13500 15000	18427 19153 19878 В В	18427 19153	5630 5630	3250 3250 3250	225 225 225 225 Vorking	10054 10417 10779 A2 F2 A2 F2	10054 10417 10779 CL of found CL of found SI SI imit Bearing Veight of so	14218 14731 15244 ation / //////////////////////////////////	5930 5930 5930 	13019 13382 13744 	13019 13382 13744 g/Sqm g/Sqm	4000 4000
6MBE (+) -1.5M LE 6MBE (+) +0M LE 5MBE (+) +1.5M LE 5MBE (+) +3M LE	12000 13500 15000	18427 19153 19878 В В х	18427 19153	5630 5630 5630 8	3250 3250 3250	225 225 225 225 Vorking	10054 10417 10779 A2 F2 A2 F2 L2 F2 V V	10054 10417 10779 CL of found CL of found SI imit Bearing Veight of so Veight of so	14218 14731 15244 ation / / // // // // // // // // //	5930 5930 5930 5930 H H Vorking Point A	13019 13382 13744 	13019 13382 13744 9/Sqm	4000 4000
6MBE (+) -1.5M LE 6MBE (+) +0M LE 5MBE (+) +1.5M LE 5MBE (+) +3M LE	12000 13500 15000	18427 19153 19878 В В	18427 19153	5630 5630 5630	3250 3250 3250	225 225 225 225 Vorking	10054 10417 10779 A2 F2 A2 F2 A2 F2 V V V V A	10054 10417 10779 CL of found CL of found Init Bearing Veight of so Veight of so right of so	14218 14731 15244 ation / / // // // // // // // // //	5930 5930 5930 5930 4 4 Vorking Point A	13019 13382 13744 CL G.L. 12500 K 1440 K 940 K 30 D	13019 13382 13744 g/Sqm g/cum g/cum	4000 4000

Г

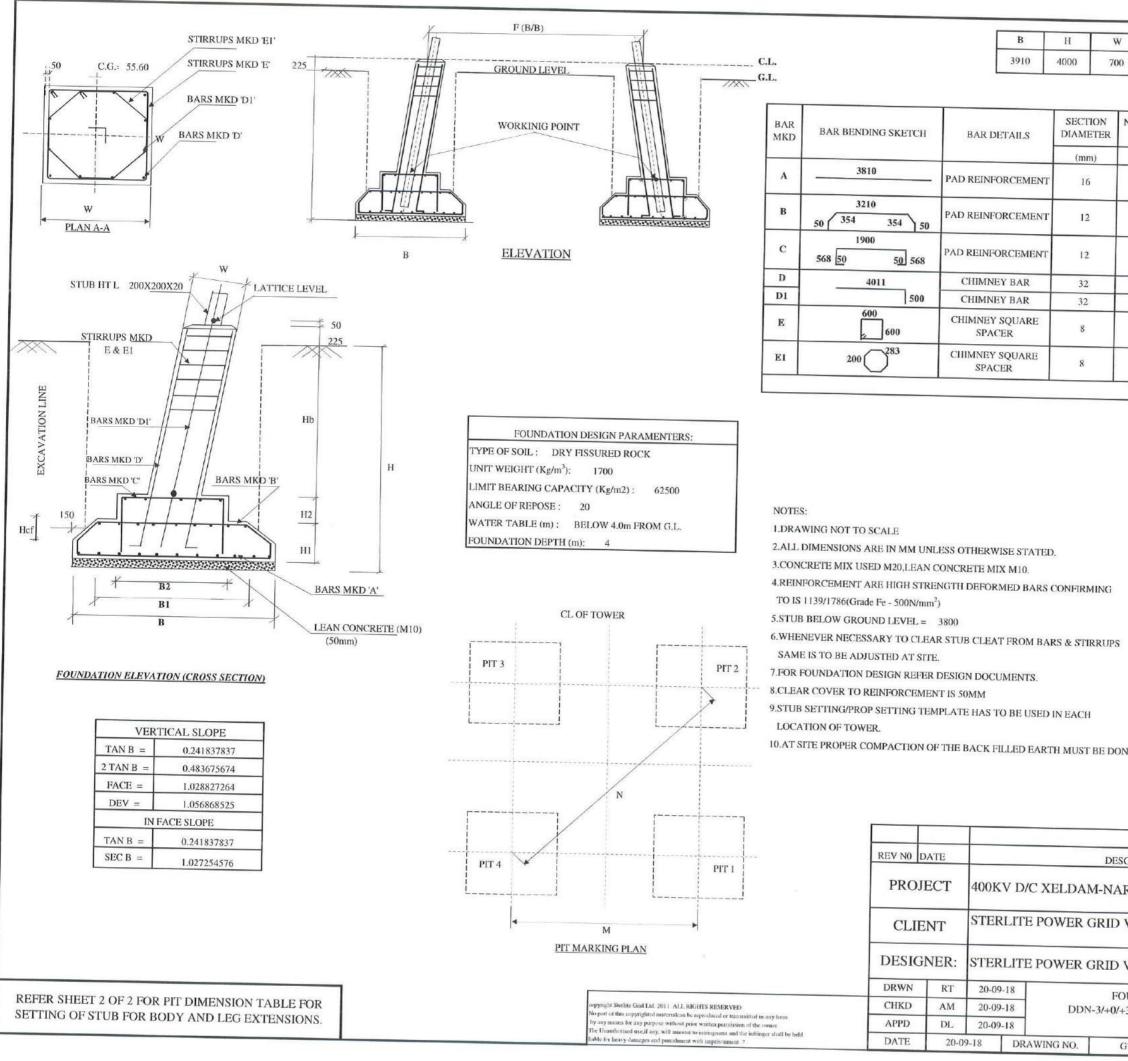

VE	RTICAL SLOPE
TAN B =	0.241837837
2 TAN B =	0.483675674
FACE =	1.028827264
DEV =	1.056868525
IN	FACE SLOPE
TAN B =	0.241837837
SEC B =	1.027254576

NOTES:

	T	1	
REV N0	DATE		DESCRIPT
PRO	JECT	400KV D/C X	ELDAM-NAR
CL	ENT	STERLITE PO	WER GRID V
DESI	GNER:	STERLITE PO	WER GRID V
DRWN	RT	20-09-18	
CHKD	AM	20-09-18	FO DDN-3/+0/-
APPD	DL.	20-09-18	
DATE	20-09-18	DRAWING NO.	GTTPL/40
	PRC CLI DESI DRWN CHKD AFPD	PROJECT CLIENT DESIGNER: DRWN RT CHKD AM APPD DL	PROJECT 400KV D/C X CLIENT STERLITE PO DESIGNER: STERLITE PO DRWN RT 20-09-18 CHKD AM APPD DL 20-09-18

NOTE:								
1. BEFO	RE START	OF THE FOU	NDATION	ACTIVITY, ALL	THE RELEVENT INFORMATION			
					ION DRAWINGS SHALL BE READ			
					OBSERVED, SAME SHALL BE			
INTIM	ATED TO I	ENGINEERI	NG TEAM F	OR CORRECTIVI	E ACTION.			
2. FOUNI	DATION SH	IALL BE EXI	ECUTED IN	THE PRESENCE	OF SITE ENGINEER ONLY.			
3. DIMEN	SIONS OF	BACK TO B	ACK OF STU	JB AT CONCRET	TE LEVEL SHALL BE READ			
					ION TABLE FURNISED IN THE			
SHEET	2 OF 2 OF	THIS DRAW	INGS BEFO	RE START OF TH	HE FOUNDATION PIT MARKING.			
	VERTICAL S	LOPE						
TAN B =	0.24	1837837	1	Is	TERI ITE BOULES			
2 TAN B =	0.48	33675674	1	R	TERLITE POWER GRID VENTURE RELEASED FOR CONSTRUCTION	S LTD.		
FACE =	1.02	28827264	1		UNTROLLED CODY OT NUCTION			
DEV =	1.05	6868525			pproved Vide Ref. Letter No.S.P.G.V	2/977	TPL	
	IN FACE SLO	OPE		E	NGG/LAT/26 Data Dala	1.0	1	
TAN B =	0.24	1837837		En the	agineering Deptt.	9.1.1.6.		
SEC B =	1.02	7254576		Cor	above does not relieve the contractor fro	m their		
					P			
NOTES:								
I.DRAWIN	IG NOT TO	SCALE						
2.ALL DIM	ENSIONS /	ARE IN MM	UNLESS OT	HERWISE STAT	ED.			
3.CONCRE	ETE MIX US	ED M20,LE	AN CONCRE	TE MIX M10.				
A.REINFOR	RCEMENT	ARE HIGH S	TRENGTH [EFORMED BAR	S CONFIRMING			
TO IS 113	9/1786(Grad	le Fe - 500N/	mm ²)					
5.STUB BE	LOW GROU	UND LEVEL	=	380	0 mm			
WHENEY	VER NECES	SARY TO C	LEAR STUB	CLEAT FROM B	SARS & STIRRUPS			
		USTED AT S						
				DOCUMENTS.				
		REINFORCE						
			TEMPLATE	HAS TO BE USE	D IN EACH			
	ON OF TOW							
UAT SHE	PROPER C	OMPACTIO:	N OF THE B	ACK FILLED EA	RTH MUST BE DONE.			
						1		
	1			1		-		-
		REV N0	DATE		DESCRIPTION	DRAWN	CHKD	APPD
		PRO	JECT	400KV D/C	XELDAM-NARENDRA TRANSMISS	ON LTD		
		CLI	ENT	STERLITE F	POWER GRID VENTURES LIMITED			
		DESIG	GNER:	STERLITE P	OWER GRID VENTURES LIMITED			
_	1	DRWN	RT	20-09-18	FOUNDATION DRAWING TO	P TOWER	(80	
ED I na nay for sa	- F	СНКО	AM	20-09-18	FOUNDATION DRAWING FO DDN-3/+0/+3/+6M (30-45 DEG, DEV, A	NGLE) 400KV	PE / D/C (WZ-	1)
the evenue per shall be held at	- F	APPD	DL.	20-09-18	PS SOIL (4.0M DE	TH)		105
21	ſ	DATE	20-09-18	DRAWING NO.	GTTPL/400DC/WZ-1/DDN/F-003	SHEET NO.	2/2 REV	0

V	B1	B2	B2 H1		H2 Hcf		Hb	
0	5500	2000	400	3	00	300	3250	
	OF BARS ER FDN	LENGTH	UNI WEIG	S		IGHT R LEG	WEIGHT PE TOWER	
	(no)	(mm)	('kg/1	n)	(kg)	(kg)	
	62	6000	2.40	5	917.00		3668.01	
	82	6207	0.89		451.70		1806.81	
	28	3120	0.89		77	.55	310.20	
	4	4503	6.31		113.66		454.65	
	8	4503	6.31		227.32		909.29	
	13	2592	0.39		13	.29	53.18	
	13	2123	0,39	0.39		.89	43.57	
		TOTAL RE	INFORCE	MIN	T /000		7245.7	


QUANTITIES/ STRU	CTURE
CONCRETE (M20) m ³	66.9
CONCRETE (M10) m ³	7.44
TOTAL CONCRETE m ³	74.34
EXCAVATION m3	655.36
REINFORCEMENT Kg	7245.7

STERLITE POWER GF RELEASED FOR CON CONTROLLED CC.PY Approved Vide Ref. Let ENGG/LAT/20 Engineering Dept. the above does not reliant contractual obligations	ter No. SPGVL	1 G T 9 18	трЦ
SCRIPTION	DRAWN	CHKD	APPD
RENDRA TRANSMISSIO	N LTD		_
VENTURES LIMITED			
OUNDATION DRAWING FOR 7 +3/+6M (30-45 DEG. DEV. ANG	OWER TYPE LE) 400KV D/C	(WZ-1)	_
FS SOIL (4.0M DEPTI	H)		

400 KV D/C -X-N-				PIT DIME		"DDN" (30-45 DEG. DEV.) SOIL - FS (4.0M DEPTH) I DIMENSION TABLE						SPGVL	: 1L	
	TT "DDN"	* F * B/B of To 3MBE(+)-3/	MLE (TF)	" F " B/B of 1 3MBE(+)-3	Tower at 3MLE (LF)	Stub Se	ection (HT)	Lattice Level to CL	cġ	sec B1	2*Tan B1	sec B2	2*Tan B2	
	1	1271	10	127	710	200X	200X16	50	55.6	1.028827	0.483675674	1.028827	0.483675	
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	в	E	F1	F2	н	
-3MBE (+) -3M LE	0	12623	12623	6100	3250	225	7152	7152	10114	6400	10352	10050		
3MBE (+) -1.5M LE	1500	13348	13348	6100	3250	225	7515	7515	10627	6400	10352	10352	4000	
3MBE (+) +0M LE	3000	14074	14074	6100	3250	225	7877	7877	11140	6400	11077	10715	4000	
3MBE (+) +1.5M LE	4500	14800	14800	6100	3250	225	8240	8240	11653	6400	11440	11077 11440	4000	
3MBE (+) +3M LE	6000	15525	15525	6100	3250	225	8603	8603	12166	6400			4000	
OMBE (+) -3M LE	3000	14074	14074	6100	3250	225	7877	7877	11140	6400	11803	11803	4000	
0MBE (+) -1.5M LE	4500	14800	14800	6100	3250	225	8240	8240	11653	6400		11077	4000	
0MBE (+) +0M LE	6000	15525	15525	6100	3250	225	8603	8603	12166	6400	11440	11440	4000	
0MBE (+) +1.5M LE	7500	16251	16251	6100	3250	225	8966	8966	12679	6400	11803	11803	4000	
0MBE (+) +3M LE	9000	16976	16976	6100	3250	225	9328	9328			12166	12166	4000	
3MBE (+) -3M LE	6000	15525	15525	6100	3250	225	8603	8603	13192	6400	12528	12528	4000	
3MBE (+) -1.5M LE	7500	16251	16251	6100	3250	225	8966		12166	6400	11803	11803	4000	
3MBE (+) +0M LE	9000	16976	16976	6100	3250			8966	12679	6400	12166	12166	4000	
3MBE (+) +1.5M LE	10500	17702	17702	6100	25.1612	225	9328	9328	13192	6400	12528	12528	4000	
3MBE (+) +3M LE	12000	18427	18427	March 199	3250	225	9691	9691	13705	6400	12891	12891	4000	
6MBE (+) -3M LE	9000	16976	and the second s	6100	3250	225	10054	10054	14218	6400	13254	13254	4000	
6MBE (+) -1.5M LE	10500	17702	16976	6100	3250	225	9328	9328	13192	6400	12528	12528	4000	
11) 10011 22	10300	17702	17702	6100	3250	225	9691	9691	13705	6400	12891	12891	4000	
SMBE (+) +0M1E	12000	10407	10100											
	12000	18427	18427	6100	3250	225	10054	10054	14218	6400	13254	13254	4000	
6MBE (+) +1.5M LE	12000 13500 15000	18427 19153 19878	18427 19153 19878	6100 6100 6100	3250 3250 3250 1 pjt B	225	10417 10779	10054 10417 10779 CL of found	14731 15244	6400 6400 6400	13254 13617 13979 CL G.L.	13254 13617 13979	4000 4000 4000	
6MBE (+) +0M LE 6MBE (+) +1.5M LE 6MBE (+) +3M LE 6MBE (+) +3M LE	13500	19153 19878 ₿ ₽ Х	19153	6100	3250 3250	225 225 Norking Point A	10417 10779	10417 10779 CL of found CL of found Substitution	14731 15244 lation	6400 6400 H H Vorking Point A	13617 13979 CL G.L. 12500 Kg 1440 Kg	13617	4000	
6MBE (+) +1.5M LE 6MBE (+) +3M LE 6MBE (+) -3M LE	13500 15000	19153 19878 В ▲ Х А1	19153	6100 6100	3250 3250	225 225 Norking Point A	10417 10779	10417 10779 CL of found CL of found Limit Bearin Veight of sc Veight of sc	14731 15244 Iation I I I E EC X-X W G Capacity II (Dry portion	6400 6400 H H Vorking Point A	13617 13979 CL G.L. 12500 Kg 1440 Kg	13617 13979 1/Sqm 1/Cum	4000	
6MBE (+) +1.5M LE 6MBE (+) +3M LE 6MBE (+) -3M LE	13500 15000	19153 19878 ₿ ₽ Х	19153	6100 6100	3250 3250	225 225 Norking Point A	10417 10779	10417 10779 CL of found CL of found Limit Bearing Veight of sc Veight of sc ngle of Repo	14731 15244 Iation I I I I E C X-X W G Capacity II (Dry portion II (Wet portion	6400 6400 H H Vorking Point A	13617 13979 CL G.L. 12500 Kg 1440 Kg 940 Kg	13617 13979 1/Sqm l/Cum l/Cum l/Cum	4000	

		-		
	REV NO DAT			DESCRIPTIC
	PR	OJECT	400KV D/C X	ELDAM-NARE
	CI	JENT	STERLITE POWER GI	
	DESIGNER: STEI		STERLITE PO	WER GRID VE
	DRWN	RT	20-09-18	
reprintle Social Card Lt 2011 ALL ROUTS RESERVED No part of the copyrighted control on terresoluted in transmised in may form	CHKD	AM	20-09-18	FOI DDN-3/+()/+3
by my manual for any purpose without prior writers permane is of the prime The Unorthoused use of any, will associat to adringatessi and the sufrager shell be hold holds for formy damages and primitized with an apples senses	APPD	DL	20-09-18	
anne an ann a martaire an la tairgingin ann tá an starai	DATE	20-09-18	DRAWING NO.	GTTPL/400E

NOTE:							
	ART OF THE FO	UNDATION	ACTIVITY ALL 7	HE RELEVENT INFORMATION			
				HE RELEVENT INFORMATION ON DRAWINGS SHALL BE READ			
AND UNDER	STOOD, IF AN	Y FRROR OR	CHANCES ARE	ON DRAWINGS SHALL BE READ OBSERVED, SAME SHALL BE			
INTIMATED	TO ENGINEER	ING TEAM F	OR CORRECTIVE	ACTION			
				OF SITE ENGINEER ONLY.			
B. DIMENSIONS	OF BACK TO I	BACK OF STU	UB AT CONCRET	E LEVEL SHALL BE READ			
				ON TABLE FURNISED IN THE			
SHEET 2 OF 2	OF THIS DRAV	WINGS BEFO	RE START OF TH	E FOUNDATION PIT MARKING.			
VERTIC	AL SLOPE			STERLITE POWER GRID	IENTLIDES		
TAN B =	0.241837837	-		RELEASED FOR CONSTI		LID.	
TAN B =	0.483675674	-		CONTROLLED CCPY	- SPGVL	GTTP	21
FACE =	1.028827264	-		Approved Vide Ref. Letter N		,	1
DEV =	1.056868525	-		ENGG/LAT/26 D	ate: 20/00	1.18	
2992000	E SLOPE	_		Engineering Deptt.	cam'	/	
TAN B =	0.241837837	-		the above does not relieve the contractual obligations	contractor from	their	
SEC B =	1.027254576	-					
one of a	1.021234378						
0.000							
OTES:							
DRAWING NOT							
			HERWISE STATE	D.			
	X USED M20,LE						
			DEFORMED BARS	CONFIRMING			
	Grade Fe - 500N						
	ROUND LEVE		3800				
			CLEAT FROM B/	ARS & STIRRUPS			
	ADJUSTED AT						
			DOCUMENTS.				
LEAR COVER							
TUB SETTING/	PROP SETTING		MM HAS TO BE USEE	IN EACH			
TUB SETTING/ OCATION OF T	PROP SETTING 'OWER.	TEMPLATE	HAS TO BE USED				
TUB SETTING/ OCATION OF T	PROP SETTING 'OWER.	TEMPLATE	HAS TO BE USED	D IN EACH TH MUST BE DONE.			
TUB SETTING/ OCATION OF T	PROP SETTING 'OWER.	TEMPLATE	HAS TO BE USED				
TUB SETTING/ OCATION OF T	PROP SETTING 'OWER.	TEMPLATE	HAS TO BE USED				
TUB SETTING/ OCATION OF T	PROP SETTING 'OWER.	TEMPLATE	HAS TO BE USED				
TUB SETTING/ OCATION OF T	PROP SETTING 'OWER.	TEMPLATE	HAS TO BE USED		DRAWN	Снкр	Apor
TUB SETTING/ OCATION OF T	PROP SETTING 'OWER. SR COMPACTIO REV N0	TEMPLATE	HAS TO BE USED	TH MUST BE DONE. DESCRIPTION		СНКД	APPI
TUB SETTING/ OCATION OF T	PROP SETTING 'OWER. SR COMPACTIO REV N0	TEMPLATE	HAS TO BE USED	TH MUST BE DONE.		СНКД	APPE
TUB SETTING/ OCATION OF T	PROP SETTING 'OWER. SR COMPACTIO REV N0	TEMPLATE	HAS TO BE USED	TH MUST BE DONE. DESCRIPTION		CHKD	APPE
TUB SETTING/ OCATION OF T	PROP SETTING OWER. SR COMPACTIO REV NO PRC	TEMPLATE	HAS TO BE USED ACK FILLED EAR 400KV D/C 3	TH MUST BE DONE. DESCRIPTION	SSION LTD	СНКД	APPD
TUB SETTING/ OCATION OF T	PROP SETTING OWER. SR COMPACTIO REV NO PRC	TEMPLATE ON OF THE B, DATE DJECT IENT	HAS TO BE USED ACK FILLED EAR 400KV D/C 3 STERLITE PO	TH MUST BE DONE. DESCRIPTION KELDAM-NARENDRA TRANSMIS DWER GRID VENTURES LIMITEI	SSION LTD	СНКД	APPE
TUB SETTING/ OCATION OF T	PROP SETTING OWER. SR COMPACTIO REV NO PRC	TEMPLATE ON OF THE B, DATE	HAS TO BE USED ACK FILLED EAR 400KV D/C 3 STERLITE PO	TH MUST BE DONE. DESCRIPTION KELDAM-NARENDRA TRANSMIS	SSION LTD	СНКД	APPD
TUB SETTING/ OCATION OF T	PROP SETTING OWER. SR COMPACTIO REV NO PRC	TEMPLATE ON OF THE B, DATE DJECT IENT	HAS TO BE USED ACK FILLED EAR 400KV D/C 3 STERLITE PO	TH MUST BE DONE. DESCRIPTION KELDAM-NARENDRA TRANSMIS OWER GRID VENTURES LIMITEI OWER GRID VENTURES LIMITEI	SSION LTD		APPD
TUB SETTING/ OCATION OF 1 AT SITE PROPE	PROP SETTING OWER. SR COMPACTIO REV NO PRO CLI DESH DRWN CHKD	TEMPLATE DN OF THE B, DATE DJECT IENT GNER:	HAS TO BE USED ACK FILLED EAR 400KV D/C 3 STERLITE PO STERLITE PO	TH MUST BE DONE. DESCRIPTION KELDAM-NARENDRA TRANSMIS OWER GRID VENTURES LIMITEI OWER GRID VENTURES LIMITEI FOUNDATION DRAWING	SSION LTD	/PE	
TUB SETTING/	PROP SETTING OWER. SR COMPACTIO REV NO PRO CLI DESI DRWN	TEMPLATE DN OF THE B, DATE DJECT IENT GNER: RT	HAS TO BE USED ACK FILLED EAR 400KV D/C 3 STERLITE PO STERLITE PO 20-09-18	TH MUST BE DONE. DESCRIPTION KELDAM-NARENDRA TRANSMIS OWER GRID VENTURES LIMITEI OWER GRID VENTURES LIMITEI	SSION LTD D FOR TOWER TY ANGLE) 400KV	/PE	

CONTROLLED CC.PY Approved Vide Ref. Letter NoSPSVL/GTTPL/ ENGL/L_L_C/_26Date: 20/09/18 Engineering Dept. the above does not relieve the contractor from their contractual obligations ONE. ESCRIPTION DRAWN CHKD ARENDRA TRANSMISSION LTD D VENTURES LIMITED OVENTURES LIMITED FOUNDATION DRAWING FOR TOWER TYPE V43/+6M (30-45 DEG. DEV. ANGLE) 400KV D/C (WZ-1) DFR SOIL (4.0M DEPTH)	00	3310	2000	400	300	3	300	3250
PER FDN LENGTH WEIGHT PER LEG MEIGHT TOWER (no) (mm) (kg/m) (kg) (kg) (kg) 42 3810 1.58 252.50 1009.99 28 4017 0.89 99.86 399.44 28 3136 0.89 77.95 311.79 4 4511 6.31 1227.72 910.90 14 2592 0.39 14.31 57.27 14 2123 0.39 11.72 46.90 TOTAL REINFORCEMENT/ TOWER= 3191.7 33.4 CONCRETE (M10) m ³ 3.66 EXCAVATION m3 210.52 REINFORCEMENT Kg 3191.7 3191.7 S STERUITE POWER GRID VENTURES LTD. CONTROLLED CCY 36.46 EXCAVATION m3 210.52 REINFORCEMENT Kg 3191.7 3191.7 20 20.97/13 20.92/13 S STERUITE POWER GRID VENTURES LTD. CONTROLLED CCY Detection from their contractual obligations 3191.7 S STERUITE POWER GRID VENTURES LID. DE								
Quantities/ Cosp. Cosp. <thcosp.< th=""> Cosp. Cosp.</thcosp.<>			LENGTH	100100-001	Servery 11 11			
42 3810 1.58 252.50 1009.99 28 4017 0.89 99.86 399.44 28 3136 0.89 77.95 311.79 4 4511 6.31 113.86 455.46 8 4511 6.31 227.72 910.90 14 2592 0.39 14.31 57.27 14 2123 0.39 11.72 46.90 TOTAL REINFORCEMENT/ TOWER= 3191.7 QUANTITIES/ STRUCTURE CONCRETE (M10) m ³ 3.06 TOTAL CONCRETE (M10) m ³ 3.06 33.4 CONCRETE (M10) m ³ 3.06 TOTAL CONCRETE (M10) m ³ 3.06		(no)	(mm)	('kg/m)	(kg)		(kg)
28 3136 0.89 77.95 311.79 4 4511 6.31 113.86 455.46 8 4511 6.31 127.72 910.90 14 2592 0.39 14.31 57.27 14 2123 0.39 11.72 46.90 TOTAL REINFORCEMENT/ TOWER= 3191.7 QUANTITIES/ STRUCTURE CONCRETE (M10) m ³ 3.06 TOTAL REINFORCEMENT/ TOWER= 3191.7 STEELITE POWER GRID VENTURES LTD. RELEASED FOR CONSTRUCTION CONTROLLED C.2Y Approved Vide Ref. Letter No SP.5VL/G.7.7 STEELITE POWER GRID VENTURES LTD. CONTROLLED C.2Y Approved Vide Ref. Letter No SP.5VL/G.7.7 Approved Vide Ref. Letter No SP.5VL/G.7.7 LINICON CONTROLLED C.2Y Approved Vide Ref. Letter No SP.5VL/G.7.7 Approved Vide Ref. Letter No SP.5VL/G.7.7 LINICL 1 C.2.Y Approved Vide Ref. Letter No SP.5VL/G.7.7 CONTROLLED C.2Y Approved Vide Ref. Letter No SP.5VL/G.7.7 DIM MITED ONE STERIFTION DIM MITED OVENTURES LIM		42	3810	3810 1.58		252.50		
Quantifies Addition		28	4017	0.89		99.86		399.44
Image: String in the		28	3136	0.89		77.95		311.79
Image: Normal State State <td></td> <td>4</td> <td>4511</td> <td>6.31</td> <td></td> <td>113.86</td> <td></td> <td>455.46</td>		4	4511	6.31		113.86		455.46
14 2123 0.39 11.72 46.90 TOTAL REINFORCEMENT/ TOWER= 3191.7 Addition of the second se		8	4511	6.31		227.72		910.90
QUANTITIES/STRUCTURE 3191.7 TOTAL REINFORCEMENT/ TOWER= 3191.7 Image: Concrete (M20) m ³ 33.4 CONCRETE (M10) m ³ 30.6 TOTAL CONCRETE (M10) m ³ 30.6 SCERIPTION CONSTRUCTION SCERIPTION DRAWN CHIKD APPE ARENDRA TRANSMISSION LTD OVENTURES LIMITED OVENTURES LIMITED OVENTURES LIMITED OUNDATION DRAWING FOR TOWER TYPE (4)00 LC/WZ J DDNE 00 DURE 00		14	2592	0.39		14.31		57.27
QUANTITIES/ STRUCTURE CONCRETE (M10) m ³ 33.4 CONCRETE (M10) m ³ 3.06 TOTAL CONCRETE (M10) m ³ STERLITE POWER GRID VENTURES LID. CONTROLLED CC.?Y Approved Vide Ref. Letter No SPS.VU.G.TT Engineering Deptition the above does not releve the deptement of the model of the state		14	2123	0.39		11.72		46.90
QUANTITIES/ STRUCTURE CONCRETE (M10) m ³ 33.4 CONCRETE (M10) m ³ 3.06 TOTAL CONCRETE (M10) m ³ STERLITE POWER GRID VENTURES LID. CONTROLLED CC.?Y Approved Vide Ref. Letter No SPGV (GTT PU Engineering Deptition the above does not relieve the domator from their contractual obligations SCRIPTION DRAWN CHK ARENDRA TRANSMISSION LTD OVENTURES LIMITED OVENTURES LIMITED COUNDATION DRAWING FOR TOWER TYPE V43/46M (30-45 DEG. DEV. ANGLE) 400KV D/C (WZ-1)			TOTAL RE	NFORCE	MENT/	TOWER	- 3	191.7
TOTAL CONCRETE m³ 36.46 EXCAVATION m3 210.52 REINFORCEMENT Kg 3191.7 S STERLITE POWER GRID VENTURES LTD. RELEASED FOR CONSTRUCTION CONTROLLED CC.?Y Approved Vide Ref. Letter NoSPGVL/G.TT PL/ Engineering Deplt. the above does not relieve the edition of their contractual obligations PL/ SSCRIPTION DRAWN CHKD ARENDRA TRANSMISSION LTD D OVENTURES LIMITED OVENTURES LIMITED COUNDATION DRAWING FOR TOWER TYPE V43/46M (30-45 DEG. DEV. ANGLE) 400KV D/C (WZ-1) DFR SOIL (4.0M DEPTH)			CONCR	ETE (M2)) m ³		33.4	
EXCAVATION m3 210.52 REINFORCEMENT Kg 3191.7 S STERLITE POWER GRID VENTURES LTD. RELEASED FOR CONSTRUCTION CONTROLLED CC.?Y Approved Vide Ref. Letter NoSPGVUG TT Approved Vide Ref. Letter NoSPGVUG TT ENGLAL C. C. 26 Date: 20/0.9/18 Engineering Deptt. It the above does not relieve the contractor from their contractual obligations Date: 20/0.9/18 SSCRIPTION Date: 20/0.9/18 ARENDRA TRANSMISSION LTD OVENTURES LIMITED FOUNDATION DRAWING FOR TOWER TYPE V+3/+6M (30-45 DEG. DEV. ANGLE) 400KV D/C (WZ-1) DFR SOIL (4.0M DEPTH)			CONCR	ETE (M1	m^3		3.06	
REINFORCEMENT Kg 3191.7 S STERLITE POWER GRID VENTURES LTD. RELEASED FOR CONSTRUCTION CONTROLLED CC.?? Approved Vide Ref. Letter No.S.P.5.VU/G.T.T.P.// Engineering Dept. The above does not relieve the conscionation from their contractual obligations ONE. SSCRIPTION DRAWN CHKD DRAWN CHKD DRAWN CHKD DVENTURES LIMITED COUNDATION DRAWING FOR TOWER TYPE (+3)+6M (30-45 DEG. DEV. ANGLE) 400KV D/C (WZ-1) DFR SOIL (4.0M DEPTH)			No. of Concession, Name	The second s		-	36.46	
S STERLITE POWER GRID VENTURES LTD. RELEASED FOR CONSTRUCTION CONTROLLED CC.?Y Approved Vide Ref. Letter NoSPSVUGTT PU ENGL/LLAC/26.Date: 20/09/18 Engineering Depit. the above does not relieve the contector from their contractual obligations DRAWN CHKD APPE ARENDRA TRANSMISSION LTD DVENTURES LIMITED OVENTURES LIMITED FOUNDATION DRAWING FOR TOWER TYPE (+3/+6M (30-45 DEG. DEV. ANGLE) 400KV D/C (WZ-1) DFR SOIL (4.0M DEPTH)				the second se		-	210.52	
ARENDRA TRANSMISSION LTD O VENTURES LIMITED O VENTURES LIMITED SOUNDATION DRAWING FOR TOWER TYPE (+3/+6M (30-45 DEG. DEV. ANGLE) 400KV D/C (WZ-1) DFR SOIL (4.0M DEPTH) GTTPI 400DC/WZ LIDDNE 005		RELE CONT Appro		R CONS CCPY ef. Letter	rruc No <u>S</u> 1 Date:.	20/2	G T T 2/18	pl]
ARENDRA TRANSMISSION LTD O VENTURES LIMITED O VENTURES LIMITED FOUNDATION DRAWING FOR TOWER TYPE V+3/+6M (30-45 DEG. DEV. ANGLE) 400KV D/C (WZ-1) DFR SOIL (4.0M DEPTH) GTTPI 400DC/WZ LIDDNT: 005								
ARENDRA TRANSMISSION LTD D VENTURES LIMITED D VENTURES LIMITED FOUNDATION DRAWING FOR TOWER TYPE V+3/+6M (30-45 DEG. DEV. ANGLE) 400KV D/C (WZ-1) DFR SOIL (4.0M DEPTH) GTTPL/400DC/WZ LIDDNT: 005	ESCRI	PTION			D	RAWN	СНКЕ	APPD
O VENTURES LIMITED FOUNDATION DRAWING FOR TOWER TYPE /+3/+6M (30-45 DEG. DEV. ANGLE) 400KV D/C (WZ-1) DFR SOIL (4.0M DEPTH)	ARE	NDRA T	RANSMI	SSION	LTD			
FOUNDATION DRAWING FOR TOWER TYPE /+3/+6M (30-45 DEG. DEV. ANGLE) 400KV D/C (WZ-1) DFR SOIL (4.0M DEPTH)) VE	NTURES	S LIMITE	D				
/+3/+6M (30-45 DEG. DEV. ANGLE) 400KV D/C (WZ-1) DFR SOIL (4.0M DEPTH)) VE	NTURES	S LIMITE	D				
GTTPL/400DC/WZ-1/DDN/F-005 SHEET NO 1/2 REV 0	OUN /+3/+0	6M (30-45	DEG. DEV.	ANGLE	VER T) 400K	YPE V D/C ((WZ-1)	
	GTTI	PL/400DC/W	Z-1/DDN/F-	005	SHEE	TNO	1/2 P	EV 0

B1

3310

B2

2000

HI

400

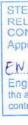
H2

300

Hcf

300

Hb


3250

GOA				INSION	30-45 DEG. DEV.) SOIL - DFR (4.0M DEPTH) NSION TABLE						Client: SPGVL		
400 KV D/C -X-N-	TT "DDN"		* F * B/B of Tower at 3MBE(+)-3MLE (TF) 3MBE(+)-3MLE		/B of Tower at E(+)-3MLE (LF) Stub Section (HT)		Lattice Level to CL	cg	sec B1	2*Tan B1	sec 82	2*Tan Ba	
		1271	0	127	710	200X	200X16	50	55.6	1.028827	0.483675674	1.028827	0.483675
Tower Detail	Extn from -3MBE(+)- 3MLE (mm)	cg-cg dim at CL (TF)	cg-cg dim at CL (LF)	Foundation Base Width	work pt	G.L. TO C.L.	A1	A2	в	E	F1	F2	н
-3MBE (+) -3M LE	0	12623	12623	3910	3250	225	7152	7152	10114	3910	9107	9107	4000
3MBE (+) -1.5M LE	1500	13348	13348	3910	3250	225	7515	7515	10627	3910	9470	9470	4000
3MBE (+) +0M LE	3000	14074	14074	3910	3250	225	7877	7877	11140	3910	9832	9832	4000
3MBE (+) +1.5M LE	4500	14800	14800	3910	3250	225	8240	8240	11653	3910	10195	10195	4000
3MBE (+) +3M LE	6000	15525	15525	3910	3250	225	8603	8603	12166	3910	10558	10558	4000
0MBE (+) -3M LE	3000	14074	14074	3910	3250	225	7877	7877	11140	3910	9832	9832	4000
0MBE (+) -1.5M LE	4500	14800	14800	3910	3250	225	8240	8240	11653	3910	10195	10195	4000
0MBE (+) +0M LE	6000	15525	15525	3910	3250	225	8603	8603	12166	3910	10558	10558	4000
0MBE (+) +1.5M LE	7500	16251	16251	3910	3250	225	8966	8966	12679	3910	10921	10921	
MBE (+) +3M LE	9000	16976	16976	3910	3250	225	9328	9328	13192	3910	11283		4000
3MBE (+) -3M LE	6000	15525	15525	3910	3250	225	8603	8603	12166	3910		11283	4000
3MBE (+) -1.5M LE	7500	16251	16251	3910	3250	225	8966	8966	12679		10558	10558	4000
3MBE (+) +0M LE	9000	16976	16976	3910	3250	225	9328	9328	13192	3910	10921	10921	4000
3MBE (+) +1.5M LE	10500	17702	17702	3910	3250	225	9691	9691		3910	11283	11283	4000
3MBE (+) +3M LE	12000	18427	18427	3910	3250	225			13705	3910	11646	11646	4000
6MBE (+) -3M LE	9000	16976	16976	3910	3250	225	10054	10054	14218	3910	12009	12009	4000
MBE (+) -1.5M LE	10500	17702	17702	3910	3250		9328	9328	13192	3910	11283	11283	4000
SMBE (+) +0M LE	12000	18427	18427	1.000		225	9691	9691	13705	3910	11646	11646	4000
6MBE (+) +1.5M LE	13500	19153	19153	3910	3250	225	10054	10054	14218	3910	12009	12009	4000
6MBE (+) +3M LE	15000	19878	19153	3910 3910	3250 3250	225 225	10417 10779	10417	14731	3910	12372	12372	4000
LONGITUDINAL FACE	pit C	B x A1 F1	X	A1 F1		Working Point A	A2 F2	Limit Bearin Weight of se Weight of se		an)	1700 K 940 K	(g/Sqm (g/cum ig/cum leg	
			1					Waler Table	ose (Wet portic	лт у		leg alow GL	

NOTE:

- 1. BEFORE START OF THE FOUNDATION ACTIVITY, ALL THE RELEVED PROVIDED IN THE TECHNICAL NOTES AND FOUNDATION DRAWING AND UNDERSTOOD. IF ANY ERROR OR CHANGES ARE OBSERVED, S INTIMATED TO ENGINEERING TEAM FOR CORRECTIVE ACTION.
- 2. FOUNDATION SHALL BE EXECUTED IN THE PRESENCE OF SITE ENG
- 3. DIMENSIONS OF BACK TO BACK OF STUB AT CONCRETE LEVEL SHA CHECKED WITH FOUNDATION DRAWINGS PIT DIMENSION TABLE FO SHEET 2 OF 2 OF THIS DRAWINGS BEFORE START OF THE FOUNDAT

VEF	TICAL SLOPE
TAN B =	0.241837837
2 TAN B =	0.483675674
FACE =	1.028827264
DEV =	1.056868525
IN	FACE SLOPE
TAN B =	0.241837837
SEC B =	1.027254576

3800 mm

NOTES:

1.DRAWING NOT TO SCALE

- 2.ALL DIMENSIONS ARE IN MM UNLESS OTHERWISE STATED.
- 3.CONCRETE MIX USED M20,LEAN CONCRETE MIX M10.

4.REINFORCEMENT ARE HIGH STRENGTH DEFORMED BARS CONFIRMIN

- TO IS 1139/1786(Grade Fe 500N/mm²)
- 5.STUB BELOW GROUND LEVEL =
- 6. WHENEVER NECESSARY TO CLEAR STUB CLEAT FROM BARS & STIRF SAME IS TO BE ADJUSTED AT SITE.
- 7.FOR FOUNDATION DESIGN REFER DESIGN DOCUMENTS.
- 8. CLEAR COVER TO REINFORCEMENT IS 50MM
- 9.STUB SETTING/PROP SETTING TEMPLATE HAS TO BE USED IN EACH LOCATION OF TOWER.
- 10.AT SITE PROPER COMPACTION OF THE BACK FILLED EARTH MUST B

DESCRIPT		DATE	REV N0	
ELDAM-NAR	400KV D/C XI	PROJECT		
WER GRID V	STERLITE PO			
WER GRID V	DESIGNER: STERLITE POWER GRID			
FC	20-09-18	RT	DRWN	
DDN-3/+0/-	20-09-18	AM	CHKD	corpugals Nordee Cost Est. 2011. AUI. 2011 IS-RESERVED No per of the operational contractions for approximation for transmitted for the operation for per amount of new properson studies per services persons of the devices That Unavelangeed cost. any well assess to indecayment end the infrarge shall be hold holds for beingst damages and printilations with supervisioner
	20-09-18	DL	APPD	
GTTPL/40	DRAWING NO.	20-09-18	DATE	

ENT INFORMATION IGS SHALL BE READ SAME SHALL BE							
GINEER ONLY. ALL BE READ FURNISED IN THE FION PIT MARKING.							
RLITE POWER GRID VENTURES LTD. EASED FOR CONSTRUCTION NTROLLED CCPY roved Vide Ref. Letter No $SPGV/GTTP/$ GG/LLT/26Date: $20/09/18incering Deplt.above does not relevative confractor from theirractual obligations$							
ING							
RUPS							
BE DONE.	-						
ESCRIPTION	DRAWN	С	IKD	APPD			
-NARENDRA TRANSMISSION LTD							
RID VENTURES LIMITED							
RID VENTURES LIMITED							
FOUNDATION DRAWING FOR TOWER TYPE N-3/+0/+3/+6M (30-45 DEG. DEV. ANGLE) 400KV D/C (WZ-1) DFR SOIL (4.0M DEPTH)							
	SHEET NO.	2/2	REV	0			
		_	_				

ERM has over 160 offices across the following countries and territories worldwide

New Zealand

Argentina Australia Belgium Brazil Canada China Colombia France Germany Hong Kong Hungary India Indonesia Ireland Italy Japan Kazakhstan Kenya Malaysia Mexico The Netherlands

Panama Peru Poland Portugal Puerto Rico Romania Russia Singapore South Africa South Korea Spain Sweden Taiwan Thailand UAE Vietnam

UK

US

ERM India Private Limited

Building 10, 4th Floor, Tower A, DLF Cyber City, Gurgaon - 122002 India

www.erm.com

